KuiBchKkuii HamionaapHuii yHiBepcuTeT iMeHi Tapaca IlleByeHka

2KypHaJj 004uc/I10Ba/IbHOT Ta ITPUKJIAHOT

W MATEMATHUKN] 2049

3acrnosanuil y 1965 poui

l'osiopunit PEJAKTOP C. L. Jlsmiko

PEIAKIITHA KOJIELTS
@. I. Tapawenxo, O. FO. 'puwenko, O. K. 3axycunro, M. 3. 3eyposcovrud,
1. M. Jlawenxo, B. JI. Maxapos, O.I. Haxonewnud, I. M. Iapaciox,

B. I puxaswuxos, I. B. Cepeienxo, O. B. Cmeas (6idn. cexpemap),
. 4. Xycainos, A. O. Yuxpit

Cepist "Obunciropasibna maremaruka'
l'onoBHUN PEOAKTOP CEPIi B.JI. Makapos

PEOAKIIMHA KOJIETIA CEPII

M. M. Botimosuu, I. II. Taspuaox, M. B. Kymuies, II. II. Mamyc, C.I. Conodxudl,
P. C. Xanxo (sidn. pedaxmop), O. M. Ximiu, B. B. Xaobucmos, I A. IHunkapenxo

MDKHAPOIHA PEOAKIIIMHA PAJIA

JI. Bepxosuuyp (CIIA), I. Inepumox (Himewwuna), FO. Fasvnepin (Kanada),
B. I'oadenzopin (Hidepaandu), IO. Epmonves (Ascmpin), @. Imazo (HAnowisn),
. Kpaewax (Hoea 3enandia), B. Mopdyzosuw (CIITA), II. Hapdanroc (CIIA),

H. Xpumonenxo (CIIIA), FO. Huenxo (CIIA)

KOMIT'IOTEPHA BEPCTKA 4. C. I'apacum

AJIPECA PEJAKIIT: 03022 Kuis, np. I'mymikosa, 2, Kop1. 6
KuiBcohkuit nHarionasnpunii yuisepcurer imeni Tapaca Illesuenka,
dakynbrer KibepHeTuku, Kadeapa 00UnCIIOBAILHOI MATEMATHKH,
res.: (044) 259-04-36, E-mail: opmjournal@gmail.com
http://www.opmj.univ.kiev.ua

ATNIPECA PEJTAKINT CEPIT: 79000 JInBiB, Bys. YHiBEpCHTETCHKA, 1
JIbBiBCHKUMI HalioHAJNBHNN yHiBepcuTeT imMeni Iana ®panka,
Kadeapa obumncaioBaabHOl MaTeMAaTHKH,
test.: (032) 239-43-91, E-mail: kom@franko.lviv.ua
http://blues.franko.lviv.ua/ami/kom/jnam/jnam_link ua.htm

3arBepmkeHo Buenoio pagoro daxynprery KibepHeruku
Big 17 Bepecus 2012 p. (1porokos Ne2)

(© Kuibcbkuit Hanjonanpauii yaisepcuter imeni Tapaca ITlesuenka, 2012
© "TBIMC”, 2012
CeimonTeo po mepxkapny peecrpartio KB 4246 sin 26.05.2000

Ilimmucano no apyky 17 Bepecusa 2012 p.



2Kypnas ob64aucimoBaabHOL 2012, N= 3 (109) Journal of Numerical
Ta, MPUKJIAIHOT MaTEMATUKHA c.1-10 & Applied Mathematics

UDC 519.6

ON THE COMBINATION OF SINGULAR AND
HYPERSINGULAR BOUNDARY INTEGRAL EQUATIONS
FOR THE NEUMANN BOUNDARY VALUE PROBLEM FOR
AN ELLIPTIC EQUATION WITH VARIABLE COEFFICIENTS

CHRISTINA BABENKO, ROMAN CHAPKO

PE3IOME. [ljs1 ancensHOr0 po3B’si3yBanHs BHYTPimHb0I 3a1a4i Heiimamna myis
eJIIITUYHOTO PIBHAHHA 31 3MIHHUMHU KOeMIIi€eHTaMu 3aIpPOMOHOBAHO IIiIXis,
AKUI IPUBOJUTH /10 CHCTEMU I'DAHUYHHUX IHTErDAIbHUX DIBHSHD 3 CHHIYJIAD-
HUMU i TiNEepCUHTYIAPHUMH dapaMu. /IUCKpeTu3amiio iHTerpabHUX DiBHIHD
3IiiCHEHO METOJOM KBAaJpaTyp i3 BUKOPHUCTAHHIM TPUMOHOMETPUYHUX KBaJl-
parypHux dopmy inrepnosianiiinoro tuny. IIpuBeneno npukia gy 9ucebHIX
eKCITepUMEHTIB.

ABsTRACT. We consider the interior Neumann boundary value problem for
an elliptic equation with variable coefficients. For the numerical solution of
this problem we develop an approach, which leads to a system of boundary
integral equations with strong- and hypersingular kernels. The full discretiza-
tion is realized by the quadrature method with use of quadrature rules based
on trigonometrical interpolation. The results of numerical experiments are
presented.

1. INTRODUCTION

The boundary integral equation method is an effective tool for theoretical
investigations and numerical solution of various boundary value problems. For
the use of direct or indirect integral equation approach it is extremely impor-
tant to know the fundamental solution for the considered differential equation.
This is not a big problem for the large number of equations with constant coef-
ficients. But in the case of variable coefficients the fundamental solution is very
difficult to find and therefore the integral equation method is not used very of-
ten for such kind of problems. However, it is possible to involve the parametrix
which describes the main part of the fundamental solution and doesn’t satisfy
the equation. Note that in the case of elliptic equation of the second order the
parametrix is also known as Levi’s function |7, 8]. As a result, a given boundary
value problem can be reduced to a boundary-domain integral equation. This
approach doesn’t contain the main advantage of integral equation method re-
lated to the decrease of the dimension of the differential problem. Therefore
we investigate another approach which does not have this disadvantage. This
approach has been applied in [2] for the case of the Dirichlet boundary value
condition. Its idea consists in the following: we introduce a set of closed nonin-
tersecting curves in the solution domain and consider the differential equation

'K ey words. Elliptic equation with variable coefficients; Levi’s functions; System of bound-
ary integral equations; Strong and hyper-singularities; Quadrature method.
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on these curves. Next we construct potentials with the Levi’s function and
reduce the given boundary value problem to boundary integral equations with
various singularities in the kernels.

In this paper we extend the described approach to the case of the Neumann
boundary value condition with the use of strong and hypersingular integral
equations.

Let D C IR? be a bounded simply connected domain with the boundary
'y € C3. We search for the function u : D — IR which satisfies the elliptic
equation

Lu(z) = div(o(z) gradu(x)) =0, x € D (1)
and the Neumann boundary value condition
ou
o(z)5-(2) = f(z), @ €To. (2)

Here v is the outward unit normal on Tg, o € L>°(D), 0 > 0 and f € H~1/?(T)
are given functions and

f(y)ds(y) = 0.
To

It is known [9] that the solution u € H'(D) of the problem (1), (2) can be
determined uniquely up to an additive constant. Therefore we assume that the
coordinate origin belongs to the domain D and add the condition u(0) = 0.

2. MODIFIED PROBLEM AND BOUNDARY INTEGRAIL EQUATIONS

Definition 1. The function P(z,y), z,y € D is called the parametrix (or
Levi’s function) of a differential operator L if

Lo P(x,y) = 0(z — y) + R(z,y),
where ¢ is the Dirac function and the function R has weak singularity for x = y.

It is easy to make sure that for the operator in (1) the Levi’s function has

the form

_Infx —y

P(z,y) = , z,yeR? z#y

2o (y)

and the remainder function is

(z —y) - grado(z)
2o (y)lx — y[?

2
R(z,y) = , nyelR” z#y.
Now we introduce the set of smooth closed disjoint curves I' = Ujkvz1 Ty in the
domain D. Assume that all curves have following parametric representations

L'y = {xk@) = (wl,k(t)?:C?,k(t))vt € [O? 27T]}7 k=0,...,N,

where zj, : R — IR? are C% and 27—periodic with |24 (t)| > 0 for all ¢.

We modify the problem (1), (2) as follows: find the function @ : I' — IR,
which satisfies the differential equation (1) on I' and the boundary value con-
dition (2).



ON THE COMBINATION OF SINGULAR ... 3

Lets introduce the single layer potential

2/% P(z,y)ds(y), x€D (3)

with unknown densities ¢; € L*(T;). Then from the equation (1) considered
on I' and the definition of the Levi’s function we receive the system of integral
equation

+Z/ vi(y)R(x,y)ds(y) =0,z € Ty, k=1,...,N.

The boundary value condition (2) also needs to be satisfied. In order to achieve
this we will combine the representation (3) with a potential over the boundary
[o.

We can present the solution of the modified problem in the form

ie) = [ o 2t

Then from the definition of the Levi’s function and properties of a logarithmic
double layer potential the modified problem can be reduced to the system of
boundary integral equations

+Z/soz R(x,y)ds(y)+

+/F wO(y)U(y)%dS(y) =0, zely,

ds(y) + w(z), zel. (4)

N

OP(z,y)
Z/F @i(Q)WdS(y)‘f‘

i=1 7T
OP(z,y) _ f(@)
\ +81/(x) /Fo wg(y)a(y)wds(y) = W’ rz el

for kK =1,...,N. Note here that in the case of ¢ = 1 the system (5) will be
simplified to the integral equation

217r(91/8(37) /Fo @(Q)st(y) = f(z),x € Ty. (6)

It is known [1, 5], that the integral operator in this equation is not invertible.
Therefore we replace the equation (6) by the following modification

IR Oln |z — y B B
) o POy S0+ = F e T [ plw)dst) =0 (7

Here ¢ € H'/?(T'y) and o € R are unknown. Now the integral operator in (7)
is invertible in corresponding Sobolev spaces [1, 5].
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Thus we consider the following final system of integral equations related to

(5)

( N
oule) + Y [ i) R g)ds(u)+

i=1 7T
+ /FO wo(y)a(y)%dsw) =0, zely,

i/ w-(y)MdS(y)Jr

iz /T ' Ov(x)

0 OP(x,y) . o fz) .

oy Jo o) G ) o= T wet,

/wo(y)d«S(y)ZU-

\ To

Taking into account the form of Levi’s and remainder functions we can rewrite
this system in the following parametric form

N 2T
1
(L= Bont) + 5> | )t ryars

+5k0a:gk(_t), k=0,...,N,

(8)
2m
/ wo(T)dr =0
0
with unknown densities px(t) = ¢r(zk(t)), £ = 0,..., N and an unknown
constant a and with right hand sides
0 k=1,...,N,
W= flao(t)
k=0,
o(zo(t))
and 2m-periodic kernels Hy ;(t,7) = 2rR(zk(t), zi(7))|zi()], & = 1,...,N,
i=1,...,N,

2(x —zo1(™) (2 — o
st ) =

/ / / / (xk,l(t> — x071(7—>)2 -
X(IE2(T)O-:E2 (:Ek‘(t)) - (7_)0- (l’k(t))) + ‘l’k(t) — I'()(T)|4
(wra(t) — wo2(7))* (@] (7)o, (2k(t) + (1) 0y, (21(2))

[2k(t) — wo(T)[*
(

|2k(t) = xo(7) 2o (z0(7)) ’
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(wo(t) — xx(7)) - v(xo(t))

|z0(t) — z(7) [P0 (2k(7))

Hoy(t,7) = |} (7)]
fork=1,...,N and
v(zo(t)) - v(o(7)) |

|zo(t) — zo(7)[?

4 2v(zo(t) - (2o(t) — zo(7))v(wo(7)) - (20(t) — 2o(7)) _

|zo(t) — zo(7)[*
_V(x()(t)) ) (.fo(t) - .1'0(T))l/($0(7')) i grada(:vo(T)) } |l’, (7_)|
|0 (t) — @o(T)[?0?(20(T)) o

As we see some kernels in (8) have various singularities. We split the strong
singularity in Hyy, £ = 1,..., N in the following form

ity ={-

T—1

Hy(t,7) = ng) (t,T) cot

with smooth kernels

2

wh(t) - grad oo (1))
20 (wo(t)) |2 (t)]
To handle the hypersingularity in the kernel Hyg we rewrite it as

1 ~
H&o(t,T) = — —r + HO,()(t, T),

t
4|z} (t)] sin?

t
Hy(t,7) for ¢ # T,

-
tan

aY)(t,7) =

for t=r.

where
1

Hoo(t,7) = Hoo(t,7) + —
/ 102
4|z (t)] sin

with the diagonal term
v(zo(t) - 2g(t) | v(zo(t)) - 25(t) v(xo(t)) - grad o(zo(t))

Hop(t,t) = —

2|z ()| o (o(t))|zo(2)]
n |2 (t)[* — 2| (t)[Pxp(t) - 2 (t) + 3(ag(t) - 25 (1)
122(8)°
73(336,1@)93/0/,2(75) - $672(t)x671(t))2
12, (2)°

Based on the uniqueness results of the boundary value problem (1)—(2) and the
Riesz-Schauder theory for compact operators [6] we have the following result
about well-posedness for the system of 27-periodic integral equations (8).

Theorem 1. Let p > 1/2. For every f € HP[0,2x| the system (8) posses an
unique solution po € HPTY0,27] and py, € HP[0,27], k=1,..., N.



6 CHRISTINA BABENKO, ROMAN CHAPKO

3. QUADRATURE METHOD
We begin by describing the appropriate quadrature rules. For this we con-
sider trigonometric interpolation with 2n equidistant nodal points

T

=20 j=0,...,2n 1

n

with respect to the 2n-dimensional space of trigonometric polynomials, and use
the following quadrature rules

1 2 1 2n—1 (n)
o [ fdr~ o kzzo 1), (9)
1 2 . 2n—1 ~
5 [ /M (4 sin ) dr~ Y R F), (10)
k=0
1 2n—1
o f( ) cot ~ Lir ~ Z T )y, (11)
1 2n—1
o f( Yoot T—Ldr ~ Z T (1) f(tiM). (12)

The weight functions are given by

R,(cn)(t) = - Z — cosm( t—t( N — % cosn(t—t("))7

B 1 n—1

T,gn)(t) = - Z sinm t—tkn)) smn(t—t/,(€ )),
m=1

T,E,n)(t) = —% Z mcosm(t — t( )) — — cosn(t — t,g ))

These quadratures are obtained by replacing f with its trigonometric interpo-
lation polynomial and then integrating exactly [3, 6]. Note that some of given
quadratures coincide with quadrature formulas used in the method of discrete
charges [4].

Thus we use quadrature rules (9),(11) and (12) to approximate three types of
integrals in the system of integral equations (8) and collocate the approximate
equations to obtain the linear system

An=Db
with matrix coeflicients
(i) _ 1 (n) ,(n) _
Ak’,O - %Hk,o(ti ’tj ), k=1, , IV,
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Hgk(t("),t")), k=1,...,N,

(
J
A4 _
o _éT My L g ey

j( )+ OO(t 7tj )a ’

2zt T 2M
1 4(n) ()
7Hk,€ i 7t ) k 7é 67
Q) ) 2n 6
ke —

Tyt Hi o (1, 487), k=1¢

and AYS? =1, A{7" = 1 and with the right hand side b = g(t!"),

k=0,...,N,i=0,...,2n—1and 5y =0
To find the numerical solution of the modified problem we parametrize the
reprezentation (4)

2w
.CCk 27[_ Z/ /Jg Lkg t T)d (13)

where Ly ¢(t, 7) = Z|ay(7)|P(2k(t), e(7)) for £,k =1,...,N and

B _(aik(t) — xO(T)) ) 1/(1'0(7'))
Lyo(t,7) = o(xo(7))|xk(t) — zo(7)[?

B grad o(xo(7)) - v(xo(T))
o?(zo(7))

As we see the kernels Ly, have logarithmic singularity and we split it in the
following form

In |z (t) — xo(7)|.

t —
Lo(t,7) = L}7e(t,7') In <4 sin T) -+ ng(t,T)

with
|75 (7)]
L}, (t,7) =
) = ()
and
1 L t—1T
Lpg(t,7) — Lg,(t,7)In | 4sin for t# T,
ng(t,’l') -
/
t
L0l In |2 (t)] for t=r.
o (x(t))

Now according to (13) and using quadratures (9) and (10) we have the following
formula for the numerical solution of the modified problem

i, Z Dot ™),

/=1 =0
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where
1 n
Q—Lw(t,tg ) for €+ k,
~ n n
B3 0(t,6) = 1
Lig(t R (1) + o L7,(4,4) for (=

4. NUMERICAL EXAMPLES
Example 1. We consider the domain D bounded by a circle I'g with the radius
R = 1. The given function ¢ and f are given as
o(x)=14234+23, z€D and f(z)=z1e" coszy — xoe® sinzg, x € I.
The numerical solution of the boundary value problem (1),(2) received by pro-

posed method is presented in the Fig. 1a. Here we used the following discretiza-
tion parameters n = 64 and N = 13 and the set of curves

k
Iy = {xk(t) =(1- N+1)(cost,sint),0<t<27r}, k=0,...,N.

The numerical result obtained by FEM method by PDE Toolbox in Matlab is
illustrated in Fig. 1b. As we see both results are sufficiently close.

a) Numerical solution by BIEM b) Numerical solution by FEM

Fia. 1. Results of numerical experiments for the example 1

Example 2. Assume that the boundary curve I'g and the set of curves I' (see
Fig. 2a) have the parametric representation

k
Iy = {xk(t) =r(t)(1- m)(cost,sint),o <t< 27r} , k=0,...,N

with the radial function

0= ((Beest) "+ (Bsmnr) ")

olx) =1+ eo‘g(x%”Q), reD

Let
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and

f(x) = e® (cos xovi(x) — sinxove(x)), x € .

The numerical solution obtained via proposed method is given in Fig. 2b.

i}

n

(=]

0.

in

-2 -1 0 1 2

a) Set of curves I’ b) Numerical solution by BIEM

F1¢. 2. Results of numerical experiments for the example 2

We considered the numerical solution of the interior planar Neumann bound-
ary value problem for an elliptic differential equation of second order with vari-
able coefficients. The proposed method is based on boundary integral equa-
tions. First we approximated the given problem by a modified problem on the
introduced set of closed curves in the solution domain. Then the potentials
with Levi’s function are used for the modified problem. As result the system
of boundary integral equations with singular and hypersingular kernels is re-
ceived. The full discretization is realized by trigonometric quadrature method.
The presented numerical examples confirmed the applicability of the proposed
method.
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RIGOROUS VANISHING SOLUTIONS OF
A NONLINEAR HAMMERSTEIN INTEGRAL EQUATION
RELATED TO PROBLEMS WITH FREE PHASE

OLENA BuLAaTsyk, IHOR TUPYCHAK, YURIY TOPOLYUK

PE3IOME. Posrignaerbea Hesinifine iHTerpaJibHe piBHsaHHA [amMepinTeina,
sIKe BUHUKAE B 33/1a9aX 3 BLIHHOWIO (a3010. JJoC/TiKy€eThcss HOBII KJIaC iic-
HUX Ta KOMIJIEKCHUX PO3B’s3KiB IHOTO piBHsHH:A. PO3B’I3KHU I0IAIOTHCH ¥
fABHOMY BHIVISIL 31 CKIHYEHHM YHCIOM HEBIIOMUX KOMILIEKCHHUX IIaPAMeTPIiB,
10 € HYJISMH CIIEIiaJIbHO MOOYI0BAHOTO MOJIHOMA, i CKIHYEHUM YUCIOM JTiHC-
HUX [MapaMeTpiB — HyJIB X PO3B'A3KiB y ix obsacti BusHauenus. Jlms
3HAXO/KEHHH [HUX apaMeTPiB CTPOr0 OTPHUMAHA HOBA KOPEKTHA CHCTEMA
TPAHCIIEH/IEHTHUX PIBHAHb. PO3B’'SI3KM 1€l CHCTEMU JOC/IIIZKYIOThCS YUCETh-
HO. AHaJI3yI0ThCA TOYKY rajly KEeHHs [UX PO3B’A3KIB BIIHOCHO MICHOTO Tapa-
MeTpa 3aJadi.

ABSTRACT. A nonlinear Hammerstein integral equation that arises in prob-
lems with free phase is considered. A new class of real and complex solutions
of this equation is investigated. Solutions are represented in an explicit form
with a finite number of unknown complex parameters being zeros of a spe-
cially built polynomial, and a finite number of real parameters — zeros of these
solutions in their domain of definition. A new correctly determined form of
earlier obtained transcendental equations system is found. The solutions of
this system are numerically investigated. Their branching points are analyzed
with respect to a real parameter of the problem.

1. INTRODUCTION

Problems with free phase, covering, in particular, the phase problem, at-
tracted the attention of researchers for a long time [1]- [4]. A wide class of
these problems complete the phase optimization problems, main idea of which
consists in the mean square approximation of a given non-negative function by
modulus of the functions being the result of action of a bounded operator on
compactly supported complex functions [5]-[9]. These variational problems are
reduced in a usual way to nonlinear integral equations of Hammerstein type
as the Lagrangue-Euler equations for respective functionals. As a nonlinear-
ity, these equations involve the phase factor (argument of unknown complex
function) in the integrant.

One of the ways of solving such type of equations was an approach suggested
and developed in [10], [11], and described in details in [12]. In this approach the
solutions are represented in an explicit form with a finite number of unknown
complex parameters. A system of transcendental equations for calculation of

TK ey words. Nonlinear integral equation of Hammerstein type, finite-parametric solutions,
branching of solutions, phase problem, vanishing solution.
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these parameters was obtained. The approach was extended to a general class
of Hammerstein equations of the considered type.

As it was noted in [12]|, above approach does not cover all solutions of the
equations, it considers only nonvanishing solutions. The solutions having ze-
ros in their definition domain were particularly considered in [13], [14]. Such
problems arise, in particular, when the desired function to be approximated
has zeros in its support domain. Among the physical problems of such type
we should, in particular, mention the antenna synthesis problem by the given
multi-lobe amplitude directivity pattern [15].

Similar problems were investigated in [13]. There were announced the ideas

of analytical presentation of the solution for solving the problems. The main
theoretical results are given in [14]. Partial numerical results are also considered
there. Numerical results of investigation of real solutions of partial system of
equations obtained in [14] are conducted in [16].
It should be also mentional the work [17], [18] on the approximation of functions
defined on the real axis by the classes of entire functions and more universal
approach in works [19], [20] which are close to the ideology of problems in our
article.

In the article we consider more general one-dimensional case. Some results
given here were announced in [21]. Real solutions, having zeros in the do-
main of finiteness of given non-negative function were considered in [16]. Some
results concerning the solution branching with respect to the real parameter
which is included in the kernel of nonlinear equation of Hammerstein type were
described. It turns out that the sets of real and complex solutions are not
separated. There are such values of the real kernel parameters, at which the
complex solution branches into the real one. Branching of the initial complex
solutions (this class of solutions will be described later) into other complex solu-
tions is numerically investigated in this article. The starting point of the article
is a system of complex transcendental equations, correctness of which is proved
theoretically. Numerical results for several particular cases are presented and
analyzed.

2. PROBLEM FORMULATION
Consider the Hammerstein integral equation

b
1) = [ K& P/ ag 1)
with the kernel
K(E,fl) — 8(&)(]({ ) B 8(‘5 )Q(’g) (2)

T -7¢)
where s(&), q(§), 7(£) are real continuous functions, such that the systems of
functions, {7"(&)s(§)}, {7"(&)q(§)}, (n = 0,1,...) are linearly independent,
F(&) € La(a,b) is a given non-negative function. It is assumed that the solu-
tions of the equation may have real zeros in the interval [a, b].
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3. THE THEORETICAL RESULTS
Let us represent the solution of equation (1) in the form

M
f(©) = H £ —pj) (3)

where f(€) is a real positive function in & € [ ,b]; v is a complex constant with
7| = 1; a < p; < b are real zeros of function f(f) f(pj) =0, M is a positive
integer number;

N

Py(r) = [[(1 — nwar)

k=1
is polynomial of the degree N with complex, pairwise nonconjugated zeros 771?7}@ :

INE — INm # 0, k,m =1,2,...,N. (4)
Without loss of generality, we can set v = 1. From (3) we obtain

larg (&) — Pn(7) " sgn (& — p;

The function f(£) can be uniquelly defined from the equality

H §— p] =
, B (6)
1 /
= i | e |Hﬁg“ j) &

a

which follows from (1).

Theorem 1. Function f(§) of the form (3) is a solution of equation (1) if and
only if the real parameters p;, j = 1,..., M and complex nny, k =1,..., N, with
the condition (4) satisfy the system of transcendental equations:

TNn(pjaT]NlaT]NQa anNN) = Oa n = ]-525 "'aN) ] = 1727 "'7M7 (7)
®Nn(pj777Nl7nN27'“7nNN)207 n:1727"'7N7 j:1727"‘7M7 <8>
\PNn(pjvanvnNQW'wnNN):07n:1327"‘7N7 j:1727"'7M7 (9)

where
b
Re | P,
TNn - /K(p]7§/)F(§I) [ N(‘P Hsgn _pj d§7
b F©) M
By = /T”—ls(ﬁ ()] [ sen (€ —py) de, (10)

a J=1
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b

oty PO e -
Vo= [ 7 06) oy L v € = ()

a

Proof. Necessity. Let function f(§) represented as (3) with v = 1 be the solu-
tion of equation (1). Substituting expressions (3), (5) into (1) and multiplying
both sides by Py (&) result in

M

1P € ) =

J=1

= Pu( /K£§ Hsgn ) dg'.

After extracting the imaginary part from (12), we obtain

(12)

b
J (55>|lf(f)Hsgn ') Ryalr7)dE =0, (13)

where

2¢ Im[Py (7") “1(gtym-
R B N — / m—1
No1(T,T") - Z ™ (T) (14)
k,m=1
is a polynomial of two variables with matrix coefficients A = {ag;, }. Substitu-

tion (14), (2) into (13) and interchanging the variables £ and &', give

N b u
' k-1 F(§) o
k%:Ika Q(f)a/T S(§)|PN(T)’jl_Ilsgn(§ pj) dé
b

, F(¢ m—
= 5(€) [ P ,Hsgns p)de| ()" =0,

a

Since the functions {7%s(&)}, {%q(&)}, k = 0,1,...,N — 1, are linearly
independent, expression (15) results in the following systems:

(15)

N
> agm®yn =0, n=1,2,..,N, (16)
k=1
N
> @mUnn =0, n=1,2,..., N, (17)
k=1

where @y, ¥y, are defined in (10), (11). They can be considered as indepen-
dent systems of linear algebraic equations for the unknown @y, ¥y, with the
same matrix of coefficients A.
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Determinant of matrix A has been found in [11]:

N
det A= (=1)!Z T (nm — nwe),
k,m=1

where the square brackets mean the integer part of the number. From (4) we
get det A # 0, and the equation systems (16), (17) have only zero solutions.
This means that transcendental equations (8), (9) are satisfied.

Let the solution of equation (1) satisfy the condition f (p;) =0,j =1,..., M.
Then, according to (1),

/K ;. € e e () ge’ = . (18)

Multiplying both sides of (18) by Py(&) and using (5) result in

b
/K@w@F@f)|m]§ II%n p)dg =0, (19)

After extracting the real part from (19), we obtain the system of equations (7).
Imaginary part (19) gives the following system:

b
e o F(E)
/(T(p]) )K(p]7§)‘PN( /)|><
¢ (20)

XHSgH ¢ —pj) Rn-1((p;), 7')d¢' = 0.

System of equations (20) coincides with the system (13) in case of & = p; and
=T (py).

Sufficiency. Let the system of transcendental equations (7), (8), (9) be sat-
isfied for some integer N, complex numbers nyg, & = 1,2, ..., N, which satisfy
the condition (4) and real numbers p;, j = 1, ..., M. We show that the function
of the form (3) is a solution of equation (1) and p;, j = 1,..., M, are real zeros
of the solution.

After reducing system (8), (9) to equalities (16), (17) and substituting (10),
(11) into them we get the equality (15). Then, using (13), we have

Im | Py (7 /K§§ B ] Hsgn ¢ —p;) Pn(r)de' | = 0.

P

Add the real function f(&) [P (7)[? H (& — pj) under the symbol of imaginary

J=1
part:
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M

FO PP T € - i)+

j=1

Im

. (21)

+Pu(r) [ K6

a

Dividing both sides of equality (21) by the positive function | Py (7)| and taking
into account the equality

—p] Py (7")d¢| = 0.

7 |Py(r) = — O (22)

(€ —pj)

=

<
Il
-

we get

M
O [ sen (¢ —pj)+
j=1

(23)
T ') o ,
T|/ €€) H ¢ i) Pu(r)dg'| =0,
On the other hand, (6) gives
M
Re [[£(E)] ][] sen (€ —pj)+
j=1
b (1)

Py(7) (f _

a
Equalities (23) and (24) mean that the expression in brackets equals to zero
and, according to (5), function (3) is a solution of integral equation (1). O

Let then the equation system (7) be satisfied. Using (24), (22), (3) with
§ = pj, we get

Re[f (pj)] = 0.
Similarly, (23), (13), (22), (3) give

Im [f (p;)] = 0.

Thus, the parameters p;, j = 1,..., M are zeros of the function f of form (3).
The theorem is proved.
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4. THE NUMERICAL RESULTS
The Newton method was used for solving system (7), (8), (9). Integrals from
the left part of the equation system were calculated by the Simpson method.
The integration interval was divided into segments by points so, that the inte-
grand was smooth there. Iterative process of Newton method can be described
by the following formula:

[

gm+1) = gm) _ (S‘s' <f(m); c))i1 R (i“'(m); c> , m=0,1,

where (™) = {%(m)’ng(m)’pl(m)

(7), (8), (9) on the m-th step, m(Lm)
¥ is a vector of the left parts of the equation system (7), (8), (9),

} is an approximation of zeros of the system

=7/, (™) i (™) 4 is the imaginary unit,
Sy (f(m);c)

is the Jacobian matrix of this system in the point Z(™); ¢ is a real positive

parameter; m is an iteration number. The end-point condition of the iterative

process in the Newton method is

m+1)

11 (m~+1) 11 (m)

max |7y, (" — (M 4 maxc | D — )+
n=1,N n=1,N
+ max ’pl(mH) —pl(m)’ <e.
I=1,M

The structure of the Jacobian matrix in general case is

N

M k=1 My, k=1 I ) j =1

=2

o~ (o _ a\Ile a\IINj v a\Ile 7
5 (nnvnnvpl) - on’ on'! P
TNk k= NN k= Pk ) j k=1
Gt st (3,
Mg jk=1 Mk jk=1 Opr k=1

Equation system (7), (8), (9) was investigated numerically for the case s (&)

sinc€, q(§) =coscé, T=€&,a=1,b=—1, ¢ > 0. In this case equation (1) has

the form

f€)

-/

sine(§ —¢')
§—¢&

F(&)exp(iarg f(£))dE'.

(25)

We consider two types of given non-negative functions F' (§) : F1(&) = [ — |
and Fy(£) = sin(m-[§—t[/(1+]t])), t €

domain.

(—1,1), having one zero in the integration

Real solutions. We consider first the real solutions that correspond to N = 0.
According to (3), each real solution of equation (1) is represented in the form:



18 OLENA BULATSYK, IHOR TUPYCHAK, YURIY TOPOLYUK

1
f(€) z/F(f) Smg gglg Hsgn (€ —pj) de. (26)

It follows from (7), that the real parameters p; of are found from the equation
system

. M

sinc (€ — p

[r@fE M [Tone—pa =0, 1= 20)
1

—1 -

The cases M=1 and M =2 are investigated numerically. In these cases the
real solution of equation (1) has one or two zeros in the interval [-1,1], respec-
tively.

In case M =1, system (27) becomes the transcendental equation with respect
to p = p1:

/F (€) de — 0. (28)

We solve this equation by the chord method. Integrals in the left hand sides
of the equation are calculated by Simpson method. To apply this method, the
integration interval [-1;1] is divided into parts by zeros of the functions F, f
so that the integrand is smooth in each of these parts. Then, in particular,
unknown parameter p occurs in the integration limits.

Solutions of equation (28) are shown in Fig. 1. Different solutions depending
on parameter ¢ are marked by pi;, where j means the solution number.

p p
1Y : : : R : : :
13 13
05 | 4 05} .
| 12 ‘ 12
0 ; ‘ 0 i ;
1 ! \/\11/
-1 ‘1 L ! L C -1 :1 L ‘1 L C
0 c,2 4 ¢, 6 0 ¢,.2 4 C,b 8 10

(a) (b)

Fia. 1. Solutions of equation (28): (a) F1(§) = [£—t|, (b)
Fy(§) = sin(m - |§ —¢[/(1+ [¢]); t = 0.1

As follows from Fig.1, number of solutions varies depending on the real
parameter. For c<c; only one solution pi; exists. At the point ¢ = ¢; two
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p..
1'Okf' 19
24
2 R
\ 22
0 0 ) i
: 3
05 11 : 22
051 44 =T N T3 1
_1 i E 1 o _1 2 .ii X X '
0 1 2 36,554 o 2 4¢c, 6 8
€,
@ ()

FiG. 2. Solutions of equation system (27) at M = 2: (a)
(&) = € — 1], (b) F2(§) = sin(m - € — ¢ /(1 + [¢])); £ = 0.1

more solutions (pi2 and p13) appear. These results show that the point ¢ is
an isolated bifurcation point, namely a point of appearance of new solutions.
For ¢>c; we already have three solutions of equation (28).

The more complicated situation arises in the case when two zeros of real
solution of equation (1) exist in the interval [—1;1] (M = 2). In this case the
equation system (27) is solved by the Newton method. As before, the interval
[—1;1] is divided into parts so that the integrand is smooth in each of these

parts.

[f.F
1
F
0.8
12
06

0.4

0.2

D I I
-1 05 0 05

1&

FiG. 3. Different solutions to (25) for given function F5(§) =
sin(m - [€ —t|/(1 4 |t])) at ¢ =3.5,t=0.1

The solutions with two zeros p1, p2 exist for arbitrary value of ¢>0. The
curves corresponding to these solutions are marked with symbols 15 and 2j,
respectively. Similarly to the previous case, there is a pair of new solutions
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with parameters {pi2,p22} and {pi3,pes} at the point ¢ = c. One more pair
of solutions {pi14,p24} and {p15, pas} appears at the point ¢ = ¢3. Thus, when
c>cs3, there are 5 different solutions of system (27) each of which has two real
zeros in the interval: {pi1,p21}, {p12, P22}, {13, P23}, {P14, P24}, {P15, P25}

Moduli |f;(€)| of all found solutions (26) with M = 1 and M = 2 of the
initial equation (25) in case F»(§) = sin(7 - |£ —t|/(1 + |t])), ¢ = 3.5 are shown
in Fig.3. It turns out that the closest in modulus to the given function Fy(§),
is f12 having one real zero at the point £ = ppo.

Complex solutions. Complex solutions of the system of transcendental equa-
tions (7), (8), (9) in the considered particular case were numerically investigated
for N =1, M = 1. These solutions have one real and one complex parameter.
The equation system for this case is of the form

sine (€ — p1) Re [Pi(p1)Py(§)] . _
_/F({) F—pn 1G] sgn (§ —p1) d€ =0, (29)
[ FE [ eosee FO
/SIHC§|P1(£)| sgn (5 7p1) dg = 07 /COSC€|P1(£)| sgn (5 7p1) dg = 07

where Pj(£) =1 —n;€. This system was solved by the Newton method.

Di2sPu nLny
0.25
0
0.2
-1
0.15
2
0.1
0.05 -3
0 c 4
4 c, 6 8 10 4
(@

Fia. 4. Parameters of complex solution with M =1, N =1 to
equation (29) for Fy(§) = |£ — 0.1

We investigate the real solution f12 (with one parameter pi2) of initial equa-
tion (25). This solution appears at the point ¢ = ¢; (see Fig. 1, curve 12). At
the point ¢ = ¢y two complex conjugated solutions are branched off from fis.
At ¢ > co they have one real parameter pi4 and one of two complex parameters
M2 = £iny.

Numerical results are shown in Fig. 4 and Fig. 5 for the given functions F(§)
and F»(&), respectively. The results demonstrate that sets of real and complex
solutions of equation (1) are not isolated and real solutions branch into the
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PuP un
0.115 122 P14 21]1 M

0.1

0.105

0.1
0.095

0.09

Fia. 5. Parameters of complex solution with M =1, N =1 to
equation (29) for F5(§) = sin(m - | — 0.1|/1.1)

complex ones (the example of transforming the complex nonvanishing solutions
into the real vanishing ones for this type of given function F(§) see in [21]).

5. CONCLUSIONS

A nonlinear Hammerstein integral equation arisen in problems with free
phase has been considered. A new class of real and complex solutions of this
equation has been investigated. Solutions have been represented in an explicit
form with a finite number of unknown complex parameters being zeros of a
complex polynomial, and a finite number of real parameters — zeros of these
solutions in their domain of definition. A new correctly determined form of ear-
lier obtained transcendental equations system has been found. The solutions
of this system have been numerically investigated for a particular case. The
branching points of these solutions with the respect to a real parameter of the
problem have been analyzed.
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NUMERICAL INVESTIGATION OF A PLAIN
STRAIN STATE FOR A BODY WITH THIN COVER
USING DOMAIN DECOMPOSITION

IvaN DYYAK, YAREMA SAVULA, ANDRIY STYAHAR

PE3IOME. Posragmaersca mMozmesnb, gka ONHCYE HAIPYKeEHO mnedOpPMOBAHMIA
CTaH JIBOBUMIPDHOTO TETE€POTEHHOTO Tijia 3 TOHKUM TOKPUTTAM. CrodaTky
JIOBEIEHO 301KHICTh iTEpaTUBHOTO AJIrOPUTMY, TOOYI0BAHOTO HA, OCHOBI ITO€/I-
nauHg Merony ckindenuux enementis (MCE) ra meroy rpaHudHuUX ejleMeHTIB
(MT'E) 3 BUKOpPHCTAaHHAM JEKOMMTO3WINI oOmacteii. Ilicas mboro aaropurm
HPOIIIOCTPOBAHO HA MIPUKJIA I JTBOBUMIDHOI 33a4i JjId Tija 3 TOKPUTTAM.

ABSTRACT. We consider a model, that describes the plain stress state of the
2D heterogeneous elastic body with the thin cover. First we prove the con-
vergence of the iterative algorithm based on finite element method/boundary
element method (FEM/BEM) coupling using domain decomposition. Further
we illustrate this algorithm with an example of 2D problem for the body with
a cover.

1. INTRODUCTION

A lot of structures, both natural and artificial, contain thin covers or thin
inclusions. Therefore, the problem of analyzing the stress-strain state of such
bodies is of great importance. Typically they consist of two or more homoge-
neous parts that have a big differences in physical dimensions and properties
between them. A lot of aspects of the problems, related to this subject, were
analyzed (see for example |2, 4, 5, 7, 8]). In this paper we use the combined
model, where the parts of the body with comparable physical dimensions are
described by the linear elasticity equations, whereas the sress state of the thin
cover is described by Tymoshenko shell theory equations [5]. These parts are
connected using the appropriate coupling conditions on the common bound-
aries.

In order to perform numerical analysis of our model we solve the correspond-
ing problems in thin shells by finite element method (FEM) with bubble basis
functions, and the other parts of the body are solved numerically using bound-
ary element method (BEM) with linear basis functions; the iterative domain
decomposition algorithm is then used to connect the solutions in both domains.

In this paper we also prove the properties of our model and prove the con-
vergence of the algorithm.

tKey words. Elasticity theory, boundary element method, finite element method, domain
decomposition.
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2. PROBLEM STATEMENT
Let us consider a problem of plane strain of cylindrical body €2y with the
cover (1.

Fic. 1. Body with cover

The plane strain stress of the body in € can be described by [1]

doy1 Ooip
8.%1 + 8932 N fl,

5 5 (1)
021 022

65131 + 8352 - f2

that holds for x € Q1, x = x1,x2. Here f = fi, fo denotes the volume forces
that act on the body in €. From the Hook’s law it follows that the components

of the stress tensor can be written as

1 Ou;  Ou;
0ij = 5B (ax; + 8xi) , i, =1,2,
where u(z) = ui(z),u2(x) is the displacement vector with u; being the dis-
placements in the directions z; for ¢ = 1,2; E is the Young’s modulus of the
body in ;. In the following we assume that no volume forces act on the body
in €.

Let us denote by n the outer normal vector to €2, and by 7 — the tangent
vector. Equations (1) are considered together with the boundary conditions

Uy, =0, u=0, ze€lp
and

Opw =0, o0y, =0, zely,
where u, and u, are the components of the stress tensor in the coordinate
system n, 7. Similarly, o,, and o, are the components of the stress tensor in
the n, 7 coordinate system.
For the description of the cover in 9 we use the equations of Timoshenko
shell theory for the cylindrical shell of the form [5]
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—— — kT
A, dé, 1413 = P1,
1 dT13
—— k1T 2
A, dé, + k1411 = p3, ( )
1 dMy;
- T —1<& <
T 13 =M1, <& <0,

where vq, w, 1 are the displacements and angle of revolution in the shell; 771,
Ty3, My are the forces and moments in the shell; Ay = Ay (&), k1 = k1 (&)
correspond to Lame parameter and median surface curvature parameter; pi,
p3, m are given functions; it holds

Esh o Eyh?
Th=—2Sen, Tis=kGhes, Min=-———xu, 3
11 1_1)%811 13 €13 11 2010 )Xn (3)

1 dv; 1 dw 1 dv
=——+4k + k ==
€11 1\, dé, 1w, €13 = 1 d£1 71— R1vi, X111 11d§1’ ( )

h h
h hY _
( + k1= > ;3—<1—k12>033, (5)
h h h
m1:2(<1+k‘12)013 <1—k51) 0'1_3>

Here Es is the Young’s modulus for the shell, v is the Poisson’s ratio; gl, g3
are the components of the volume forces vector, that act on the shell; of;

b3

z]’ 'Lj’
i,7 = 1,3 are the components of the stress tensor on the outer ({3 = %) and
inner (&3 = —%) surfaces of the shell It is known, that in the case of isotropic

bodies we have k' = 5 , G = (1+v2)

At each end of the thln cover we impose boundary conditions either on the
displacements vi, w and 1 or on the forces T11, T13 and moment Mi; in the
shell (if the end is subjected to load or free). At the outer surface of the shell
we prescribe to o3 and o33 some given stresses.

Remark 1. The choice of 2D curvilinear coordinate system for the shell as
&1,&3 (instead of £1,&2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the cylinder being infinite in the direction of €.

On the boundary 'y, common to both Q1 and Qo we prescribe the following
coupling conditions [5]:
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h

UU:U), UT:V1—§’YL
(6)
Oypy = 033, Opr = O13.

Let us rewrite the coupling conditions (6) on I'r as follows:

_ oy n
Uy =W, Ur =V]1 2’717
h h\ _
Al <]. - k12> Opy — Al (]. - k12> 033 = 07 (7)

h h
Al <1 - k12> Oyr — Al <1 - k12> O'i)) =0.

3. THE PROPERTIES OF THE STEKLOV-POINCARE OPERATORS
AND CONVERGENCE OF THE DOMAIN DECOMPOSITION
ITERATIVE ALGORITHM
Let us suppose that on the inferface I'; the displacement is equal to ¢ =
©1,02, pi € H (T'7), i = 1,2. In the following we consider the Steklov-Poincare
operator S for our problem as well as local Steklov-Poincare operators S;, that
correspond to €, i = 1,2. Therefore, we have from (7)

<SS0>¢>FI = <SlS07¢>FI + <SQQO5 Q’Z)>FI ’ v@ad) € Hl (FI) X Hl (FI)

Sietle, = (4 (1= 1 ) Giow (0)0n) +

Iy

+<A1 (1—k1};> Groy: (@)7¢2>F17 (8)

(Sap, Y)p, = <—A1 <1 - /~€1;L> 033 () ,¢1> +

I'r
h _
+ <A1 <1 - k?12> 013 () ,7!)2> ,
Ty

where Gjo is the trace of o on I'y; <u,v>FI denotes the bilinear form which
formally can be written as

(u,v)p, = /UUdF].
Iy
First we prove that there exists a unique solution to the problem for Steklov-
Poincare operators. For this purpose we will use the Lax-Milgram lemma.
Let 5 be a midline of (2. Without loss of generality we assume that g1 =
gs = JE = Jég = 0. Moreover, one notices that all the displacements defined
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in Q9 are continuous with respect to &3, since both equations and boundary
conditions are independent of &;. Using the coupling conditions (7), one can
rewrite (8) as

a0, = (1 (111} ) o) )+

A\ . h_
+ <—A1 <1 - k12> o13(9), <V1 - 271>> =
Iy
h\ _ . h\ _ .
= —A1 1—]451* 033, W + —Al 1_k1* 013, V1 +
2 Qx 2 Qf
2 2
h h\ _ .
+ Alf 1 _kli 013, M )
2 2 o
2

(u, U)QE = /uv dQs,.

Q3

9)

where

Let us substitute into (9) the corresponding left sides of the system of equa-
tions (2)-(5):

dT: -
(S, )p, = (_dgllg + k1A1T11,w>Q +
2

dT; dM- B
+ (—11 - k‘1A1T13,\71) + <— LI A1T13,71>
d§1 Q; d§1

After integrating by parts one can easily notice that the coerciveness and
symmetry of the Steklov-Poincare operator Sy follows from the properties of
the corresponding operator defined on the midline €25 which has been proven
in [2|. Therefore, one obtains

0
) dvi\?  [(dw\?® [(dn\?\ ..
st 2 (@s) () + () )

-1

2

0
+62/ (vi+w® +97) d, c#0.

Further,

0
dw 2 dVl h d% 2
> ¢ — a6 2dg ;
<S2S0790>F1 = Cl/ <<d€1> + <d£1 2 d£1> dQ2+



28 IVAN DYYAK, YAREMA SAVULA, ANDRIY STYAHAR

0

h 2
+C%/ <w2 + (V1 — 271) ) dQ;, Cc1 7é 0.
-1

Thus, S5 is coercive. The linearity of Sy follows directly from the linearity
of the corresponding operator in 5.

Let us now prove the continuity of Se. For this purpose, firstly one proves
the continuity of the following operator in €23

d&r
drT dM
+ (—11 — k1A1T13,V1> + <— LI A1T13771) ;
dgl Q dfl Q3

where y = vi,w,v1, ¢ = V1,W,7. Using Cauchy-Schwarz inequality, one
obtains for y,§ € H (I'y) x H* (F ) x H' (')

N dT;
(A%y)gz; = < =B 4 kAT, > +
Q3

J
(T13ci§ + k1A1T11w> dé1+

0
d&y +/ (Mn + A1T1371> ¢ =
21

0
Egh 1 dVl d\71
k A
*/(1—% <A1 a& “’) &,
1

1 dw
— k1 AE'G R k v
141 <A1 i, + 71— 1V1> V1>d€1+

0
Exh® 1 dyidi s (1 duw )
I\ o g ae e FARGh k dey <
/1<12(1—u§) Ay dg; dg ! Ay dg, TR de s

0 % 0 2
) dw\? di \ 2
<k:GhA—m /(d&> d&1 /(d&> déi| +
—1 —1
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wen o] [] (22

-1

+E'G'h | kM| U (vl)zd&] E [7 (ZZ)%&] +

D=

_l’_

FEyh v \?
2 M Vi
k 1) g
& /(d&) o

2

g b ¥
Esh dv
g K] /(“’)Qd&] [ (%) 4| +
L L—-1 J
2R 7 <d’“">2d§_é 7@ >2d5_;+
T3 M Nag) Yo
0 5o ;
FRGh (A [k )M { / (m)zdéll { / (vl)zd&] -

-1

0 12 10 2
+RG'h (AR ! (v1)? dé (%1)? dfl] +
e |

=
o

E2h3 1
12 (1—03) A7

J @Y «] @)« -
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o
N[
[

9 0
TK G / (j;‘i) dé, / ()2 d&r| +

—1 -1
1 1
0 2T0 2
+K'G'hAY /(71)2 d&] /(%)2 dgl} +
—1 L—1
1 1
0 72 0 2
KGR (A )M / (v1)? déy / Gn)2de| <
—1 i —1

< c? HyHHl(Q;) HQHHl(Q;) , C#0.
In the above fM = supf, f™ = iélff. As a result, the continuity of the
Q3 2

operator A is proven. Taking into account the continuity of the operator A, we
can conclude

<2

<SQ<)07¢>FI§
0 3
dvy) 2 dw \ dv 2 2 2 2 %
/(<d§) w(e) () vt o)
0 3
dv \? | (do\® | (AN o oL a2 o
X /<<d€1> +<d§1> +<d§1 +V1 +w +’71 dQQ 3 C#O

Thus, one obtains

0

dw\? [dvi hdn\® A
/((d&) (G -gm) v (o) )| s
21

1
) / di\?(dn hain)t o N
AN\der) \dg 246 1T gm 2 M ET

D=

< C?

Let us consider now the local Steklov-Poincare operator Sy.
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(S1e. ), = <A1 <1 - klZ) Grow () ,?/)1> +

Iy
h
+ <A1 (1 - k12> G1ovr (¢) 7¢2> .
ry

It can be shown similarly to the case of linear elasticity that the operator
Sy is coercive, symmetric, linear and continuous on H'2(T';) [3, 6]. From
the equivalence of the H'/2 (I';) and Lo (I';) norms with the use of Friedrichs’
inequality, we obtain, that the operator S is linear, continuous, symmetric and
coercive on H* (T').

To conclude, the Steklov-Poincare operator S is linear, continuous, symmet-
ric and coercive on H! (I';) as the sum of the operators having such properties.
By the Lax-Milgram lemma, our problem for the Steklov-Poincare operator has
a unique solution on H! (Ty).

We remark that for the case of nonzero volume forces as well as nonzero
boundary conditions, the proof can be carried out in a similar way.

Let @, Q1 and @3 be the corresponding preconditioners in the domain de-
composition algorithm [6]. It is known, that in the case of Dirichlet-Neumann
iterations these preconditioners can be expressed through S and S as [6]

Q=0Q1+Q2,
<Q1¢7¢>FI = <Sl()0a 7’/)>FI ) (10)
(Q20,¥) 1, = (S200,9)r,

Since the Steklov-Poincare operators S; and Ss are linear, continuous, sym-
metric and coercive on H' (I'y), we conclude that the operators @, Q1 and Q-
also possess these properties.

Therefore, by the convergence of the Dirichlet-Neumann iterations, the fol-
lowing method is convergent for 0 < 6 < 6,,44:

P = ok 005" (G—Qgpk), k=0,1,2,..

where (G is the right-hand side of the equation Qy = G.

It is worth mentioning that all the properties of the continuous operators
can be transferred to the corresponding discrete operators, and in the case of
quasi-uniform mesh, these properties also hold for the discrete operators |6].

4. NUMERICAL EXAMPLE
In this section we consider a rectangular object lying in € that consists of
a concrete main part in ; with a thin steel cover 2o attached to its top.
The physical dimensions are as follows: xl{ = 0.05, wg = 0.05, z{ = 1.05,
x5 = 0.55, h = 0.02. The physical parameters for the main part are v = 0.33,
FE = 25000M Pa, for the shell - v = 0.33, £ = 200000M Pa. The body is kept
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fixed on both sides and subjected to the load on the bottom of p = 1M Pa/m?
(see Fig.2) with zero load on top.

‘_ |

P~ h

A 1

=

=
[V ]

v

F1G. 2. Numerical Example

Dizplacement uxZ on the interface

Fia. 3. Displacements in xo direction on the interface

The solution on each iteration in the main part is done by BEM with linear
basis functions with the Galerkin method applied to integral representation
formula [1]

1

2ui:Léﬁﬁb(%y)w(deF+l£(Gm(%y)wMdeF, i=1,2,

where Fj; and Gj; are the Green’s function and the co-normal derivative of
Green’s function respectively; t; = o;;n; are the tractions.

The solution in €9 is seeked as the linear combination of bubble basis func-
tions which are defined on each element by

_1-¢ 1+¢

D (&) = ——, P (5):T

2
25 —1 [¢ ‘
®; (§) = \/T/liDj—l (t)dt, j7=2,3..,
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where P; (§) are the Legendre polynomials. The solution in both domains is
then combined using the iterative algorithm (10).

For our example we choose 96 equally spaced boundary elements. The re-

laxation parameter 6 is taken to be equal 0.00225

In Fig. 3 the displacement in x2 direction along the interface is shown. The

displacement achieves its maximum in the middle point A of the interface.
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EXACT THREE-POINT DIFFERENCE SCHEME FOR
SECOND ORDER NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS WITH BOUNDARY
CONDITIONS OF THE THIRD KIND

LyuBoMYR GNATIV, MARTA KROL, MYROSLAV KUTNIV

PE3tOME. i meninifiHux 3BumvaiiHnx audepeHIiaIbHuX PIBHAHD APYroro
NOpAOKY 3 IIOXiZHOIO B IIPaBiif YaCTWHI Ta KPAaWOBHUMHU YMOBAMH TDPETHOTO
pomay 1mo0y/I0BaHO Ta OOT'PYHTOBAHO TOYHY TPUTOYKOBY DI3HHUIIEBY CXeMy Ha
HepiBHOMIpPHI citni. [loBeneHo icHYBaHHS Ta €IUHICTD PO3B’A3KY L€l cxemu,
30ikHICTH MeTOmy mpocToi iTepamnii fjist 11 po3B’I3yBaHHS.

ABsTRACT. Exact three-point difference scheme on a nonuniform grid for
the second-order nonlinear ordinary differential equations with derivative in
the right-hand side and boundary conditions of the third kind is constructed
and justified. The existence and uniqueness of solution of this scheme, the
convergence of the method of simple iteration for its solution are proved.

1. INTRODUCTION

The exact three-point difference scheme (ETDS) and three-point difference
schemes (TDS) of high order accuracy on a uniform grid for the second-order
nonlinear ordinary differential equations with no derivative in the right-hand
side and Dirichlet boundary conditions is constructed and justified in [10, 11].
These results on a nonuniform grid were generalized and developed in [9] and for
monotone boundary value problems in [1, 7|. Difference boundary conditions
of the third kind is constructed in [6, §].

In this chapter for the nonlinear boundary value problem (BVP)

% [k(x)ji} =—f <:U,u, ZZ) , z€(0,1), (1)
(O™ ) = -, k0P )= e @

where k(z), f (z,u, &) are given functions and (i, (2, u11, 2 are given numbers,
exact three-point difference scheme is constructed. We prove the existence and
the uniqueness of the solution of the ETDS and convergence of the method of
simple iteration its solution for the operator of BVP (1), (2) with monotone
conditions.

tKey words. Nonlinear boundary value problem, exact three-point difference schemes,
method of simple iteration.
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2. EXISTENCE AND UNIQUENESS OF A SOLUTION
The function u(z) € W3(0,1) is a week solution of problem (1), (2), if
Vu(x),v(z) € W(0,1) satisfies the relation

1
/ k(@) 2 g 4 (B1u(0) — )0 (0) + (Bau(1) — pia)o(1) =
0

dx dx
i d
:/f <x,u, dz> v(x)dz.
0

Sufficient conditions for the existence and uniqueness of a weak solution of
problem (1), (2) are given in the next theorem.

Theorem 1. Let the following assumptions be satisfied

0<ci <k(z)<eco Vrel0,1], kz)eQo,1], (3)
fuﬁ(‘r) = f (CL‘,u,f) € QO[O’ 1] VU,g € Rlv (4)

fo(u,8) = f (z,u,6) € C(R?) Va € [0,1],
|f (z,u,6) = fo(@)| < c(ful)[g(z) + €] Yz €[0,1], u,& € RY, (5)
[f (@,u,6) = f (@,0,m)] (u—2v) <O Vzel0,1], u,v,&neRY,  (6)
p1>0, B2>0, (7
du

then, the BVP (1), (2) has a unique solution u(x) € Wy (0, 1), with u(x), k(z)
e C|o,1].

Here c(t) is a continuous function, fo(x) € L2(0,1), g(x) € L1(0,1), ¢1, ce, cs
are constants, QP[0,1] is the class of functions having p piece-wise continuous
derivatives and a finite number of discontinuity points of first kind.

Proof. Due to (4) and (5) the function f(x,u,&) satisfies the Caratheodory
conditions [3, p.63] and belongs to the class L1(0,1) (see e.g.[3, ¢.113]), we can
define the operator A (x,u) the identity

1 1
du dv x du
(A(z,u),v) = /k(x)d:z:dfndx - /f (J:,u, d:zs) v(x)dz+
0 0

+ (Bru(0) — p1)v(0) + (Bau(l) — p2)o(1)  Vu(z),v(z) € W5(0,1),

where

f('rvuv{) = f(x7u>£) - fg(l’)
Note that the function u(x) € W4(0,1) is absolutely continuous on [0, 1],

u
and its generalized derivative T is equal to the classical derivative almost
x

d
everywhere on [0, 1] (see e.g. [3, ¢.74]). Thus, u(z) € C]0,1], ﬁ € Ly(0,1).

Let us show that the operator A (x,u) is bounded. Actually, taking into ac-
count the Cauchy-Bunyakovsky-Schwarz inequality, the conditions (3) and (5),
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the inequality c(|u|) < Oy for all x € [0,1] as well as [[v]|cjo,1) < C1llv]l1,2,00,1)
for all v(z) € W1(0,1) (see e.g.[3, c.112]) we obtain

1 ) /2 4 ) 1/2
<A<x,u>7v><{/[k<x>j§] dm} {/m dx} +
0 0

1

+ ol ! J 17 (w5

0

dz + (81 + B2)||lullogo,n) + |1 + M2]

02 + CF(BL + 2)) lully 2,01y +

+C4 HfH + Cilpr + Mz!] [vll1,2,00,1) <

0717

< |(@+ac+a <ﬁ1 + ﬁ2>>> lully 501y + C1C2 lglo.1 0.0+

+Ch 1 + paf] | (0,1) >
where
1
lullcosy = 1 @, Nl oy = [ Tu(o)lda,
0
- 1/2
lullozon = | [ <u<x>>2dw] ,
LO
! 1 , Y2
du
lulh o = | [ WPt [ (%) d:c]
LO 0

~ duy, d
If w, —up in W;3(0,1), then f(x,un,u> — f(x,uo,m}),

dx dz
du, dug . 1
k(z)— — k(x )% in L1(0,1) (see e.g.[3, ¢.113]). Thus, for Vuv(z) € W, (0, 1)

dx
/ duy, d ; d
Uy AV P U,
0
)= 1

we have
n—oo n—oo
0

+(Brun(0) = p1)(0) + (B2un(1) — p2)v(1)] =
1

B duo dv = dug
0 0

+ (B1u(0) = p1)v(0) + (Bau(1) — p2)o(1) = (A (z,uo) ,v),

i.e. the operator A (z,u) is demicontinuous.

lim (A(z,uy),v) = lim [
1
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Let us show that the operator A (z,u) is strongly monotone. Due to the
conditions (3), (6) and (7), taking into account the Friedrichs inequality (see
e.g. [2, c.187])

/1u2(a:)dx§ gj(;h;)zdx—f—i [u?(0) + w2(1)]
0 0

we obtain
(A(z,0) — A(@,0) ,u—v) = /lk( ) {Z;‘ _ ;l;rdx_
0
1
du dv
—0/ [f (x,u(a:),x> —f (x,v(x), x)] [u(z) — v(x)] de+
4 Br(u0) — O + palu() — o)z | 2 - [T
0,2,(0,1)

+ B1(u(0) — v(0))* + Ba(u(1) — v(1)* >

2
ﬂcl,Lﬁl,L@ ||U—U||§2(01)-
16 * 4 4 120

From the strong monotonicity follows the coerciveness of A (x,u).
Thus, the Browder-Minty theorem (see [3, ¢.204]) guaranties the existence of
a unique solution u € W3 (0, 1) of problem (1), (2). O

du | d
k:(x)ﬁ - /f (t,u, C;;)dHC
0

d
almost everywhere on [0,1] (see e.g. [3, c.134]), i.e. the flux k(x)ﬁ is the

> min

Since

undefined Lebesgue integral, this function is absolutely continuous on [0,1],

d
and the claim k(ac)d—u € C[0,1] is shown.
x

3. EXISTENCE OF AN EXACT THREE-POINT DIFFERENCE SCHEME
On the closed (0,1) we introduce an nonuniform grid

N
@n=<Sw;€(0,1), j=1,2,.,N=1, hj=zj—x;.1>0, » hj=1
j=1

such that the discontinuity points of functions k(z), f (z,u, §) coincide with the
nodes of the grid wy,. Denote by p the set of all discontinuity points and assume
that NV is such that p C @p. At points of discontinuity we use the continuity
conditions for BVP(1), (2)
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d7u
dx

du

w(z; —0) = u(z; +0), k(m)% = k(z)

rx=x;—0

Vz; € p.

rx=x;+0
We will use the following notation
el = (Tj—24a,Tj—14a), €\ =|[Tj—24aTj-11al-

Consider the boundary value problems

d <k(x)dy2o(w> =—f <x,Y20(x,u),CW> , x e,

dz dx dx
dY( ) )
blao) =2 7 = Y (o) =~y Vi(erw) = ula),
d dYd(z,u) j dYd (x,u) j
% (k(x)dl‘> __f (xaya(xvu)vdx y X E €y,

j j (9)

Vi (2j-21a:u) = w(Tj—21a), Yd(Tj—1ta,u) = u(Tj-11a),

j=3-a,4—a,..N—a, a=1,2,

a <k(x)leN(m,u)) =—f (x,YlN(x,u),leN(x’m> , zeEel,

dx dx dzx

YN (zn-1,u) = u(zn-1), (10)
dY N (xn,u

—k:(;vN)M — BYN (zn,u) = —po.

dzx

Lemma 1. Let the assumptions of Theorem 1 be satisfied. Then each of the
problems (8)-(10) has a unique solution Yd (v,u) € Wi(ed), j = 2 — a,3 —
a, ... N+1—a, a=1,2, with

: dyy
Yd7 (x7 U), k(x)d(x’u)
i

and for the solution BVP (1), (2) it holds

€ C(e)

w(z) =Y (z,u), z€é,. (11)

Proof. We introduce the nonlinear operators for problems (8)-(10) by the equa-

tions
1

0 T, u)avix
(A3, ¥8).0) = [ rny P D g,

zo

1

~ 0 T, U
- [ 7 (2. FEED oo + (300 - )o(0),
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(Ag[ (a:,Yg) ,v) =
Tj—14a . Tj—14a

_ / k(x)dYoZ(SC,U) dU(x)dw_ / f(:n,YOZ(x,u),CW>v(x)d:v,

dx dx
ZTj—2+a Tj—2+a

N
AN (2, Y{V),v) = / ’ L) d—
( 1 (.T, 1 )7 U) k($) dx dm dx

TN

~ N T, U
= [ 7 (e P oo + (5237 (1,0 - el

TN-1
.]E(xauvg) = f(x>u>£) - fO(:E)?
that true for VY (z,u), v(z) € Wi(el).
Let us show that the operators A9 (a; Yo), A, (m Yof), AN (.CC YlN) are

bounded. Taking into account the Cauchy-Bunyakovsky-Schwarz inequality,
the conditions (3), (5) with c(|YZ (z, u))) < Gy, Vr € &, and inequality
||’UHC(E£) < Cl”””l,ze&’ Vo(z) € Wi(eh), we obtain

1 e 1/2 ¢ oy 12 1/2
(A3 (2,YY) ,v)| < /[k( ) dm} dx /[dﬂ dx +
xo o
dyY-
Flollog /‘f (279, B2) | o+ 51 [0 g + bl | <
= [(62 +01251) HY20H1260 +C HfH + Gy |M1|] HU||12e0 <
< [(62 +C1 (Ca+ C1B)) || V5 Hl,Z,e% + C1C; ||9||0,1,eg +C |H1|] [0]l1,2,69
. 1/2 _ 1/2
. . Chrat Ay 2 Ti—lta do?
’(Afl (x,Ycﬂ),v)‘ < / k(x)d—; dz / [dx] dx +
Tj—2+a Tj—24a
e v
+ ‘|UHC((§£) f <5L‘,YOZ(.’IJ,U), CJ) dr <
ZTj—24a

< [ea ¥l + 1], | 0l <

< [(e2+C1Co) [Vl 5.0y + C1C ||g||0,1,ea} 1ol .0
1/2 1/2

(A (z,Y7Y) ,v)| < 7 [k( )dz; } dz 7 [erdx +

TN—1 ITN—1
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dYN
+lollogr) /'f( ¥, )

TN -1

da+ B [V | ey + 12l | <

< [tea 28 I3l + [ ],y + o lil] Bl <

< [(e2+ CL(Co 4 CLBN IV o + C1Co lllg ey + o lpial| 0] .0y -

The demicontinuity of operators A9 (:c, YQO) ,AZY (x, Yd ) AN (;1:, o ) follows

from the condition (5). Really (see[3, p.113]), if Yu(z,u) — Yofo(x,u) in
Wi(el), then

f<x,Yan< >W) f<,ao<x,u>,w>,

AV (z,u) dYOZ (x,u)
() Do) gy Panl )

j=2-a,3—a,...N+1—a, a=1,2,
in space L1 (e),). Thus, for Vo(z) € Wi(el)
Z1

dyy
lim (A3 (z, YQn), v) = lim /k:(a:) 2n@d -

o

7 dyy
_/f (x’YQOJL’ d;”) ’U(ﬂj‘)d% + (ﬁlygn(()?u) - ,ul) U(O) =

o

VAL Vi Ay
2,0 dv = 2,0

zo zo

+ (51}/2(30(07 ’LL) - ,“1) U(O) = (Ag (x7Y20,0) ’U) )

lim (A (a:Y]), )

’ T an

ZTj—l+a dY J Tj—lta de
e Tt T ) ]
Tj-24a Tj-2ta
R dy?,
[0 v a0
= / k(x) de%d - / f(a;,YOZO, 7o )v(w)d:n:
ZTj—2+a Tj—2+a

- (4 (1) ).
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lim (A]lv (x,YfXL) v) =

n—oo

N
Ay, d
= lim / k(z) Ln 00 g

n—oo

TN —1

o ayy
- / f (:U,Yﬁ\;, d;") v(x)dx + (ﬁngL(l,u) - ,u2) v(l)| =

TN_1
TN TN
dYN dv ~ d}/lj\([)
= / k(x) d;()%dx_ / f a:,Yl%,Tw’ v(x)dz+
TN_—1 TN-1

+ (BoY1o(1,u) — p2) v(1) = (A7 (2,Y{) ;) ,
that operators A9 (x, YQO) ,Aé (:E, Yg) AN (w, YIN) are demicontinuous.

Let us show that the operators A (z,Yy), Al (m,YOZ), AY (z,Y) are

strongly monotone. Due to the conditions (4), (7), taking into account the
Friedrichs inequalities (see e.g. [2, ¢.187])

a/buz(:v)dx < Wa/b

w2 dx 4
we obtain
(Ag(gU’Y?O) _A8(5E7Y20),Y20 - Y20> - /k($) (d; - dﬂ?) e
0
i dyyp Y0
zo
112
+61 (Y2(0,u) - V(0 ))2 o ||4YSdYy
u) — U 272 272
1 2 ) 2 s > C I .
0,2,e9
~ 2 7TQC ﬂ_ﬁ _ 9
P(0,u) — Y5 > mi 171H0_0H
+61 (Yz (0,u) = Y, (O,U)) _mm{ TR } Y0 — Y o

Tj—1+a . ~ N\ 2
S o Yo  dvd
(A3 - ¥ YE - VE) = [ (o) (dd:n_dd:r) e

Tj—24a
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Tj—14+a . ~
- / f xayojudya _f J")Yd77dya
dx dx

Tj—24a

«

[Yj(x,u) - fi{(m,u)} dz >

. - .12
avi did

dx dx

0,2,el,

T ~ 2
N N N N N <N i dY1N leN
<A1 (2, Y1) — Ay (2,Y77), Y7 =Yy ) = k(x) - dr—

dx dzx
TN-1
IN dyN %
_/ f xv}/iNa L _f x7Y1N7 1 [leN(xvu)_}}lN(xau)} d$—|-
dx d
TN_1
-2
- 2 ayN  dayy
N N > 1 alry
# (40w = F @)z e S-S
34,€1

- 2 2 -
+6; (V¥ (1) = V¥ (1)) > min {”1;’1 ”452} [y - 7|
From the strong monotonicity follows the coerciveness of operators
A (2, Y9), A (2,7), AY (2,7).
Thus, the Browder-Minty theorem (see e.g.[3, p.204]) guaranties the existence
of a unique solutions of problems (8)-(10).

2

N
0,2,e]

Since
Wiz Y (t,u)
(e 1','LL ] [0} 7“’
Sla\b ¥ Yy Sla\bh ™)
k() . / f(h J(t,u), p )dt+C,
Tj—24a

AV (z,u)

&l
dx e C(ea)a

then the function is absolutely continuous on &, that k()
Jj=2-a,3-a,...,N+1—a, a=1,2.

Since Y (z,u) is the solution of (8)-(10), this function is also the solution of
BVP (1), (2) which is unique due to the assumptions of our lemma. O

Now we are at the position to prove the next statement

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then there exists
the following ETDS for problem (1), (2)

(@)e = =17 (1 (600, %)) wean, (12)
vtz = Ao = -~ 17 (£ (€0, %) )

—anug,N — frun = —pz — hnT™ <f (5, u(§), d@;(;)>> :
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This ETDS has a unique solution u(x) Vx € & which coincides with the solu-
tion (1), (2) at the points of the grid wy, where
hj+ hjt1

Uj — Uj—1 RS S R
7 2

Ug,j = y  Ugz,j = )
h; ’ h;
J J

T Tj+1

7 (w(©) = (V7 e [ VP©u©de + Vi) [ Vi©uie)ds

Tj—1 Zj

1

o0 (w(€)) = [ Vi (2] / V() w(€)de, (13)

7o (w(€)) = [ Vi / VY (©uw(©)de,

x Tj+1

; dx ; dx
0= [ i 0= [
i1 T
The function u(zx) on the right-hand side of (12) is defined by (11) and depends
only on u(x;), 7 =0,1,...,N.
Proof. Applying the operator 1% to both sides of equation (1) we obtain

(& (158) - (oo 20)). v

where
7 (5 (Mo ™)) = [hl‘ﬁl(wl)}_IZ‘éo(E)CZ r© ™ ae
7 (5 (H0™E)) = i) / W) g (O™ | de
b [ a] :]:Hv;‘(ojg HOUE e i= 12N -,
7o (5 (MO™E) ) = (o] 7@(5)2 kO ae
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The integration by parts implies

7o <d§ (7‘5( )dQ;ig))) = hll(awa;p — Brug + p1)

7 <d§ <k(§)d1;(§))> = (auz)sj, j=1,2,., N —1,

ToN <j§ (k(g)d?;(f{)>> = fiv (—anuz, N — Baun + p2),

which together with (8)-(10) proves the existence of the ETDS (12), (13).
To prove the uniqueness of the ETDS (12), (13) we consider the operator

Ap ('rjv u) =

_h21 <G1U:p,o — Brug + pr1 — haT™ <f (57 d{))) J=0

. d
= —(aug)z; — T (f <§,u, dZ) , ji=12,.. N -1,

h2N <aNUa‘:,N + Boun — po — hNT™ <f <€7 d£>>> J=N

which is defined in the finite-dimensional Hilbert space of grid functions H (&y,),
with the scalar products

(,0)g, = Y, MEu©)v(&) + 0, 5hrugvo + 0, Shyunvy
EEWy
(u,v)pr = Y MOUE)(E), & =dnUay,
gew;
and the norms

1/2
lulloz,, = (uu)3?,

1/2

2

lully 28, = (llul 020, T ||“9?H02a;+ :
IEtled

Due to condition (5) the operator Ap (x,u) is continuous. Let as show that
the operator Ay, (x,u) is strongly monotone. Actually, taking into account the
equality

_ (’LL U)1/2

W,

N Y 1
(E)TE (w(n))g(§) = n)dn,
§€Z‘f-’h J;xj/l 0/
J j—1
g(n) = g(x;) Vi (n) + g(fLﬂj—l)V2 - W? zj_1 <n <y,
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and the first difference Green’s formula (see. [5, p.234]), we have
(Ap (z,u) = Ap (z,0) ,u —v)s, = (a(uz —vz)?, 1)w;[ +
+ Bi(uo — v9)? + Faun — vn)*—

- S o (7 (o 2520 = 1 (vt 2 ) Y1ute) ~ w161 =

= (a(uz — vz)?, 1), -+ Bi(uo — v0)% + Bo(uny — vy)?—

- =501 (10 242) - (100,242

where the functions u(z)and v(z) are defined by (11). Then using (6), we have
(Ah (l’, u) - Ah (:Ua ’U) y U — v)i;h = (a(uf - Uf)za 1)(;,2- +

+ B1(uo — v0)? + B2(uy — vn)*—
1

~ 1t = vt [ (. 52 ) = 1 (vt ) [ an-

< {k<n>;f7 ) — o) — u(n) + o >]} dn >
> (a(uz — vz)?, 1)@; + B1(uo — vo)” + B2(un — vn)"+
2
+ [k {;; () — on) — u(n) +v(n)]} i

Since (see |5, p.244|) 1 ||u|\(2)2@h < (u2, 1)+ + Brud 4+ Bouiy, 1 > 0, then have
o h
(Ap (2, u) — Ah(a? v),u— V) >
( a: ) )‘DJr +51( 0_U0)2+/82(UN—UN)22
> max {cy, 1} [(( —vz)?, 1)@; + B1(ug — vo)? + Bauy — UN)Q] >

max {c1, 1} 1 [Ju — UH%,Q,@ )

Y

(14)

Y

i.e. the operator Ay, (x,u) is strongly monotone. This yields (see e.g.[4, p.461])
the uniqueness of the solution of the equation Ay (x,u) = 0. O

Lemma 2. Let the assumptions of Theorem 1 be satisfied and

|f (2,u,€) = f (@, 0,0)] < L{lu—v[+ [~} Vo e(0,1), uv,&neR
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Then the iteration method

(n) _ 4 (n—1)
Bh% + Ay (w,u(”_l)) =0, = €wp,

-
p1 4 p2 + p2B1Vi(1) Vi(x)

_ it pe A+ mBeVi(l) Va(z
B+ B2+ B1B2Vi(1) Vi(l)  Bi+ B2+ BiBVi(1) Vi(1)’

(15)

u® ()

_l’_

2 .
7 (a1uz0 — Prug), J =0,
1

Bpu = _(aui)i,ja ] = 1a2a"'aN_1’

2 .
T (anyuz N + Boun), j=N,

( 2 . du
- x,0 — - Txo ) Gy ) | = )
I <a1u 0 — Brug + p1 — hy (f <§ u df))) J=0

=< —(auz)z; — T <f <§,u, Zz)) , j=1,2,...,N—1,

h2N (CLNU;E,N + Boun — pg — hyT*~ (f <§7u7 ZZ))) s J=N

-2
2K, Ky \ M? 2(1 +72)L
1+2L< : 2> 1+M ,
Ba! cam
1 /4 4 1
Klzmax{<+02),}, ngmax{,l},
a\m <a/ m a

_ 8 (81 + P + B1Ba)’
M= @255) 2+ ) (251 + 282 + Bih)

converges in the space Hp, and the error estimate

with

T =1T0 —

0 : (16)

By,

< g™ [|ul

o,

_u‘

where
1/2
¢=vI—r0, |ulg, = Buu,u)’.

Wh,

Proof. The operator By, is selfadjoint and of positive definite B, = B; > 0.
From the first difference Green’s formula implies that

(Bhu7 u)@h - (CL’U,?E, l)w;lr + ﬂlug + ﬁ?u%\h
and from (14) we obtain

(An(z,u) — Ap (2,0) ,u—0)5, = llu—vl, . (17)

w
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Using the Cauchy-Bunyakovski-Schwarz inequality we can now deduce

(Ah (.’B,U) _Ah (JJ,U),Z) (Bh(u_v) z)wh_

_ gh H()T* <f (n,u<n), Z;‘) —f (n,v(n), f;;)) (€)=
= (Ba(u =) 0/ 7 (mean. 52) = 1 (o0 50 )] 2tan <

< fu—=vlp, lIzll5, +

! J N2 12 ¢y 1/2
+ O/[f <”’“(")’dn> —f <n,v(n),dn>] dn 0/[2(77)]2dn <

< Jlu—vlp, 125, + V2L llu =l 50,1 I12ll0,2,01) -

Since V{ (x) < V{ (), Vi () < V{(x;) V& € [zj_1,;], we have

N % i1 2
. Vi~ (2)
1£06.2.0) = D / 2 ] do <
=

7—1

Vi (z;)
N zj . i1 2 (18)
J J—
§2Z / ij V;(@ ]271 sz (55)] dq:§4||z||82éh7
=l Vi (z;) Vi (z5) ”
. 2
dz | Al / 1
_ < - (Z ¥4 1) dr <
‘ dx 0,2,(0,1) ; Vl (z; ! !
-1 (19)
N
< ?Zh a5z w ? (‘IZ%’ 1)51;
So,
(Ap (z,u) — Ap (z,v) ,z)@h < flu— UHBh HZHBh + (20)

+2V2L ||u — v

Let us now show that

lu—v

17'[-2

< VE (1 ; M) lo—olg. @D

We write u(z) = @(z) + @(z), and reduce the problem

d du du j
. {k(:c)dx] =—f (x,u, dx) , T Eey,

u .Tj_l) = Uj—-1, u(xj) = Uy, j = 1,2, ...,N
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to

dx dx dr  dx
ﬂ(xjfl) =0, a(x]) =0, j=12,..,N,
Considering (3), (6) and using a Lipschitz condition we get

SR YIRS N
196 o dr dzx v
145,67 T

7—1

d [k‘(:ﬂ)du] =—f (m,&—l—ﬂ,du%-du>, er{,

di _ di

dr dz

2
TCL . 2
m+1 HU_UHO’Qﬁ{ =a

Zj

- / [f <x,a(x) +ﬂ(x),% + fli)

- (o) o). G + )| 9600 — ot e =

:‘7'&<%au»+ﬂ@%jz+ji>_

o 1 (00 + i), G+ )| 66 - s
_%72P<%a@+ﬂ@%f ‘f)-
zﬁl‘f<xﬁxx»+@uﬁfi LR

de ' drx
. 1/2
X / [i(z) — o(z))%dx <

< VLo =0l 5 g lla =0l 5.
Hence we get

V2(1 +7?)L

o — 77”1,2,6{ < 2¢,

Hﬂ - @”1,27671' .
So taking into account inequalities (18), (19) and inequality (see [5, p.244])

nllulfag, < (1) + Aruf + Bk,
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we have

lw =y 2,001y < 1 =01 2,001y + 18— Dll1 2,001y <

V2(1 4 7?)L
<14+ — U — U <
< ( + 12 |4 — o 1,2,(0,1) =

\/i(l +7T2)L 2 C2 2 1/2
S (1"‘617[_2 4Hu—v]0727&h+c%<a(uj—vf) ,1)@2_ S

< (1 PP (A (0 2) o)

h

4 1/2
+— [& (uo — v0)? + B2 (uny — "UN)2} } <
71

< Vi (1 Y2 ”2)L> Ju =l

2

Based on the (18), (21) from inequality (20) we obtain
(Ap (z,u) — Ap (z,0),2)5, < llu—vlp, ll2lp, +

wp —
V2(1+7*)L
NG <1 + LY ool Koo, <
<ol ol 20 (ZE0) (1 BAETOLN
U—v 2 — — 5 |llu=v
— By, By, Y1 017T2 B
. 1/2
X (61 (az%, l)w; + B2 + 52212\/) <
2K Ko\ /2 V2(1 4 7%)L
S(HQL(%) 14 OO oy, ol

Setting z = B, ' (A, (v,u) — Ap (z,v)), we obtain
HB,;l (Ap (z,u) — Ap, (x, v))HBh <

2K Ko\ /2 2(1 + 72)L (2
< (1+2L <12> > <1+f(m2”> = v,
1

M
Implies from (22), (17)
(Ap (z,u) — Ap (z,0), By H (A (v,u) — A (2,0))) . <

1/2 9 2
. <1+2L (2K1K2> ) <1+W> lu —vlf, <
4! c1m h
1/2 9 2
< [<1+2L (2K1K2> > <1+‘/§(1+;r )L) X
it cm

(Ap (z,u) — Ap (z,0) ,u — V)5 .

2)
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Then (see [5, p.502]) the iteration method (15) converges in the space Hp, as
well as the estimate (16). O

Note that the space Hp, coincides with the space La(iy,) and the conditions
of equivalence of norms are executed.

nllullogs, < llullp, <2lulozs, -

Lemma 3. Let the assumptions of Lemma 2 be satisfied. Then the method of
simple iteration (15) and in addition to (16) the following estimate holds

(n)
du — l{:d—u <M Hu(n) — u‘ < Mq",
dx dx N By,
0,2,wp,
where
N—1 1/2 N 1/2
1 1 1
lulloag, =3 D hjl + §h1u(2) + §hNU?v =13 > bl +ud )
j=1 j=1
Proof. Taking into account equality
T
du 1 ; d du
k— =a;uz ;i +——— VI(E)— k(&) —| d¢ =
df]f o a]u »J + ‘/-1‘7(:(:) / 1 (g)dg |: (5) d§:| 5
X .27] J xj71
1 yi d
= ajug — — Vjﬁf(&tt&,u)d&
J 5] ‘/ij(ﬂ,’]) / 1( ) ( ) dg
Ty
T
du 1 i_1,..d du
b e [ WO O |-
del,_, 7 v Hajo) 1 2 dg d¢
i

€T

= ajting + —— / Vil e) f <€7U(§),(ZL> d,

Vi) /.

the inequality (a+b)? < 2(a®+b?) as well as the Cauchy-Bunyakovsky-Schwarz
inequality and a Lipschitz condition we obtain

du(™ du 1 N n
‘ k k =195 Z h;j {aju:(m) — Uz j—
j=1

der  dx

0,2,wp

2
Zj

1 j Sy W du
Vlj(xj)ximf) (f (5, ), d£> (s (5),d£)>d£ +
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1
h; aju;n) — ajuzj + ———X
Z [ »J Vlj ($])

N |

_|_

Jj=1

Ty

2\ 1/2
; u(™ U
< [ v (f <57U(n)(§)’dd§ )f<£7u(€),§§>>d£} } <

Tj—1

J=1

1/2
N du™  dul]’
s2yon [ [W(é)—u(s)h " all €=

< V2c9 (a (u:(in) - u5;>2 , 1> . + \@L’
“:}h

ul™ — uH .
1,2,(0,1)

Then based on the inequality (21) and Lemma 2 we have

pdu Ve + VK, (1+M>] x

—k— <2

dx dx .
0727®h

cyim?
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o=l =0 o, <
By,

By,

So, in this page ETDS is constructed and justified, which you can develop (see
[6]) a three-point difference schemes of high order accuracy for the numerical
solution of the BVP (1), (2). O
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FORMULATION AND WELL-POSEDNESS
OF THE VARIATIONAL PROBLEM OF VISCOUS
HEAT-CONDUCTING FLUID ACOUSTICS

VITALY HORLATCH, IRA KLYMENKO, GEORGIY SHYNKARENKO

PEe3toME. Ha miacrasi 3akomiB 30epexkenHs cHOpMYIbOBAHO JIHIWHY TOYAT-
KOBO-KpailoBy Ta BimamoBimmy iif BapiamiiiHy 3aaady y TepMiHAX HEBIIOMEUX
BEKTOpA 3MIIIEHb Ta TEMIIEPATYDH, KA OMUCYE MPOIEC MTOMMPEHHS aKyCTUI-
HUX XBHWIb Y B’S3Kiil TeIJIONPOBiAHIH pianHi 3 ypaxyBaHHAM 3B’ 13aHOCTI Mexa-
HIYHOrO Ta TemieparypHoro nosis. OKpecseHO Kiac Pery/ispHOCTi BXiTHUX
JTaHPX BapiamiitHol 3a7ati, KWl TapaHTye €OHICTH Ta HEIIePEePBHY 3aJI€KHICTH
LOIYKAHOTO PO3B’d3Ky B eHeprerwdHiil HopMi 3amaqi. Ha momarok mosemeHo
icHyBaHHS PO3B’A3KYy PO3IVISIYBAHOI 33atl fK I'PAHMUI] ITOCTIIJOBHOCTI HAIIB-
MMCKPETHUX (34 MPOCTOPOBUMHU 3MIHHUMMW) amnpokcuMarniii Laapopkina.

ABsTRACT. On the basis of conservation laws, we formulate linear initial-
boundary value problem and corresponding variational problem in terms of
displacement vector and temperature, which describes the process of spreading
of acoustic waves in viscous heat-conducting fluid taking into account connec-
tivity of mechanical and thermal fields. We determined input data regularity
for the variational problem, which guarantee uniqueness and continuous de-
pendence of the solution in the energy norm of the problem. In addition we
prove the existence of the solution of the problem as a limit of a sequence of
the semi-discrete spatial Galerkin approximations.

1. INTRODUCTION

In most applications, when considering acoustic vibrations, the viscosity of
fluid is neglected, hence considering it to be ‘ideal’[5, 3]. However, there is a
considerable number of problems, which are first of all connected to spreading of
the high-frequency vibrations and vibrations at frequencies close to resonance,
for which neglecting medium viscosity (even for traditionally “ideal” water or
air) leads to considerable inaccuracies in solutions [1, 2, 10|. Furthermore,
analysis of dissipative loss of energy in such problems, as well as estimation of
reciprocal influence of acoustic and thermal processes are impossible without
introducing viscosity of the medium to the model. The general principles of
building corresponding models of acoustics of viscous heat-conducting fluid
(“dissipative acoustics” is a widely-used term) are studied in papers [11, 6,

7,9, 10].

Tk, ey words. Thermohydrodynamycs, dissipative acoustics, initial-boundary value problem,
variation problem, balance equation, the semi-discrete Galerkin method, well-posedness of
variation formulation.
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In paper [9], for numerical analysis of problems of dissipative acoustics with
additional assumption of vortex-free flow in fluid, it is proposed to use Raviart-
Thomas finite element approximations, and time integration schemes for semi-
discretized problem are built by means of Galerkin method. However, the
authors [2] proved earlier the correctness of application of classical approxima-
tions of finite element method for solving problems of spreading acoustic waves
in viscous fluids and fluid-structure systems in terms of unknown displacements
without additional assumptions. It is proposed that a similar approach should
be used for problems of thermal and hydro acoustics.

This paper is organized as follows. In section 2, with reference to conser-
vation law, we state a fundamental system of non-linear differential equations
and phenomenological relations, which describe the motion of viscous heat-
conducting Newtonian fluid, and complement them with possible initial and
boundary conditions. Although the obtained system of equations is open in
relation to density, mass, velocity, temperature, entropy of the fluid, the hy-
potheses of acoustics and thermodynamics applied in sections 3 and 4 allowed
us to formulate a linear initial-boundary value problem of acoustics with closed
system of equations of motion and heat conductivity in terms of acoustic dis-
placement vector and temperature. In section 5 we state variational formulation
of this problem as the main object of our study and in section 6 we characterize
the components of its equations with regard to continuity and ellipticity. Based
on these, in section 7 we describe an important instrument for research of the
variational problem — a concretized energy equations of dissipative acoustics.
A priori estimates, constructed on this basis in sections 8 and 9, make it pos-
sible to determine (quite usable) conditions of regularity of input data of the
problem, which guarantee uniqueness and stability of its solution. To prove
existence of this solution, in section 10 we recourse to space semi-discretization
Galerkin method [4], and in section 11 we show that approximations built in
such a way converge to such displacement vector and temperature, which satisfy
variation equations of the problem of dissipative acoustics.

2. FUNDAMENTAL EQUATIONS OF THERMOHYDRODYNAMICS
OF NEWTONIAN FLUID

Below we will consider mathematical models which describe motion of a
viscous fluid, which in each moment of time ¢ € [0,7],0 < T < 400, occupies
connected bounded domain € of points z = (z1, ... ,z4) of Euclidian space
R? (in applications d = 1,2 or 3). We denote as I' the domain boundary
Q, T' = 09, and assume that it is Lipschitz-continuous. The latter hypothesis
guarantees that almost everywhere on I' we can build a unit vector of outward
normal

n=my, ... ,ng), mn;:=cos(n,x;).

It is well known that physical features of fluid are defined by coefficients
of bulk viscosity 1 and shear viscosity p = const > 0, and its state can be
characterized by means of welocity vector v = {v;(x, )}, of its particles,
density of its mass

p=p(z,t) >0
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and scalar field of hydrostatic pressure p = p(x,t). If the above-mentioned
characteristics of the fluid are defined, then with the help of Cauchy relations
we can find the components of strain tensor

e1i(v) :_;<§Z+gz>, ii=1, ... .d, (1)
and components of stress tensor
oij(v,p) == —pdsj + 1i;(v), 4,j=1, ... ,d, (2)
where 7;;(v) - components of viscous stress tensor,
7 (V) = 2pei;(v) + (n — %u)%V.m i,j=1,....,d, (3)

0i; -Kronecker‘s symbol,

o L=

T 0, i £
Modeling of fluid flows reduces to initial-boundary value problems for the
partial differential equation system, which are based on the laws of mass con-

servation, momentum, energy, etc.[10, 11|. So, for example, the law of mass
conservation of continuous medium states that given the absence of sources

for mass increase, the density p = p(x,t) and the vector of fluid velocity
v = {v;(w,t)}9_, satisty the so-called equation of mass continuity
Dip+pVu=0 in Qx(0,T]. (4)

At the same time, laws of momentum conservation can be presented as a system
of Navier-Stokes equations

pDyv; — aiaim(v,p) =pfi, i=1,...,d, in Qx(0,7], (5)
*I'm
where vector f = {fi(z,t)}&, describes volume forces which act on the con-
sidered fluid.
Finally, the law of energy conservation leads to equation of continuity of
entropy s = s(x,t) formulated as

pODs +V.q(0) — 7(v) : e(v) = pg in Qx(0,T], (6)

where g = g(z,1) is intensity of distributed in the fluid volume sources of heat,
q = {qi(x,t)}%_, is vector of heal flow, which is connected in most important
cases to the temperature § = 0(x,t) and coefficient of heat conductivity x > 0
of fluid through phenomenological Fourier law

q(0) = —xVo in Qx(0,T]. (7)

Here and further on we shall use the summation convention from 1 to d with
repeated indexes, eliminating the sign of summation itself; e.g. scalar product
in space R is written as

d
a.b = ab; := Zaibi Ya = {ai}?zl , b= {bi}?zl e RY,
=1
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and

d
C o= — E _ d _ d dxd
0. €=0mi€im ‘= Omi€im Vo = {Uij}i,jzl , €= {eij}m:l eR .

i,m=1

Finally, in the equations (4)-(7) we utilize widely-used symbols for full and
partial derivatives of a scalar function by time variable and its gradient by
spatial variable.

Dow = +v.Vw, w =2 Vi {20
ww:=w +v.Vw, w = aw(a:,t), w = {axm}

Let us complement the system (1)-(7) with appropriate initial and boundary
conditions. If on the outer surface of fluid I'; C T' is affected by the applied
stress vector & = {&;(x, 1)}, then the law of momentum conservation leads
to the following boundary condition for stress:

Uij(’(},p)nj = &1‘ 1= 1, ,d, on FU X [O,T]. (8)

Similarly, if a part of the boundary I'; C I' is affected by heat flow, the
normal component of which is determined by the function ¢ = §(z,t), then
according to the law of energy conservation, the boundary condition will be

n.q(0) =q on Ty x[0,T]. (9)

m=1

Finally, if, for example, particles of the remaining fluid surface T, := I'\I',
move in compliance with the known rule at the speed 0 = {0;(x,t)}, then the
boundary condition on this part of the surface should be

v="0 on Ty x[0,T], Ty :=T\TI. (10)
Similarly, if it is known that the part of the surface I'g := I'\I'; is maintained

at the defined temperature, § = 6(x, t), then the boundary condition assigned
to it is

0 =0 on Tyx[0,T], Tp:=T\Iy. (11)

We have to mention that there might be boundary conditions for different
classes of applications, as a rule, formulated as linear combinations of condition
components (8), (9) and (10), (11) correspondigly.

Finally, considering the specifics of the structure of system relations and
equations (1)-(7), namely, the absence of pressure derivatives by time variable
in it, we come to a conclusion that during the study of viscous fluid motion it
is sufficient to reduce it to studying the initial conditions and values of mass
density, velocity vector and temperature

pli=0 = po, vl=0 =vo, Oli=o =6 in €. (12)

The obtained nonlinear problem of thermohydrodynamics (1)-(12) contains
less equations (d+2) than, the unknowns (d+4), and must be complemented by
additional equations based on phenomenological deductions. For this purpose
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we shall use the hypotheses of acoustic approximation, which will allow us not
only to find a closed equation system, but also to linearize it.

3. LINEAR EQUATION SYSTEM OF DISSIPATIVE ACOUSTICS IN TERMS
OF ACOUSTIC DISPLACEMENT AND TEMPERATURE
Below we assume that, for one reason or another, there are connections
between the unknowns {p,p, s, 0}, which are expressed as

p=p(p,0), s=s(p,0).
It is known that pressure is related to density and temperature by the fol-
lowing thermodynamic connections [10]:
Op c? Op

aply =7 o0

Zpa

p ’y

)

where ¢ is velocity of sound, « coefficient of thermal expansion, v = ¢yc, L Cp

and ¢, specific heat of fluid at constant pressure and volume respectively. Then
to accuracy of an additive constant

p=po+c*y o+ pad].
In addition we can linearize the obtained rule in the following way:
p(a,1) = po + 2y [p(, £) + poat(a, )], (13)
where pg is mass density distribution of fluid in the state undisturbed by acous-

tic factors. Here we implicitly assume that the mass density of fluid admits the
following decomposition

p(x,t) = po + ps(z,t) Ve e Q Vte[0,T],
Pxlt=0 =0 in ), (14)
oIl < lpoll-
Now we shall convey the velocity of fluid motion as a sum formulated as
{ v(z,t) = vo(x) + vi(, 1) Vo e Q Vvt e [0,T], (15)
Uslt=0 =0 in 9, [oal| <ol

And turn to the continuity equation from (4). Bearing in mind the hypotheses
(14) and (15), we shall linearize it in the following way

P +uv.Vp+ pV.u 2ol + poV.vs + v9.Vpy =
ol + poV.u, =0 in Qx (0,7,

And later integrate the obtained approximation into a time interval (0,t), 0 <
t <T. As a result, we find out that

pe(,t) = —poV. f(f Vs (z, T)dT =
= —poV.u(z,t) VoeQ Vtel0,T],

where v = u(x,t) — vector of acoustic displacement of fluid particles

(16)

u(z,t) := up(x) —l—/o vy (x, T)dT in Qx (0,7].
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Taking into account (13) and (16), we come to a final expression for the linear
approximation of acoustic pressure in fluid

p(x,t) = po + 2y pu(@, 1) + poad(z, )] =
= po+ Py pol =Vl £) + bz, 1)) = (17)
= po + 7(u,0) Vo e Q vt e[0,T].

Introducing the vector of acoustic displacements u = u(z, t) also leads to change
of notation and structure of stress tensor of fluid, such as

0ij(v,p) = —pdij + 7i(v) =
>~ _p05ij + 7T(u, 9)(5” + T,-j(u’) =
= —poéij + 6ij(u,9) Vr e Vte [O,T].
In other words, taking into consideration the relation (17), pressure is excluded
when determining the stress tensor, instead we include the dependence of its
components from the temperature of fluid. Taking into account the hypotheses

of acoustics and linearization of convective constituents, the motion equations
(5) undergo some changes, such as

Ov; |- 9oim (v, p)

plvi(t) + vm —pfi &

0xTm
0T im (u)
aSIZZ‘ 81’m
It follows that considering the hypotheses of acoustics and the linearization
of motion equations, performed above, lead to excluding pressure and density
from the unknown, and after this procedure the motion equations acquire the
form

0T,

= poug (t) + —pofi =0.

OGim (U’
pou (t) — &C() = pofi — B
aij(u) == —m(u,0)0ij + Tim (u'),
m(u,0) == 2y Lpg[~V.u+ ab],
Tij () == 2pes(u) + (n — 3 )0i; V-,
1 /0u; Ou; )
eij(u) = 5 <8x + axj> in QX (O,T]
j i

Since entropy is related to density and temperature through thermodynamic
links expressed as [10]

G2 (B, o
op’' T py ‘00" o

then
ds cadp cy a0 cadp cy 90

at  py ot 6ot peydt 6ot
ca cy 00 0204 ,  cy 00

~ /

:MPO u+9()8t Y u+908t
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and after substitution of this expression in the equation of conservation of
entropy in (6) and its linearization, we will come to the equation of thermal
conductivity of viscous fluid

pGDts+V-q+T( ) e(u) — pg =
cy 00

o ,0090 V "+ = | =V [xVO] — 7)) : e(u) — pog
0y Ot
or o0
pocv 5 — V- XV + Ay L poboaV.a = pog in Q x (0,T).

4. LINEARIZED INITIAL-BOUNDARY VALUE PROBLEM
OF DISSIPATIVE ACOUSTICS
Summarizing the results of section 3, we come to the following linearized
initial-boundary value problem of dissipative acoustics with a closed system of
fundamental equations:

Find displacement u = {u;(z, t)} _, and temperature 6 = 0(x,t)
which satis fythe linearized system of equations of dissipative

acoustics
( 100 _ _ _
pocv Oyt N — 05 V. [XVO] + Py poaV.ad! = poby g,
0 OTim (1) 0
" _ Yhim _ L 18
,OO'U,Z (t) awzﬂ-(u7 9) 8xm psz axl ( )
m(u,0) := Ay Lpg[-V.u+ ab)],
Tij(u') == 2pei(u) + (n— %u)éijv.u’,
1 /0u; Ou; )
eij(u) == 3 <8xj + 8373) in Qx(0,7T],
boundary conditions
03N = Gi, on T', X [O,T], I', CcT,
u =1, on Ty, x1[0,T], T'y :=T\Iy, (19)
gn =4, on T'yx[0,T], I'yCT,
0=0 on Tyx[0,T], Tp:=T\I,
and initial conditions (20)

Ult=0 = ug, Ul|=0 =v0, Oli=0 =00 in Q.

5. VARIATIONAL PROBLEM OF DISSIPATIVE ACOUSTICS
To build a variational formulation of the initial-boundary value problem (18)-
(20), we first (taking into account Dirichlet boundary conditions) introduce the
space of admissible displacement vectors

Vi={v={v}, e [H}Q)]: v=00nT,}
and the space of admissible temperatures
G:={CecHQ): (=0 on Ty}
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respectively.

Now we shall multiply the equation of heat conductivity of the problem
(18)-(20) by arbitrary function ¢ € G and integrate the obtained result over
the domain €2 using integration by parts

Jo pobg t9(t)¢dx =
= Jo{pocv 0y 10" (t) — 05V - [xVO(t)] + 2y~ poaV . () dapo =
= Jodpoev 0y 0/ (£)C + 05V IXVO(H)] + 2y poaV (1) Yda+

+ Jp, 05 ' Cam(O)mdy =
= Jolpocv 850" ()¢ + 65 VC.[XVO()] + Ay~ poaV .l (t)] da+
+ Jp, 05 a(t)Cdy V¢ e G.

Let us introduce bilinear and linear forms
X(e,g) = [, 05 'xV(.Vodz
s(0,¢) == [, pocv0y'0Cdx  V0,¢ € G, (21)
(UC = [P poal(Vw)de  YveV V(e@
and
< 2,( >i= / poeo—lggdx—/ 0, 4Cdy  VCeG
Q r,
and re-write the equation obtained above as

s(0'(£),€) + x(6(1), C) +b(u'(t),¢) =< 2(t),¢ > V(G

Similarly, we shall multiply the equation of motion of the problem (18)-(20) by
arbitrary vector v € V' and integrate the obtained result over the domain 2

Jo po f(t).vdx =
= Jo { P 0) 5 L0 600 — T ()] i =
= [qpv.u"(t)dx + [o, Py poV.u(t)](V.v)de—
— Jo A7 pocd (1) V. .vda+
+ JoT(W (1) s e(v)da — [i,_v-&(t)dy Vv e V.
Taking the obtained equation into account, we introduce the forms
m(u,v) == [q pou.vdaz,
v) = [o7(u): e(v)de =
= et < )+ (1= 20) (V) (V.0)]da,
c(u,v) == [, Ay po(V.u)(V.v)da, Yu,v €V,

<l,v>=m(f— p0_1Vpo,v) —|—/ v.ody Yv eV (22)

o
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and finally write the variational formulation of the initial-boundary value prob-
lem of dissipative acoustics

( Find pair {u(t),0(t)} €V x G such that
m(u’(t),v) + a(u'(t),v) + c(u(t),v)—
—b(v,0(t)) =< I(t),v >,
s(0'(t), ¢) +x(0(t),¢) +b(u'(t),¢) = (23)
=<z(t),( > Vte(0,T],
m(u'(0) — vo,v) =0, a(u(0) —ug,v) =0, Vv eV,
s(0(0) — 6p,() =0 V¢ e G.

Let us remark that bilinear form b( . , . ): G x V — R, we determined in
(21), binds variational equations of the problem (23) into a system for deter-
mining thermal and mechanical fields of acoustic wave. On the other hand, as
we shall see later, this bilinear form describes the mechanism of heat-to-work
conversion, and, since it is present in both variational equations, a contraria.

6. PROPERTIES OF COMPONENTS OF VARIATIONAL PROBLEM
OF DISSIPATIVE ACOUSTICS
To perform the analysis of properties of bilinear forms and linear functional
which constitute the structure of variational problem (23), we shall first intro-
duce the following notation for spaces of scalar and vector functions

H:=1%9Q), H:=H? H(div;Q):={veH: VweH}.

Taking into account the additive values of the problem data (22), it is easy to
notice that continuous symmetric bilinear forms

m(u,v) = fQ pou.vdx Yu,v € H,
s(0,¢) = [y pocoly'0¢dz ¥V 0,( € H

are scalar products on spaces H and H and as consequence, form norms on
them

(24)

[v||g == /m(v,v) Vv e H,

I¢lla o= /s(¢.¢) V(e H,

Equivalent to the norms of spaces [L%(Q)]? and L?(Q) respectfully.
Similarly, taking into consideration Korn inequality, continuous symmetric
bilinear forms

a(u,v) = [, [2uei;(u)eij(v) + (n — 2p)(V.u)(V.)lde Yu,v €V,
X(0:€) = Jo b ' (xV0).(VQ)dz vV 0.(eG

are scalar products on spaces V and G respectively, and as consequence, form
norms on them

(25)
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l|lv]|v := v/a(v,v) Vo eV (equivalent || - H[Hl(Q)]d),

I¢lle = vX(¢,¢) ¥V C€G (equivalent || - [|zi(a) )-
The properties of bilinear forms of variational problem that we have mentioned
here are well known for problems of elastodynamics and heat conductivity
which, as a matter of fact, form the core structure of variational problem of
dissipative acoustics.
One of the specific properties of the problem of dissipative acoustic is illus-
trated by a continuous symmetric bilinear form

c(u,v) = / Apoy N (V) (Vao)de Vu,v €V,
Q

which is non-negative on the space of admissible displacements V and creates
seminorm in space H (div; ). We shall denote the latter as follows:

lv|y =V e(v,v) Yv e V.
And finally, the bilinear form

b(v,() :== /Qc2fylpoaC(V.v)dx YoeV Y(eG,

which determines the interaction mechanism of thermal and mechanical fields
in the process of spreading acoustic waves, is continuous on the space V x G.
Linear functionals also possess this property

<ng= [ poitocde [ g7lict wea, (26)
Q r,

<lv>=m(f — py Vpo,v) +/ v.o6dy Yo eV (27)

o

in case that external sources of mechanics and thermal energy of the problem
possess the following properties of regularity

g€ H, §eIL*T,),po<c H(Q),
feH, éell*T,)"

7. ENERGY EQUALITIES OF DISSIPATIVE ACOUSTICS
We shall accept for the problem equations (23) for admissible functions v =
v/ (t) and ¢ = 6(t) and add the first pair of variational equations. As a result
of elimination of summands with the value of bilinear form b(v(t), 6(¢)) (which
indicates energy conversion without losses!) and using norms from p.6, we shall
obtain energy equations of this problem

S @I+ e+ 10N + 1k @1 + 011 =

=< I(t),u'(t) >+ < z(t),0(t) > vt € (0,7
Or after integrating over arbitrary time interval [0,¢], 0 <t < T,
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ému'(wuz +u®)2 + 1013 + fo ' DI} +110(7)]12)dr =
= SO + [w(O)F +116(0)13]+ (28)
+ <), (1) > + < 2(7),0(7) >|dr vt € [0,T).

We shall write the last equation as

Kslu/(t)] + Ps[u(t)] + Po[6(t)] + [o{Ds[u(r)] + Dolf(r)]}dr =

= Kg[vo] + Ps[ug] + Pc[6o] + Qs[v'(t)] + Qe[0(t)] Vi € [0, T,
where

Kl (1) = Sl 0y, Pslu(t)] = ()l

2
Ds[u/(t)] = [|u' (1)l
are instantaneous values of kinetic and potential energy, and its dissipation
caused by kinetic motion of fluid, in the function

Pel0(®)] =110z, Dclo®)] = o)1z

they are instantaneous values of energy and its losses, caused by the existence
of heat flow pattern of fluid,

Qs (1)] = /O U)W (F) > dr, Qolo®)] = /0 < u(r),0(r) > dr.

8. DATA REGULARITY OF A PROBLEM OF DISSIPATIVE ACOUSTICS
Let us consider the conditions of data regularity for the variation problem
(22), as functions of space and time variables, which can be determined on
the basis of equality analysis (28). In particular, to allow the total energy of
acoustic field of fluid

1
Elu(t),0(t)] = 5 [llv/ @Ol + () +110)][7]
take finite values in each moment of time ¢ € (0,7, it is necessary that the
following conditions are held
u € L>®(0,T; H), ue L*0,T; H(div;)), 6 € L>(0,T; H).
Similarly, to allow the the losses of acoustic field of fluid

Dlu(t),6(t)] ::/0 [l @Y + [10(r)[[&1dr

take finite values in each moment of time (0,¢] C (0,77, it is necessary that the
following conditions are held

u' € L2(0,T;V), 6¢€L*0,T;G).
Thus, appropriate solutions of the variational problem of dissipative acoustics
should satisfy the following conditions
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u' € L0, T; H) N L*0,T;V),
u € L>(0,T; H(div;Q)),
6 c L0, T;H)NO € L*(0,T;G).

Now based on the requirement

/t[< 1(7),d (1) > + < 2(7),0(7) >]dr| < 400 Vt € (0,T]
0

we find sufficient requirements of regularity for energy sources, such as,

1€ L*0,T;V"), z € L*0,T;G")

Or in more detail, taking into consideration the structures (26) and (27) of
these functionals

feL?0,T;H), 6¢c L*0,T;[L*T,)]%),
g€ L*0,T;H), € L*0,T;L*(T,)).

The latter sum

Elu(0),6(0)] := %[IIU'(O)II% + [u(0)[3 + [16(0)[1%]

of energy equality (28) shows that the total energy of the acoustic field at the
initial moment of time ¢ = 0 will have finite values, if the initial data of the
problem of dissipative acoustics are selected according to the rules

veH, ueV, 6c H.

9. UNIQUENESS AND STABILITY OF SOLUTION OF THE VARIATIONAL
PROBLEM OF DISSIPATIVE ACOUSTICS
Now we are ready to prove the next theorem

Theorem 1. Assume that the variational problem of dissipative acoustics (23),
whose data satisfy the conditions of reqularity

UQEH, UOGV, 90€H (29)
and
feL?(0,T;H), 6 e L*0,T;[L*(5)]"), (30)
g€ L*(0,T;H), e L*(0,T;L*(Ty)),
has the solution ¥(t) = {u(t), 6(t)} .
Then the pair (t) = {u(t), 0(t)} will be the unique solution to the problem

(23) and
L>®(0,T; H(div; ), o' € L=(0,T;H)N L0, T;V),
6 € L>0,T; H) N L*(0,T;G);
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Moreover, the solution ¥(t) = {u(t), 0(t)} is continuously dependent on the
problem data (23) and under these conditions the following a priori estimate is
correct

%HIU’(t)II% +u)[} + 10117 + /O [l @17 + [10(r)[[Eldr <

gcﬁwwﬁﬂw@+ww%+lnwa%wwvmmw}7 (3

vt € [0,T).

with constant C' > 0, the value of which is independent of quantities under
consideration.

Proof. Bearing in mind the conditions (30)
le L*0,T;V"), =€ L*0,T;G"),

we conclude that the following estimates are correct

<), () >] < vl Dl < 5 I OIF + 5 1

1 1 (32)
< 2(7),0(7) >| = 5 16 + 3 lz()&r  VEe[0,T].
From the initial condition of the problem (23)
m(u'(0) — vg,v) =0, Vv e H
After substituting v = 4/(0) and v = vy we obtain that
14/ (0)[[7 = m(u'(0), vo) = m(vo, w'(0)) = m(vo, vo) = l[vollFr-  (33)
Applying the same principle
[u(O)[lv = lluollv, [16C0)][z = [|6o]|s- (34)

Next, taking into account the results from p.6, we find C' = const > 0, such
that

vy < C||v||v YoeV

and, in particular,

[u(0)lv < Cllu(0)[lv = Clluollv - (35)

Summarizing (32)-(34) and (35) in energy equality (28), we come to an estimate
(31).

Based on the same estimate, by contradiction, we demonstrate the unique-

ness of the problem solution (23). O
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Corollary 1. Let us assume that the hypotheses of theorem 1 are satisfied in
relation to the variation problem of dissipative acoustics (23).
Then the natural norm for its solution (t) = {u(t), 0(t)} is

1) I = [l @117 + [ + 11007+

+/ [l (DI + [10(r)l[&)dr vt € [0,T].
0

10. GALERKIN SEMI-DISCRETIZATION OF VARIATIONAL PROBLEM
OF DISSIPATIVE ACOUSTICS
Let us assume that {V}} ta {G}} are sequences of finite-dimensional spaces,
such that

WwcvVv, G,CcG Vh > 0,
dimV}, = N = N(h) — oo,
dimGp =M = M(h) — oo, if h—0,

U Vi dense in V, |J Gpdense in G.
h>0 h>0

On this basis we determine the sequence of semi-discrete Galerkin approxima-
tions {Yn}trn=0 = {(un,0p)}r>0 expressed as solutions of the following varia-
tional problems:
given h > 0; find pairp(t) = (u
m(uy(t),v) + a(uy (t),v) + c(un
—b(On(t),v) =<1(t),v >,
$(05,(1), Q) + k(6r(t), C) + b(C, up, () =< 2(t),¢ >Vt € (0,T],
m(u),(0) —vo,v) =0, a(ux(0) —ug,v) =0 Yo € V,
S(@h(O)—go,C) =0 VCGGh.
To concretize the structure of problems we have just formulated and the
required approximations (up, 0y) € L? (0, T; Vi, x Gp), let us select certain bases
{or(x)}Y_, and {pr(z) L, of spaces V}, and Gy, respectively. First of all, this

selection univalently determines the form of each sequence member of semi-
discrete approximations as a linear combination

N
(@) = up(t)gr()

t), On(t)) € Vi, x Gy, suchthat

A
(t),v)—

(36)

M
=) O(t)pr(x) V(z,t) € Qx[0,T)
k=1

with unknown coefficients U(t) = {uy ()}, and O(¢) = {9, (t)}_,, and sec-
ondly, after application of Galerkin procedure, allows obtaining Cauchy problem
for finding the above-mentioned coefficients
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MU"(t) + AU'(t) + CU(t) — B ©(t) = L(t),
Se'(t)+ KO(t)+ BTU'(t) = Z(t) Vte (0,T),
MU'(0) =Y AU(0) = UY,
S©e(0) =a’.

Here the components of matrices and vectors of the right side of equation are
calculated according to the rules

C = {c(¢i, o) }ipe1» B = {b(%@k)}%’ivp K = {k(i, or)} k-1

L(t) = {<U(t),¢i >}y, Z() ={<z(t),¢i >} VT €(0,1],

(37)

and

Yo = {m(U07¢k)};eV:17 Up = {a(u(h(bk)}é\f:l? @0 = {8(907()01' >}z‘]\i1-

Since the rest of the matrices
M= {m(@,%)}f,vkzl , A= {a((biv(bk)}gk:l , 8= {5(%7%)}%:1

are the Gram matrices in systems of linearly independent functions {¢x(z)}_,
and {pg(z)}L, (in relation to scalar products described in p.6, see (24)
and (25)), it follow that they are positively defined. This fact guarantees
the possibility of unique solution of the system of ordinary differential equa-
tions of Cauchy problem (37) and also systems of linear algebraic equations
of its initial conditions in relation to vectors U(0), U’(0)and ©(0). From
here it follows that for each constant h > 0 the Cauchy problem (37) has a
unique solution{U (¢), ©(¢)}, which allows finding univalently the semi-discrete
Galerkin approximation (uy,0y,) € L2(0,T;V;, x G,) as (36).

Theorem 2. Let us assume that the data of variational problem of dissipative
acoustics (23) is characterized by the conditions of regularity

vo€H, ugeV, g e H
and
feL?0,T;H), 6¢e L*0,T;[L*T,)]%),
g€ L*0,T;H), e L*0,T;L*(T,)).

Then for each value of discretization parameter h > 0 the following statements
will be true:

(i) the semi discretized problem has a unique solution (36) ¢ = {upn, Op}
and

up, € L®[0,T; H(div; Q)], ) € L=(0,T; H) N L*(0,T; V),
0, € L>®(0,T; H) N L*(0,T;G);

(11) semi-discrete approzimation V¥ = {up, 0n} is continuously dependent on
the problem data (23), more, the following a priori estimate is correct
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%[Hulh(t)H%{ + [un ()15 + 1108 (O117,] + j“ulh(t)u%/ +10n(7)|[Eldr <

< C{HUOH%{ T ol + 1160112 +j[||z<7>|2, n ||z<¢>||%v1d7}

vVt €10,T) Vh > 0.

with constant C' > 0, the value of which is independent of quantities under
consideration.

11. EXISTENCE OF SOLUTION VARIATION PROBLEM
OF DISSIPATIVE ACOUSTICS

Theorem 3. Let us assume that the data of problem of dissipative acoustics
(23) are characterized by reqularity conditions (29) and (30). Then the varia-
tional problem (23) has a unique solution ¥ = {u, 0} and

up, € L0, T; H(div;Q)], ) € L®(0,T; H) N L*(0,T; V),
0, € L0, T; H)N L*(0,T;G);

moreover

S @I + [ + 100013+

5 [l @)IIF + [10(r)[[&]dr <

< C 4 lllvoll; + uoli, + [16ollZ] + [ DIUDIIT + [l2(r)l|Edr 5

o O— .

vt € [0,T].

with constant C' > 0, the value of which is independent of quantities under
consideration.

Proof. Bearing in mind the theorem 1 we need to estimate the existence of
solution (23).

As it follows from the theorem 10.1, the sequence of semi-discrete Galerkin
approximations ¢, = {un, 0} (and also {u},}) form at h — 0 bounded sets in
the space L>=(0,T; V) x [L°(0,T; H)NL?(0,T; G)] (respectively L°(0, T; H) N
L2(0,T;V)).

Therefore, among them we can select convergent subsequence YA = {ua, 0a}
and {u/y }such that

A = {ua, HA}A—>O¢ ={u, 0} in L*(0,T;V x G) weakly,
TN e u' in L?(0,T;V) weakly.

After that it remains for us to show that the limit ¢ = {u, 0} obtained in
this way from space L2(0,T;V x G)is the solution of the problem (23); more
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precise, it is the matter of direct verification to prove that the pair ¢ = {u, 0}
satisfies the equation of this problem.

For this purpose we select the spaces Vj, C V, G, € G and W := {g €
ci([0,T)) | g(T) = 0}. Let us assume that as before {¢g(z)}Y_, and
{or(z)}M_| are bases of the spaces Vj, and G}, respectively and

= ai(t)pi €Vi Ve eW, gn(t) =D mi(T)pi € Gy Vi € W.
=1 ]

Due to the problem (36) we have
m(up (t), vn(t)) + alux (t), vn(t)) + c(ua(t), va(t))—
—b(0a(t), va(t)) =< I(t ),vh(t) >,
(O (1), gn(t)) + k(0 (1), gn(t)) + blgn(t), un (1)) =
=< u(t), gn(t) > VYt e (0,T].

After time integration over the interval (0,7") when applying integration by
parts and initial conditions from (36), we obtain

T
g{—m(u’A, v}) + a(un, o) + c(ua,vp) —b(0a,vn)— < l,vp) >}Hdr =
= —m(ux(0),v1(0)) = —m(vg, v (0)),

T
({_3(9&92) + k(Oa, gn) + b(gn, W) — < p, gn >}dr =
= —5(0(0),9n(0)) = —s(bo, gr(0)).

In the derived equations we proceed to the limit with A — 0, and then again
perform integration by parts, we obtain

OfT{m(u",vh) + a(u',vp) + c(u,vy) — b0, vp)— < l,vp) >}Hdr =

= m(u/(0) — vo, va(0)) Vo, € CH([0,T]; Vi)

T
fs(glagh) + k(979h> + b(ghau/)_ < W, Gn >}dT =
0

= 5(0(0) — 00,91(0))  Ygun € CH([0,T]; Gp).

Since V}, is dense in space V', and G}, is dense in space G, the final equations is
true for each v € C*([0,T); V) and g € C1([0,T]; G) .

m(u”,v) + a(u',v) + c(u,v) — b(0,v) =< l,v >,
s(6',9) + k(0. 9) + (g, v') =< p, g >,
m(u'(0) —vp,v) =0 Yo eV, s((0)—0y,9) =0 Vgeaq.
Finally, from the initial conditions and considering (36)

a(ug,v) = a(ua(0),v) — a(u(0),v) YoeV.
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It follows that the pair v = {u, 0} is the solution of the variational problem
(23). Moreover, for this solution the energy equation (28) and estimate (31)
stay true. The uniqueness of solution of variational problem (23) results from
(31) and proof by contradiction. O

12. CONCLUSIONS

On the basis of the conservation laws, we have formulated fundamental equa-
tions, phenomenological relations, initial and boundary conditions that describe
the motion of Newtonian viscous heat-conducting fluid in terms of mass density,
vector of velocity, pressure, entropy and temperature. By applying for this non-
closed model of hydrodynamics the hypotheses of acoustic disturbances of fluid
by linearization, we have found the initial boundary value problem and corre-
sponding variational problem only in terms of vector of acoustic displacements
and temperature, which describes the process of spreading acoustic waves with
consideration of connectivity of mechanical and thermal fields. We have deter-
mined the regularity class of input data of variational problem, which guarantee
uniqueness and continuous dependence of the required solution in the energy
norm of the problem. In addition, the existence of solution of the considered
problem has been presented as a limit of sequence of semi-discrete (by spatial
variables) Galerkin approximations.

The obtained results form a fully-functional system for successful modeling
and analysis of numeric schemes for solving problems of dissipative acoustics.
In particular, one of such schemes can be obtained by direct application of the
one-step recurrent scheme for time integration of semi-discretized variational
problem (36) using classic approximation spaces of the finite element method
[8]. The results of modeling and analysis of convergence of such schemes will
be presented in the nearest future.
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BALANCING PRINCIPLE FOR ITERATED TIKHONOV
METHOD OF SEVERELY ILL-POSED PROBLEMS

GANNA MYLEIKO, SERGEI SOLODKY

PE3IOME. B mamiit crarti po3ragaaerscsa mpobaemMa HAOIMKEHOTO PO3B’sa3y-
BaHHS JKOPCTKO HEKOPDEKTHWX 33349 31 30ypeHmMu BXiTHUMH JaHuMu. o
pery/IlOBaHHS TaKUX 33Jad OyJI0 3aCTOCOBAHO iTepoBaHmii MeTon TixoHOBa
3 MPaBWJIOM 3YIWHKH 3TiMHO OpWHNUOY piBHOBaru. [ljas 3ampomoHOBAHOTO
miaxomy Oysia 3HaliIeHa MOPSIKOBa OIIHKA, MOXUOKM Ha KJIACl 3a7ad9, M0 I0C-
LK YIOTHCS.

ABsTrRACT. Considered in this paper are the problem of approximate solving
severely ill-posed problems with perturbed input data. In oder to regularize
these problems the iterated Tikhonov method with balancing principle as stop
rule was applied. For this suggesting approach an order of accuracy on the
class of problems under investigation was found.

1. INTRODUCTION
In this paper we consider the problem of approximate solving severely ill-
posed problems represented in the form of operator equation of the first kind

Ax =y, (1)

where A : X — Y is linear compact injective operator between Hilbert spaces X
and Y. Let us denote inner products in these spaces by (-, -) and corresponding
norms by || - ||. The symbol || - || stands also for standart operator norm.
It will become clear from the context which exactly space or norm is under
consideration. Suppose also that an available perturbation ys € Y : |ly — ys|| <
0,6 > 0, is known instead of the right-hand side y and a perturbed operator
Ap o |JA— Ap|| < h,h > 0, is known instead of A, where Aj : X — Y is also
linear compact injective one.

Usually, equation (1) is referred to as a severely ill-posed problem if its
solution g = A~'y has a finite "smoothness" in some sense, but A is an
infinitely smoothing operator.

A distinguishing characteristic of such kind of problems is the fact that zg
belongs to some subspace V' continuously embedded in X, the singular values
of the canonical embedding operator Jy from V into X tend to zero with
polynomical rate, while the singular values {0;};°; of the operator A tend to
zero exponentially.

Following [2], [7] suppose that zo belongs to the set

lep(A) ={z:z=(n..InA*A)"H P, |v| < p}, (2)

K-times

TKey words. Severely ill-posed problem, balancing principle, iterated Tikhonov method.
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when some unknown 0 < p < p;, K = 1,2,..., and known p > 0, where the
operator function (In...In(A*A)~!)™P well defined by the spectral decomposi-

K-times
tion
oo
AA=D 0] (0,7,
=1
of the operator A*A, i.e.

(o In(A*A) ") Po = (.. In(0; %) P (¥;,0) ;.
K-times =1 K-times

Further, without loss of generality we assume that

-1
e, k=1,
IA|| < My, Mg =mi/* my = { ) ,

i.e.
o <mg, 1=1,2, ...

Example 1. To illustrate severely ill-posed problems let us consider a problem
from satellite gravity gradiometry. With the surfaces of the Earth and the
satellite orbit assumed to be sphericals with radius 71 < 73, correspondently,

= {u €R3, |u| = ’I“i} ,4 = 1,2, then one of the problems arising in this
theory ( see, e.g.,[4], [11]) could be formulated as an equation (1) with the
operator

Az(u) = — /j;g (W) 2(0)d, (v), wEQy,. (3)

471, u—v|?
1
In satellite gradiometry the exact solution of equation (1) with operator (3)
is usually considered to be an element of the spherical Sobolev space

oo 20+1
1
S e L@ AR =23 (14 ) I AP < o0 )
1=0 k=1
for some positive index s, where
VW) = S Yng(2), e,
™

/m )0 (1)

and {Yy,;,m=0,1,....,5 = 1,2, ...,2m + 1} is a set of spherical harmonics La-
orthonormalized with respect to the unit sphere in R3.
As for the singular values o; of the operator (3) the following relation (see,

e.g., [12])

1
Ino 2 =<1+ =
no,; +2
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is valid, then there are some constants co > ¢; > 0 such that for any f € H*
two-sided estimate

cllflls < [n*(A"A) L < eal f1ls

is valid. Tt, in particular, means that any element of H® belongs to the set (2)
with K =1 and p = s.

Example 2. Let us consider a two-dimensional model of the scattering by
a perfectly reflecting periodic structure. According to Bao [3], Hettlich and
Kirsch [5], we can formulate the problem as follows. Let f € C%*(R) be 27-
periodic function with f(z) > 0 for all z € R. We set

Qp ={(z,y) 1y > f(z),z €R}.
Then by

Oy ={(z,y) 1y = f(z),z €R}
we denote a periodic interface which should be determined from scattering data.
For this end, we introduce an incident field u/(x,y; k) given by

ul (z,y; k) = exp{ik(zsinf — ycosh)}, (4)

which is a time-harmonic electromagnetic plane wave. Here i = /—1 and the
constant £ € R is the refraction index of the material occupying €y, and is
given by k = wcy 1\ﬁ , where w is the angular frequency, cg is the speed of
light, 4 > 0 is the magnetic permeability and € is the dielectric coefficient.
Moreover, in (4), 0 is regarded as the angle of incidence.

We assume that

T
0<0] < =
<| |<2
and
0<k:<i
o’

Then the resulting scattering field u® (z, y; k) satisfies the Helmholtz equation
with the perfect reflection boundary condition

Au® + E*u® =0 in Qy, (5)
u® +u’ =0 on 09y, (6)
u® satisfies so-called outgoing wave condition:
WS = Zunez‘(anwﬁny)’ if y > || £l o020 (7)
nez

In this example the function u® under consideration is regarded as complex-
valued. Here, we set

an =n+ksing, B, =+k2— (n+ksinf)2, 0<argf, <. (8)
S

Moreover, we impose the (k sin 6)-quasi-periodicity condition over u
u®(x + 2m,y; k) = exp(2mik sin 0)u” (z, y; k) (9)

for all (z,y) € R? (see, e.g., [3]).
Now we can state our inverse problem.
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Determine y = f(z), z € R, from measurement v (x, y; k),
x € (0;27), where u® satisfies (5)-(7) and (9).
By the (k sin #)-quasi-periodicity, setting
w=u(z,y; k) = ul (z,y; k) + v (z,y; k).
We can rewrite (5)-(7) and (9) in terms of the total field wu:
Au+k*u=0in Qf, (10)
u =0 on 08y, (11)
u(x 4 27, y; k) = exp(2mik sin 0)u(x, y; k), (12)
u — u! satisfies the outgoing wave condition. (13)

Since k is fixed such that (8) is true, we simply write u(z,y) in place of

u(z,y; k). Then our inverse problem is equivalent to determine y = f(z),
R, from measurement
u(z,0),z € (0;2m),
where u satisfies (10)-(13).
For fixed positive constants My, M, k and ag, a such that
0<M<agp<aand 0 <k <1, we set

F={feC***R): [ fllestrpn < Mo, f is 2m-periodic,

& f & f .
—(0) = —(2 =0,1,2,3
dxj ( ) dm] ( 7T)7 .7 ) ) ) )
f(0) = f(27) = —ag, —a < f(x) < —M,
0<z<2m}
as an admissible set of unknown surfaces.
Denote
3 . d3 3
lowoag <SS ¢ 1@ - GDE
+ . — I
C3+Fk[0;27] pard dxi Cloan]  0<za'<omaite |z — a'|F
Let us set

Qf ={(z,y) 1y > f(x),x € R} for f € F.
For f; € F,7 = 1,2, let us consider
Auj + k2uj = 0in Qy,,
u; =0 on €y,,
u; is (ksin 6)-quasi-periodicity, i.e.
uj(x + 2m,y) = exp(2mik sin O)u;(x,y).

We further assume that u; — u! satisfies the outgoing wave condition.

x €

Theorem (2.1) [5] shows that in stated above conditions there exists a con-

stant C' = C(k,0,F) > 0 such that
C

— o1 <
1f1 = fallcjoen < o

1
H(u1*U2)(':0)”H1(0;2w) ||
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provided that for all f1, fo € F. Hence, solution of equation (5) belongs to the
set (2) with K =2 and p=1.

As far as the history of studing severely ill-posed problems, we should no-
tice, that these studies could be traced back to work [8], where the estimate
of accuracy for the Tikhonov regularization were found for equations (1) with
operators of both finite and infinite smoothness. Moreover, some regularization
methods for severely ill-posed problems were considered in [6], where, in par-
ticular, a general class regularization methods (according to Bakushinskiy; see,
e.g., [1]) were suggested for solving (1) in the case of perturbed operators and
the right-hand sides; for choosing a regularization parameter was employed a
modification from [10]. Further, severely ill-posed problems were considered, in
particular, in works [7], [2], [12], [13]. In [12] the approch for solving ill-posed
problems (1) with solutions from (2) for K = 1 was proposed. It suggests
a combination of usual Tikhonov’s regularization with Morozov’s discrepancy
principle. The indicated combination allows to achieve the order-optimal ac-
curacy (in the logarithmic scale) O(In~! %) of recovering solution from the set
M]i o(A) for any p > pg > 0. In [13] for solving the same problem Tikhonov’s
method was employed again; however, for the stop rule was considered the bal-
ancing principle. This approach also allows to attain the order-optimal accuracy
O(In™' }) of recovering solutions from pointed set for all 0 < p < 1. Notice,
that studies initiated in [12] were extended in [14] to the more wide class of
ill-posed problems (1) with solutions (2) for any K =1,2,... and p > py > 0.
Herewith the order-optimal accuracy of recovering solutions O((ln...ln%)_p)

K-times
was obtained.

Unlike the works described above, in the present paper for regularization of
severely ill-posed problems (1) with solutions (2) for K > 1, and perturbed
operators and the right-hand sides iterated Tikhonov’s method will be applied,
and a regularization parameter will be chosen in accordance with the balancing
principle. Subsequently we will demonstrate that the suggested approach for
solving (1)-(2), which consists in combination of iterative Tikhonov’s method
and balancing principle, provides accuracy O((In ... lnh%ﬂs)_p).

K-tim
We recall that iterated Tikhonov’s method comsitstse Sim a choosing a na}tllilsral m,

. . . ho . . :
initial approximation zy’,, and consistently computation of elements T, =

1,2,...,m, by the rule

2 = a(Ap Ay + al) el |+ a(Af Ay + o) T AL ys, (14)

7,00 1—1,«
. . h76 h76 J—
where m > p; and as the approximate solution we take zp; . If zy', = 0 then

the element a:ﬁ{fsa can be rewritten in the form of

m
aid, = o TN AG Ay + o) T Ays. (15)
=1
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Obviously, any numerical realization of the Tikhonov method requires us to
curry out all computations with a finite-dimensional approximation Ay , in-
stead of Aj. Thus we assume finite-dimensional approximation Ay, with
rank(Ap, ) = n to be chosen such that

_fépt , 0<h <y,
|Ap — Ap |l <€, where e = { hoo hs3 (16)
Further, along with (15) we will also consider auxiliary elements:
m . .
Lo = Z o HA*A 4 ad) T ALy, (17)
i=1
m . .
'r?I}n,oz,n = Z az—l( ;kL,nAhm, + 04[)_1 ;kt,ny7 (18)
i=1
m . .
Ol = D& A A+ D) A s, (19)
i=1

Recall that generating function of the iterated Tikhonov method has the form
(see [15, p.21])

i i 1 o
Ima(N) :—;a Ya+ ) fx(l—m), X0,

and satisfies inequality (see [15, p.22])

sup ﬁgm@()\)g m

0<A<o0 «

2. AUXILIARY STATEMENTS
We shall later need the following auxiliary results and facts.
Thus, for any linear operators A, B € L(X,Y) and natural m the decompo-
sition (see [15, p. 92|)

m—1
A™—B™ =" Al(A-B)B" ! (20)
j=0

holds true.

Lemma 1. (see |15, p. 34|) If g is bounded, Borel measurable function with
respect to the [0; M|,
A€ L(X,Y), ||A| < Mk then

A*g(AA®) = g(A*A)A*,

Ag(A*A) = g(AA™)A.
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In addition, it is well-known that for any bounded linear operator B
B(al +B*B)~! = (oI + BB*) !B,

I(al + B*B)™|| <™, |(al +B*B)™'B*|| < (21)

1
2\/a’
|B(al +B*B)"'B*| <1
hold.
Before proceeding further we establish a nomber of auxiliary assortations
which will be need later for analysis of approximating properties of suggesting
approch.

Lemma 2. Let

1
e, k=1,
lA| < Mk, MK:m}(/Q, mk:{ 1

Then the following estimate

.-
lzo — Tm,all < p(ln...ln&) P
K-times

holds true, where Tpm o determined by (17).
Proof. First, we note that

lzo — Tm.all = ([(n... In(A*A) =) "Py—
K-times
ST @ N AR A + al) AT A . (AT A) ) P <
i=1 K-times

<pllll =" oA A+ al) AT A (.. In(A7A) )P <
=1

K-times
<p sup |[I- iai_l#,](ln...lnl)_ﬂ <
0<A<mg i=1 ()\ + a)l K-times A
1
S p sup m hl...hl* P .
0</\SmK|(a T )‘) (K-times)\) |

To estimate the expression standing under sign of supremum we consider two

events:

1) A < a. As function (In...In$) P monotonously decreases for A, then
——

K-times
(=% (. Inm) P < (... In—) .
a+ A ~——\ ~——
K-times K-times
2) A > a. We consider the function
FO) = )\im(ln...lni)’p, A € (0;mg].

K-times
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It is easy to show that

') = A—m—l(ln...lni)—p—l( In...In %)_1...(ln%)_1x
K-times (K—1)-times
1 1 1
x[p—mln...lnx In..ln X]nx]

K-times (K —1)-times
As f'(A\) < 0 for p < m consequently f(\) monotonously decreases for p <
m, m > 0. Thus,
f(A) < f(a) for A > « and

a \™" 1 a \™ 1 1
In..In~ )P = A (In.In )P <
(a+)\) (.13 3) (a—i—)\) o 3 s

K-times K-times
A 1 1
S W(h’l...h’l*)_p S (h’l...h’l*)_p.
@ K-times @ K-times @

Herewith, in general case we have

1 _
lzo — Zm,all < p(ln...lna) P
K-times

hence, the proof is completed. O

Lemma 3. Let

e 1, k=1,
Al < My, Mg =m% my, = . .
K
e M1, k=2 .. K

Then the estimale
ol ) (h+e)
< Ja
holds true, where T o and J:fmam determened by (17), (18) correspondently.
Proof. Clearly, that

h

m,a,n

1z, — =

lzoll = [|(n.... In(A*A) ™) P <

K-times

1
<p sup |(In..In—)7P| <p.
O<Asm K—times)\

A= Apnll < |A = Apll + [[An — Anpll < h +e.
Further, we estimate the norm
|Zm,0 — x?n,a,n” = ||gm,a(A*A) A"y — Qm,a(AZ,nAh,n)Alt,ny|’ =
= [|gm.a(A"A)A" Ao — gm.a(Ah nAnn) AhnAzoll <
< pllgm.a(ATA)A"A = g o (A} o Ann) Ap Al
We consider the expression standing under norm’s sign:

gm,a(A*A)A*A - gm,a(Alt,nAh,n)Az,nA =
= gm,a(A*A)A*A - gm,a( Zm,Ah,n) Z7nAh,n+
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+gm,a(A2,nAh,n)AZ,nAh,n — 9m,«a (AZ,nAh,n)A;L,nA = Il + 127
where

I == gma (A*A)A™A — gm,a(AZ,nAh,n)A;;nAhv"’

Iy := gm,a(Az,nAh,n)Az,nAh,n — Im,a (Az,nAhﬂ) Z,HA
Now we estimate each of summands I, Io.
Thus,

L=I—-a"(al+AA)™™ — (I —a™(al + A} ,Apn) ™) =
=a"[(al + A}, Apn) ™™ — (@l + ATA)T™.
We apply the formula (20) to expression standing in braces:

m—1

Li=a™) (al + A5 Apn) 7 - [(0] + A Apg) ™' = (o + A*A)7!

J=0

3

x(ad + A* Ay~ — om

[ing

3
L

x(al + A*A)~™H = o™ (ol + A;;’nAh,n)_j_l(A* — A}, ) AX

J

Il
)

x(al + A*A)"™H 4 o™ (o + Ay, Apg) T AL (A= App)x

j=0
x (ol + A*A)~™H,
Whence by Lemma 1 and estimates (21) we obtain
m—1
I < Yl + A7y Ap) P (@l + AAS) T A+
j=0
HI(ad + A Ann) 7T AL - I(0d + A A)TH ) x
m—1
xa™[|A = Al = Y a7 I(ad + ATA) T X
j=0
x||(al + A*A)T Al + [[(af + Af , Angn) 7HI @
<0+ 4 ) oA = ] <

m—
1 o1 ;

< —]—1 —m+j+1 +a7 o™ %

< E_O 5 ]

Va 2\/a

x||A - AhnH—Z\fllA Ahn||<\f(h+€)

Then, due to (21) we find
12| = [|gm.a(Ah nAnn) Apn (Ann — A <

| x

(o + A}*l,nAhm)_j_l(A*A — Aj pAnn) X



BALANCING PRINCIPLE FOR ITERATED TIKHONOV METHOD ... 81

< sup VAgma(N)] - [Ann, — A < Y2
0<A<mx Vo

Summarizing relations (22) and (23) we finally obtain

L vm
T

(h+e). (23)

m
lman = Thanll <0 ( T2+ 6+ Y2 (h+)) =

p(m + Vi) (h +e)
o |

Thus, Lemma is proved. g

Theorem 1. Let

Mgmw@w%mp{l

and xo = A7y € M;;(A).
Then the estimate

1. plm++y/m)(h+e) dym
on _xmoanH < :0(( lni) P+ + (24)
— Va Va
K-times
holds true, where x?,{fsmn is approximate solution determined by (19).
Proof. Using triangle’s rule we obtain
h h h,o
||1:U - xm Q, n” < on — Tm a” + me o xm,a,n” + ||xm,oz,n - l‘W?Z,Oé,’VLH'
We consider last summand:
h * *
me,a,n - xm ,Q, nH Hgm,a( h,nAh,n) honY—
_gm,a(Az,nAh,n)Ah,nyén < Hgm,a(A;;,nAh,n) Z,n”x
xly=ysll < sup (VAgma(N))-
0<A<mg
Thus, by inequality (19) we find
i — aliall < 0 (25)
f

And finally summarizing Lemma 2, Lemma 3 and relation (25) we obtain the
assertion of Theorem. O

3. THE BALANCING PRINCIPLE
The balancing principle consists in choosing a value of regularization param-
eter o such that to balance two functions which give accuracy estimation. In
our case, these functions are represented by (see (24))

O() :=p(In... lné)fp,
K-times
plm + ) (b + €) + 6/
Ja .

U(a) :=



82 GANNA MYLEIKO, SERGEI SOLODKY

Taking into account, that (see (16))
o Sp~t ,0<h <y,
A, h>6
we can represent function ¥(«) as

W(a) = pcih + ¢od

\/a I

where

o m+ /m ,0< h <6, o = m+2ym 0 < h <34,
" 2m+vm) k>0 T \um h>6

Thus, we can rewrite (24) in the form

lzo — 20l < ®(@) + ¥ (). (26)
Since ¢(t) = (ln...In1)~? is monotonously increasing function then for in-

K-times
creasing « the function ®(«) increases. By other side, the function ¥(«) is
monotonously decreasing. According to behavior of functions ® and ¥ (namely,
their monotonicity and concavity) to choose a value of regularization parameter
a = & minimizing right-hand side of (26) we will balancing values ®(«) and
U(a), i.e.
o(a) = ¥(a)
And, hence
o — a, | < 20(@).
But, since function ¢ is unknown (namely, parameter p is unknown), then
such a priori choice of the best value & is impossible. Therefore in considering
situation we need to make use of some a posteriori choice of a. For further
studing we choice the balancing principle as such rule.
Let describe this principle according to our problem. Consider two sets

Ayn = {a;i = (¢*)'a0,i =1,2,.., N}, ¢>1,
(o) :n(h—l—(S)Q, N:ay =1,
and h,d h,é
M*(An) ={o € A : |@niain — Tmiaymll <
<A4V(wj), j=1,2,...,1i}.
Within the framework of balancing principle we take
a = oy = max{a € MT(An)}. (28)
as value of regularization parameter Moreover, consider auxiliary set
M(AN) :=={a; € An : P() < ¥(ay)}
and auxiliary value
oy = max{a € M(An)}.
Without loss of generally we assume that
M(AN) 7é Q) and AN \M(AN) 7& @
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And finally we can estimate closeness of exact and approximate solutions for
value of regularization parameter o = a.

4. THE MAIN RESULTS

Theorem 2. Assume that the regularization parameter is choosing according
to (28). Then for any xg € lefp(A), 0<p<p, K=12,.., the following
estimate

1. _
on - wm 0 ,m || < 6qp(\1 In ,5) b
K-times

18 valid.

Proof. First, we show that a, < ay. Due to (26), behavior of functions
®(a), ¥(a) and definition of the set M (Ay), for any a; < o, we have

| <

h,6 h, h,0
H ma*,n maj,nH < ||x0 - J:Tri,a*,nH + on - xrrz,aj,n

< B(ay) + ¥(ay) + P(o)) + V(ay) <
<20 (ov) + V(o) + V(e ) <
<3V(ow) + ¥(oj) < 4Y(e).

Thus, ax € MT(Ay). And, hence the inequality . < ay holds true. Further,
according to (26) for & = v, and also definition of sets M (Ay) and M(Ay)
we have

h,d
n"l,a+,n ’ < ||'CE0 - xm Qi n” + ||'Im Qx,n xm o, ’ < 6‘1’(0[*) (29)

|0 — x
It is easy to see that from definition of function W it follows
h 0 1pcah o 1
peihtc0  lpah+co “U(ay). (30)
Vo, q O q

By other side, obviously o, < @ < ¢?ay. According to (29) and (30) we obtain

‘I’(QZQ*) =

on - xm a+,n” < 6Q‘ll(q a*) < GQ\P( )

~ 1
= 6¢P(a) = 6¢p(In.... lné)_p.
K-times

Proof of Theorem 2 is completed. O

Theorem 3. Let xg € Mlip(A), 0 < p < p1, and the condition of Theorem 2
is satisfies. Then for any 6,h > 0 the estimate

—p
h,6 P
_h < In ———
|zo xm,wﬂl” =6 < n pcih + 025>

holds true, where ¢, = 6qp (2p+1)
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Proof. According to ®(a) = V(@) we find
1 perh+ 26
va o

2
e (Yt
p a
As for any x > 0 the relation Inx < z is valid, then

. (PC1h+C25>2<1)2p
a< | —— = ,
P a

2
&< <pc1h+02(5>2p+1.
p

pln™P

)1

Then

Hence, due to Theorem 2 we have

2 -p
h,o P 2t
— ) < 6 1 _— =
on xm,a+,n” = bgp ( n (pclh i 025>

_6 2p+1 P 11’1* -
— 0P 2 pc1h + 6 '

P
Denoting ¢, = 6gp (@) , we obtain the assertion of Theorem. O

Remark 2. In the case py = 1 and h = 0 the result of Theorem 3 was obtained
earlier in [13]. Thus, Theorem 3 generalizes result of 13| for any p1 > 0 and
h > 0.

Theorem 4. Let xg € szp(A), 0<p<p, K=223,.. and the condition
of Theorem 2 is fulfiled. Then, for sufficiently small h,§ > 0 the estimate

—-p
h,d 14
-z < In...In—0
||$0 xm,our,nH >Cp (A& ' n’pclh—i—CQ(S
K-times
holds true, where c, = 2P6qp.
Proof. ®(a) = ¥(a), then
-p
| | 1 pcih + ¢od
n..ln— =
p \ /a \/5 )
K-times
2p
~ pcrh + cad 2 1
o=|—— In...In—
p ——a
K-times

As for any x > exp(exp(...(exp(1)))) the inequality In...Inz < z is valid, then
—_— —— "

K-times K-times

2
&< <p01h+025>2p+1
= p )
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by that we have found the upper estimate for value of regularization parameter

which theoretically minimizing accuracy.
Thus, by Theorem 2 we obtain
-p

1
|xo — :v?,fa+7n|| < 6gp ln...lné <
K-times

<6gp |In...1 p o
-~ qp n... n m

K-times

Further, we will find upper-bound estimate for

—-p

—-p

)\
In..In{ ————
~—— \ pc1h + c30

K-times

First, let K = 2, i.e. we will find upper-bound estimate for

221 P
p P+
Inln (| ———
[n " <pc1h—|—625) ]

Obviously, that for any fixed p, 0 < p < oo, there exist such hg,dp > 0 that
for all 0 < h < hg and 0 < § < §p the inequality

(219“)2 S p——
5 <

c1ph + c26

is fulfiled. Whence, from monotonicity of In it follows

2
m (2 a2
2 c1ph + 26

2 1 1
In Pt §71nln#.
2 2 c1ph + c26
2
2p+1 2 1
Inln _r 3" =Inln p —1In P+ >
pcih + c26 pcrh + c2d 2
1
> flnln#.
2 pcih + cod
Hence,
2 7-p —p
p 2p+1 p
Inln [ ——— <2’ |\lnln ———— .
[n . <p01h+025> ] - [n np01h+625:|

Further, in case of arbitrary K > 2 we will show, that for sufficiently small

h,d > 0 the inequality

n..1 P G P (31)
SIGES pcih + cod - Q‘W—’;t 2 pcih + cod
-times

K-times
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is fulfiled. For that reason we will carry out the proof by induction. Thus, for

K = 2 the inequality (31) was proof earlier. Let assume now, that inequality
(31) is fulfiled for K — 1, K >3, i.e.

P 2p+1 1 p
In...In - >_ In..ln .
—— pcih + c2d 2 ~~—— pcih + cod
K—1)-times

(K —1)-times (K—
Then the relation
2
1 1
In...In P )" >In|=- In..ln S
~—— \ pc1h + c20 2 ~—~— pcih+c6
K-times (K—1)-times
holds true.
Further,
1 p 1 p
n|- mn.n ——| —=In...In——— =
2 ~—~~— pcih+ 28 QH/—’pclh—l—cyS
(K—1)-times K-times
L' n..In
2 = pc1h+026
1 (K—1)-times .
= In 2| =
ln ln hi
—— rca +c20
(K—1)-times i
1/2
1 p
=In In...lIn —— > 0.
~—~—" pcih + c20
(K —1)-times
Hence,
1 1
In |- In..ln S > —-Iln...In S
2 ~—~— pcih+c6 QW—’pclfH—cQé
(K—1)-times K-times
Thus, inequality (31) holds true, then
—p -p

p 2p+1 p
In...ln | —— < n..ln—" =
~—— \ pc1h + 30 2>—~—pc1h + c30

K-times K-times
-p
=27 [In...In p
~—~~—pc1h + c20
K-times
And it means, that due to Theorem 2
-p
|zo — 2! | <6¢p2P |In...In _r
ma+n W—’pclh+025
K-times

Denoting ¢, = 2P6gp we complete the proof of Theorem. U
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Remark 3. In [14] for solving severely ill-posed problems (1)-(2) with perturbed
right-hand sides ys and exactly given operators A a combination of standard
Tikhonov regularization with Morozov’s discrepancy principle was considered.
This approach allows to achieve the accuracy O((ln...ln%)*p) amonyg the set
K-times
szfp(A),K € N, of solutions. Moreover, in [14] the lower bound po of possible
values for parameter p (p > po > 0) was used. By other side, in Theorem 4 was
shown that the strategy (14), (27), (28) of solving severely ill-posed problems
guarantees the same order of accuracy on the same set M]fp(A) of solutions.
But in this case the upper bound of possible values for p (0 < p < p1) is used.

Remark 4. In [14] for solving problems (1) with perturbed right-hand sides
only and with desired solutions from the set (2) for arbitrary K € N was shown

1. _
e(MIffp(A),(S) = O((ln...lng) Py,
K-times
where
e(sz,(p(A), 0):= inf sup sup lzo = Sysll-

SY=X g0eME,(4)  ys€Y:lly—ysll<s

Hence, e(Mpr(A), J) determines the least possible accuracy of solving (1) on the
set (2) among all approzimate methods S : Y — X constructed on perturbed
data ys. It means (see Theorem (4.1) [14]) that the value O((In...In%)P) gives

) K-times
the order-optimal accuracy.

On the other hand, it follows from Theorems 3, 4 when h = 0 the received ac-
curacy of approzimate solving (1) has the representation O((In...In3) 7). This,

K-times
in its turn, means that in the case of exactly given operator A the suggested

approach also provides the order-optimal accuracy of solving severely ill-posed
problems.
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STREAMLINE DIFFUSION SCHEMES FOR SOLVING
A NONLINEAR HYPERBOLIC BOUNDARY
VALUE PROBLEM

DavooD RostAMY, FATEMEH ZABIHI

PE3IOME. B poGoti BuBYa€ThCa METON CKIHYEHHUX €JIEMEHTIB Il PO3B’a3y-
BaHHS HeJiHIHOI rinepbosianol kpaitoBoi 3amadi. 3’sCOBAHO MUTAHHS ICHY-
BaHHSA 1 €IUHOCTI PO3B’S3KY, a TAKOXK OI[IHEHO AIPIOPHY Ta amoCTepiopHy
noxubku. Orpumano OuwiHKY crifikocri 1 onrumaJsbhi HOpsaxu 36iKHOCTI,
nokasano aupiopiy ouinky O(hFTY/2), ne h — kpox citku i k — creninb Kycko-
BO-TIOJIIHOMIATBHUX (DYHKINN HA CKIHUEHHUX €JIeMeHTaX, B 00/IaCTIX, e TOU-
HUH PO3B’sI30K € I IKmii ab0 Hersaaknii. [ MPOIIOHOBAHOTO METO/Iy HaBe-
JIEHO DEe3YJIbTATH YUCEIbHUX €KCIIEPUMEHTIB.

ABsTRACT. In this paper we study the streamline diffusion finite element
method for treating a nonlinear hyperbolic boundary value problem. The
existence and uniqueness are discussed. Also, a priori and a posteriori errors
are estimated for this problem. We derive the stability estimate and optimal
convergence rates, showing an a priori error estimate of order O(h*+/2) in
domains where the exact solution is smooth or non-smooth; here h is the mesh
width and k£ is the degree of the piecewise polynomial functions spanning the
finite element subspaces. Also, some numerical illustrations are given for the
presented method.

AMS Subject Classification: 65M12, 65M15, 656M60, 82D10, 35180

1. INTRODUCTION
In this paper we consider the following wave equation:

U — Uy = AF (2, t,u), (x,t) € Q, (1)
au(t,t) — ;:l(t,t) = au(l+t,1—1) +ﬁ§§2(1 YH1-1), 0<t<1, (2)
u(z,0) =0, 0<z<2. (3)

Where (2 is as follows:
Q={(z,t):0<t<1, t<x<2—t}

and the parameters \, o, 3 € R such that a® + 3% # 0. The two vectors n; and

ng are the exterior unit normals and 8‘9—;‘1, (%; are the normal derivatives. Also,

F(z,t,u) >0 and W are arbitrary continuous in Q. The above boundary
value problem for mass-spring system has an analog the continuum case which
was first formulated [21, 34] as above (see also (|23, 26, 27, 28])). Our problem is
a generalization of the problems studied by Kalmenov [21], and [26, 27, 28, 38].
The purpose of this paper is to present extension of the streamline diffusion

tKey words. Streamline diffusion method, hyperbolic problems, wave equations, error es-
timate, finite element.
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(Sd) method to a nonlinear mass-spring system. The mathematical study of the
mass spring system with this triangle domain has been considered by several
authors in various settings (see [11, 22, 24, 37, 39]). One of the applications of
mass spring systems to arch structure railways and long bridge-like structures
reduces the dynamic and static loads due to train. Also, we can see this system
to simulate facial soft tissue of great interest to many medical forms and make
visible to applications(|18, 20]).

Streamline diffusion ideas carry out slightly better than the different finite

element methods for smooth solutions and non-smooth solutions of the first
order hyperbolic problems ( [32, 34, 35]) which both is higher order accurate
and has good stability properties (see |2, 3, 5, 13, 14, 15, 16, 17, 19, 25, 31]).
Due to the fact that the added diffusion removes oscillations near boundary
layers(|4, 6, 7, 8, 9, 12]|). Hughes and Brooks |25] introduced this idea in the
case of stationary problems. The mathematical analysis of this method for
linear problems, together with extensions to time-dependent problems using
space-time elements, was started in Johnson and Navert [31] and was continued
in [29, 30, 33, 36]. In this paper we shall go into the details for the nonlinear
hyperbolic problem and a new version of Sd method for solving the problem is
given. The remaining structure of this article is organized as follows:
The uniqueness of the problem is discussed in section 2. In Section 3, we
present and analyze the Sd method. In Sect. 4, by using the Sd method, we
investigate stability and obtain an a priori error estimations for this system.
A posteriori error estimations are given in sections 5, 6 and 7. Finally, in
Sect. 8 the paper would be completed by the inclusion of numerical results
to provide experimental support for the theoretical results and show how the
method performs in practice.

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION
In the following propositions, it is shown that there is a unique solution
for (1)-(3) in linear and nonlinear form for F'(x,t,v) in Sobolev space ([1]) of
WHQ) N W4 (0Q) N C(Q). In [28] we observe that the linear problem is con-
sidered and in [42] existence theorems for some nonlinear hyperbolic equations
are given, but in this section the uniqueness of nonlinear form is studied.

Proposition 1. For k = 0,1,2,... given \,o, 8 € R and F € H*(Q), problem
of (1)-(3) has a unique solution in the Hilbert space u € HFT2(Q).

Proof. We extend the proof of theorem’s Iraniparst (see [28]) and we use some
propositions and lemmas in [42] (see 2.3 and 4.3). We influence the change of
variables X =z —t and Y = x + ¢ into (1)-(3). Hence, we have

Vay = 7F(X,Y,V(X,Y)), (X.Y)e, (4)
A={X,Y):0<Y <2 0<X<Y}
aV(0,Y)+ pVx(0,Y) = aV(Y,2) + B4 (Y,2), 0<Y <2
V(X,X)=0, 0<X <2,
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where F(X,Y,V(X,Y)) = F(ZHY, =2 22y =2H)) and v = . Integrat-

ing Eq. (4) and using the above boundary conditions we have

:7(/ /Q G(&,n: X, YV)F(X,Y,V(X,Y)) dX dY

- /2 r(&,n, X)(F(0,X,V(0,X)) — F(2,X,V(X,2))dX),
0

such that n, £ € Q' and

0 o< X <¢
0 itn <X <2

In [21, 34, 35, 28] the Green’s function, G(§,n; X,Y) described. Also, in [42,
35, 28] we observe that the critical eigenvalues are extended based on spectral
theory (see section 2 [42]). O

Proposition 2. If F(x,t,v) fQ x —t)v(z,t)dQ = k * v and we have the
above assumptions in proposition of 1 then problem (1)-(3) has a unique solu-
tion.

Proof. By using the above proposition, [26, 27, 28, 42] and the Hilbert transla-
tions the proof is completed. U

3. THE STREAMLINE DIFFUSION METHOD
For simplify in (1)-(3) we assume A = 1. We introduce variables v = du/0t
and v = Jv/0t. Hence, we rewrite (1)-(3) to

Lw =w(z,t) + Aw(z,t) = f(u) in Q
w(z,0) =0, 0<z<2 (5)
Bw'(t,t) = Cw’(1+¢t,1—¢t), 0<t<l.

Here, we assume that w(z,t) = (u(z,t),v(z, )T, w(z,t) = (W(x,t),0(x, 1)),
0 —1
Ju ou
(w, o)™, W = (u, 5)", A = <_82 0>v B=(a -B),C=

Ox?
( B) and f(u) = (0, F(z,t,u))’.

In this section, we consider the Sd-method for solving (5). In this method,
instead of using the standard Galerkin method, is usual in Finite Element
Method, for the one variable (spatial or time) we used the Galerkin method
simultaneously in space and time. That is, we use finite element and interpo-
lation functions depend on time and space.

Space-time Sd-method can be used to improve stabilization, however used
without care, this would lead to a very large linear system to be solved. One
of the reasons for it is that in this technique the use of continuous (in time)
test and trial functions in all levels of time. One way to avoid this difficultly,
and decrease the size of the corresponding linear system, is to work in slabs
of space-time, with the help of interpolation functions that will be continuous

w’ =
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in the spatial variables but will be discontinuous in the time variables at the
common frontier of every two slabs.

Sd-method for (5) is based on using finite element over the space-time domain
Q. To define this method, let 0 = tg < t; < --- <ty = 1 be a subdivision of the
time interval [0, 1] into intervals I, = (ty, tn+1), with time steps ky, = t, 41 —ty,
n = 0,1,---,N — 1 and introduce the corresponding space-time slabs (see
Fig. 1.), i.e.,

Slab

_.:I,—F

F1G. 1. The slabs on Q

Sn:{(xat) : nt1 <2 <2 —th1, t <z <tpt1,

2oty T2t b <t<tu],
forn=20,1,..., N — 2 and
SN_lz{(x,t)tthSQ—t, tN_1<t<tN}.

Further, for each n let W™%? be a finite element subspace of H(S,,) x H'(S,),
based on triangulation of the slab S, with elements of size h and let

Wl = {w e WP Bw(t,t) = Cw?(t+ 1,1 —t), 0<t< 1} :
Simplifying, we get boundary condition in Wn’aﬁ
Sd-method on the slab S, for (5), as follows:
Forn=0,--- ,N — 1, find w" € W" such that

(WP £ AW B g4 5(5 + Ag))n + (W, g dn + (WP g0, = (6)

equal zero. We can formulate

= (f(u"), g +6(g+ Ag))n + (WP g1,

We have g+6(¢+ Ag), as a test function such that § = Ch with C is a suitable
chosen (sufficiently small, see [33]) positive constant. Further, we define the
following notations for (6) and everywhere in the paper:

(u,v)n:/ u?l vdzdt,

(), = [ull7,
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2—tn
T / T (2, ) v (2, ),
tn

(u,u), = [ulz,
vi(x,t) = lim+ v(z,t+s),

s—0

v_(z,t) = lim v(z,t+s),

s—0~

<U+,V+>F:/U+T.V+d0',
r

(ug, vi)r, =/ uy vyds,
n

also =l ac@ys oo = Iy IHls = Ills = sy T = 99 and
I' = Uf:[;ol I';,. The terms including ( , )rr, in the above formula is a
jump conditions which imposes a weakly enforced continuity condition across
the slab interfaces, at ¢, and is the mechanism by which information is propa-
gated from one slab to another. For more concisely, after summing over n and
f(@) =~ f(g)+ (= —g).%&g) (such that @ = ( u0 )), we get the function space

Hﬁtol Wn’a’ﬁ, therefore we may rewrite (6) as follow:
find w € [TV W’ such that
B(w,g) = L(g), (7)

? The bilinear form B(.,.) and the linear form L(.) are

for g € 1—[711\/:—01 W'
defined by
— - n,o, n,a,3 n 8f . n,a,3
B(w,g) = > {(W"*P+Aw" "~ = (g), g+0(g+Ag))n+ (W™, g4)r, )
n=0
N-1
+ > A, g)n + (W, g4 )0,

Lig) = 3 (7(0) ~ 9.9 (). 9+ (9 + Ag))n

for w = (w1, w2)T and @ = (w1,0)T. Also, we assume that [w;] = w;  —
wi_, fori=1,2 [w] = ([wi],[wa])T. Let T be a triangulation of the
slab Sy, into triangles K, for h > 0, and introduce

Wl = {w e W ik € [Po(K)] x [Pe(K)] C H(S,) x H(Sn),
K e 1"}

where Py (K) denotes the set of polynomials in K of degree less than or equal

k and
N-1

Wy, = [ wp’
n=0
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Thus (7) can be formulated as follows:

Find wy, = ( Zh > € Wy, such that
R

B(wn, g) = L(g), (8)
for g € Wy. Moreover, we know that the exact solution of (7) satisfies
B(w,g) = L(g),
for g € Wn’a’ﬁ, and by subtraction we have the following error equation
B(e,g) =0, (9)

where e = w — wj, and w € Wy,

4. STABILITY FOR THE Sd-METHOD
Below, we derive the stability estimate for Sd-method (7). These estimate
will be of crucial importance in proving the finite element analysis. We apply
properties of the bilinear B(.,.) and obtain stability estimate. For our problem,
we have the following stability Proposition:

Proposition 3. For any w = ( :jL ) € 1_[7]1\[:_01 WP with assumptions uv < 0

Ou Ov .
and 5 5w = 0 we have:

1 .
B(w,w) > [[|wl* = S{| w [} = [ ws [§ +0 | w+ Aw [G}+ [ wi [ (10)

Proof. Using the definition of the bilinear form B and setting g = w it follows:
B(w,w) = (W, w)a + (Aw,w)o + 6 | W + Aw [[§ + [ wy [P+

N—-1
+ Z<[W}7W+>n + <W+,W+>0.
n=1

Integrating by parts yields
N-1
(W, W)+ Y (W], W) + (Wi, wi)o =

n=1

N-—1
1
= Stlw- K+ w5+ 1w )
n=1

Therefore, by using the assumptions of the proposition the proof is complete.
O

We use the standard argument for finite element and introduce the linear
nodal interpolate Iyw € Wy of the exact solution w and we set ( = w — Iw,
& = wy — Ipw. Thus, we have:

e=w—wp=(w-—Irw)— (—Ihw+wp) =(—¢&
Recalling the Galerkin orthogonality relation (9):
B(e,w) = 0. (11)
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Now, we can prove the basic global error estimate by using proposition 3.

Proposition 4. If wy, € W}, satisfies in (8) and w is exact solution converted
mass-spring (5), and also

| A [l C,

then, there is a constant C' such that
lw — wl|| < CR*12 ]| 41.

Proof. Using the basic stability estimate (10) with w = e and (11), with w = &,
we get that

llell[* < Be,e) = B(e, () — Ble,§) = B(e, ) =

N-1

= (é4Ae, (+0(C+ Ao+ Y ([e], Cr)n + {er, ¢
n=0

Moreover, we use the inequality 2ab < ea® 4+ ¢ 'b? for a,b real numbers and

€ > 0. Therefore, we have:
o . 2 o, . .
Be,Q) < g e+ Aellg +5 1 Clla +5 1é+Aeflg +20 | -+ ACllg

N-1

N-1
1 1 1
SR+ G Bty lex B Gh By ler B+ 1 Go I2
=1 n=1

3

According to the above proposition and (10), we can write

1
B(e,() < qllellP+

N—-1
2 .
+{5\<H%2+26H<+A<H?Z+Z!<+\i+!<+\%+H<+ H%}.
n=1

On the other hand, we have the inequality

¢+ AC o< Clle + 1l A llsell € lla - (12)
With using inverse estimate inequality, we have
I{la<Ch™ (1 ¢ o (13)

Therefore, with (12), (13) and assumption § = Ch, we obtain:

N-1
lell* < C{H CHllR+RTHICIR+ D0 TG 17 +R ¢ H%,Q}'

n=0

Finally, by standard interpolation theory it follows that (see e.g. Ciarlet [12])

N-1 1/2
[h FC B+ 1 CHd+R D 1¢h 12+R% ¢ H%,Q] < CRM | w kg0,
n=0

which proves the desired estimates. O



96 DAVOOD ROSTAMY, FATEMEH ZABIHI

We observe in the remarked references that the corresponding optimal con-
vergence rate for the popular numerical methods in the literatures such as con-
servative finite difference method, semi-implicit finite difference method, semi-
discrete finite element method, the time-splitting spectral method or Galerkin
method are of order O(hY).

5. AN A POSTERIORI ERROR ESTIMATE
In this section, we shall consider the following simplified version of Sd-method
for (6) and (8) with 6 = 0:
Find wj, € Wy, such that forn =0,1,..., N — 1:

(Wi + AwWp, g)n + ([Wh], g4 )n = (f, $ns Vg € Wy, (14)

where [wp] = wj | —wj _ and w%’_ =0.

In order to obtain a representation of the error, we consider the following aux-
iliary problem, referred to as the linearized dual problem:

Find ® such that

L'éo=—-&, + ATd =1 in €,
q)( ) ) - 07 3 € [07 1]7 (15>
O(1+¢t,1—1¢)=0, t €10,1],
®(z,1) =0, z € 0,2]

and L* denotes the adjoint of the operator L defined in (15) and v is a positive
weight function. Note that this problem is computed "backward", but there
is a corresponding change in sign. Further, we shall introduce the following
notation:

el )= (esve)g ™. (16)

Multiplying (15) by e and integrating by parts, and summing over n, we obtain
the following error representation formula:

e ||Ld,— = (e, e)a = (¢, L") (17)
N-1 N-1 N-1
= (= + AT®) = > (e,=P)u+ Y (e, ATD),.
n=0 n=0 n=0

On the other hand, we have for n =0,1,..., N — 2:

tn+1
(e,—@t)n—/( el Dy)dzdt = / / —eT D) dtdx (18)
tn tn

2— tn+1 n+1
/ / —el D, )dtdx
n+1 tn
2—tn 2—x
/ / (—eT . ®y)dtdx
2—tn41 Jitn

2 tn 2 tn+1
= (e, Py +/ el (z,t,).®(x, t,)dx —/ el (z,tni1).®(x, tpy1)de,
tn

tn+1



STREAMLINE DIFFUSION SCHEMES FOR SOLVING ... 97

and forn=N —1:

2—tn—1
(6, *q)t)Nfl = (et,q))Nfl +/ 6T($,tN71).(I>($,tN,1)d$. (19)
tN—1
. €1 (I)l .
Hence, if we assume e = < . ) and ¢ = ( . ) then, we obtain for n =
2 2

0,1,....,N — 1

(e, AT®), = / el AT®dxdt
S’IL

2 782¢
= T 0 _% @ / 8.1’22
/n e . <_1 2 > < , ) dxdt = "(61,62). o5 dxdt.

Therefore by parts integrating and same as (18), we have:
5P, & e
/Sn(elaiEQ — 62(1)1) dr dt = /Svﬂ(q)281}2 - 62(1)1)d33dt == (Ae, (I))n (20)
By using (18) and (19) in the following definition, we have:

N-2 2—tn 27tn+1
=Y / ¢ (2, 1,).0(z, ) dz —/ €T (2, 1) D, o1 )da | +
n=0 ln

tn+1

2—tn_1
+/ eT(x,tN_l).‘I)(:v,tN_l)d:c =

tnN—1

= ({e—, @)1 — (e4, P4 )o) + ((e—, D)2 — (€4, P4)1) + ...
+({e—, @) n—1 — (€4, Py)N—2) + ({e—, ) n — (€4, P4 )N—1)-
We rearrange the above summation by putting &_ = ®_ — &, 4+ & | then we

can write:
N—1 N—1

J= (oo, @)+ (ea, Br)o+ Y ([e] Di)n+ D fem [2])n-

n=0 n=0

According to (15), ®(.,txy = 1) = 0 and since ¢’ = [w"] = 0, we get

N-1
T =" (wal @) (21)
n=0

Therefore by replacing (18)-(21) in (17), we have:

N-1 N-1 N-1
lel? = (e, ®) + > (Ae, @) — > ([Wil, ®1)n
L @) n=0 n=0 n=0
N-1 -1
= Z w — wp)t + A(w — wy), Z wi|, P )n
n=0 n=0
N-1 N— 1
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Hence, with recalling (5) and using the Galerkin orthogonality, we obtain

N-1
2 . .
H € HL%’_I(Q)_ z_;)(f —Wht — AWh, P — (I))n—
No1 (22)
= {[wal, (@ = @) ) =T+ 11
n=0

Where ® € W), is an interpolation of ®. The idea is now to estimate d— @
in terms of ¥~ le using a strong stability estimates for solution @ of the dual
problem.

6. INTERPOLATION ESTIMATES
In the following we consider two La-projections for ® € Wy, in (9):

P, : Ly(]0,2]) — W7,
7o+ La(Sp) — Iy, = {w € La(Sy) : w(z,.) is constant on I,z € [0,2]},
such that
2 2
/ (P,®)" wdzx :/ o1 wdz, Vw € Wy,
0

0
1
W |5, = k/ w(., t)dt, Yw e Ily,.
n JI,

Then, we can define ® |5, € W} by letting
d |g, = Pomy® = 1, P, ® € W,

where ® = ® |g, and we can observe that P, and 7, are commuted. Moreover,
if we introduce P and 7 defined by

(P®) |s5,= Pu(® |s,),

and
(7®) [5,= (P |s,),
then we can put :
® = Prd = 1P® € Wy,
Now, we define the following residuals:

Ry = f —wpn — Awyp,

w? o —wh
R1 = 7h’+ h’i, on Sn,
kn
P, —DHw}
Ry = —( 2 ) b, , on Sy,

where [ is the identity operator.

In the end of this section, we shall give a lemma for some interpolation
estimates by the projection operators P, leaving the overall of I and I to next
section.
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Lemma 1. There is a constant C' such that for residual R € Lo(2),
(R®~ PB)o| < C [ 12T~ PR [yt o | e lpyoy - (29

Proof. See [41] and [40]. O

7. THE COMPLETION OF THE PROOF OF A POSTERIORI
ERROR ESTIMATES
In this section we state and prove a posteriori error estimate by estimating of
the terms I and I in the error representation formula (22). To this approach
we introduce the stability factors(see [10]) associated with discretization in time

and space, defined by
| @

- Iy , (24)
Fell -1 g,
and
o 1P iy (25)
© el

respectively. We now apply the result of the previous sections; using Cauchy-
Schwartz inequality in (22) coupled with the interpolation estimate (23) and
the strong stability factors (24) and (25), to derive the Lo(L2) a posteriori error
estimates for the scheme (14).

Proposition 5. The error e = w—wy,, where w is the solution of the continuous
problems (5) and wy, that of (14), satisfies the following stability estimate:

Fell -1 g = CY | h*(I — P)Ro Iy +CY || kn By =10y +

() (@)

FYZ BR[| g1 g +YE | RRa |
2 2

() @)

Proof. Using the notation introduce above, we may write (22) as

el —ZRO,<I> ) +§j

n=0

— D) =T +11.

Below we shall estimate the terms I and II separately. Splitting the inter-
polation error by writing d—®=b— P>+ Pd—d and b, = T PO, we
have:

N-1 N-1
I=) (Ry,®, — PO+ P2~ @), =) (Ro, &, — PO),+
n=0 n=0
N-1
+Z; Ry, P® — ®), < C | h2(I — P)Ry | o @l @ g -

It remains to estimate the term II, to this end, we consider the following
notation:

Q' (r) = ®(x,t) —(IJxT

tn
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hence, with integrating over I, we have:

kntﬁ’}r(x):/lné(:c,t)dt—/ln /tt B, (z, 7)drdt (26)

where &, = ‘g—‘f and " = ®(., ).

N-1 [W ] N—-1 [W ]
=3 k8 (@ = @) ) = 3 (ko (&, — PR+ P® — D)),
n=0 kn n=0 kn
N-1 [W ] A N-1 [ ]
=S " (k, kh (@ = PO)y + Y (k2 (PO — ®)s )y o= I1y + .
n=0 n n=0 n

To estimate I1;, we use (26) to get

N-1 N-1
I = (knRy, (Pn) — PO )y = > (Ri, kn®p — Phn® )y,
n=0 n=0

N-1 t
= (Ri,kn®p, - P<I>(.,t)dt+/ PO (., 7)drdt),
n=0 In tn

I‘IL

/ (Ry, PO, (., 7)) pdrdt
I, Jtn

by using (16), (17) and Holder inequality, we have:

S N PN [ P P N IR E X s

As for the Ils-terms we can write

N g N (Whe Wi
1l = 3 (kS8 (PO — @) ) = S0 (PR (B = D),
n=0 n n=0 n
— - PYLW;’LL,— B WZ:_
- Z< & » (P — )( t)dt — T)drdt))n
=0 n In tn

3

(Pn W;LL,

N-1 .
< Z/I <kn)’v(Pn_I)cI)('7t)>ndt

+Z / / (Po = Dwi - (P = D, (., t)drdt),

by using (16), (17) and Hoélder inequality, we have:

11 <) kB2 | et | @ sy + e et ) el

Ao LY
The a posteriori error estimate now follows immediately after collecting the
terms and using the definition of the stability factors (24) and (25). O
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8. NUMERICAL RESULTS

At present, three numerical examples for testing Sd method are given. We
carry out (7), by an AMD Opteron computer with 15 Gigabytes RAM memory
with 2.2 GHz CPU. For each slab S, let z}' be a mesh, portioned into inter-
vals J* = (2,2}, with h' = 27 — 2 ;. We define the time mesh function
k = k(t) by k(t) = ky, for t € (tn,tnt1). For h > 0let T} be a triangulation
of the slab S,, into triangle K (cf. Figure 1.), satisfying as usual the minimum
angle condition (see, e.g. [33]), and indexed by the parameter h represent-
ing the maximum diameter of the triangle K € T}'. The triangulation of S,
may be chosen independently of that of S,_1, but for the sake of simplicity it
must satisfy quasi-uniformity conditions for finite element meshes [12]. To give
numerical results obtained using the Sd method, we shall use finite element
approximation on a space time slab with the trial function which are piece-
wise polynomials in space and linear in time; that is, for (z,t) € S,, we let
wi(z,t) = (W (z,t),v7(2,t))T € W where

M
up =Y i(@)(Br(t)ul! + Os(t)up ™) and
=1

Ouj, n 1
Uh = = > Gil@)(B1(t)of + Oy(t)uit)
i=1
such that {¢;(x;) = 0i;}, i, = 0,--- , M are the spatial shape functions at
node i and {0; = t”+l;_t, 0y = t—ktn} are the time linear interpolation functions.

Moreover, we assume the nodal values of u for node ¢ ant (¢,)+ and (¢,+1)4+ are
denoted by u? (= v?) and u™ (= v, respectively. Therefore, we consider

the above algorithm for the following test problems.

TABL. 1. Error = [jw — w}}||« by Sd method at different 4.

(z,t) 0=0.15 0=0.10 0 =0.05 0 =0.01 0 = 0.005
(—=1,0.1) 0.231e-6 0.212e-9 0.431e-8 0.751e-10 0.321e-9
(0.0,0.5) 0.231e-5 0.761e-7 0.454e-7 0.983e-9 0.522e-10

(1,0.9) 0.514e-7 0.634e-10 0.713e-10 0.761e-9 0.510e-9

Test problem 1. Streamline diffusion method is computed by given §, 8 = 0,
M =20, h=0.1, k = 0.005, u(x,t) = sin{(x+1t) and v(z,t) = sin {(x +1¢) such
that we define £(z) = &(x + 2), {(z) = {(x +2) + 7 and £ = { 2/2 27:&8
Therefore, we have the exact solution of (1) and in Table 1., we verify point-
wise of the error = ||lw — w0 = max{|u(z,t) — up(x,t)|, |v(z,t) — vp(x, )|}
In this example we test how well the stability theory developed in Proposition
5 matches with computation by the stability factors that is (24) and (25).
Therefore, this proposition guarantees computational stability for small time
step.
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Test problem 2. Streamline diffusion method is shown by given § = 0 and
F(x,t,u) = (u—1)? in Figure 2 (in the first row). The results are given after
10 time step that is n = 1,2,...,10 and k, = 0.1. In this example, we haven’t
the exact solution but Proposition 5 guarantees computational stability.

Test problem 3. Streamline diffusion method is shown by given a« = 0 and
F(x,t,u) = (u—1)? in Figure 2 (in the second row). The results are given after
10 time step that is n = 1,2,...,10 and k, = 0.1. In this example, we haven’t
the exact solution but Proposition 5 guarantees computational stability.

Time=A0 Cobor:u

Ting=10 Calor-u

FiG. 2. The approximation solution of u for example 2 (in the first
row) and example 3 (in the second row) when 6 = 0.1 and the stability
factors Y, Y <1073

9. CONCLUSION

To this end, a special nonlinear second order hyperbolic initial-boundary
value problem is investigated. We use streamline diffusion method for this case
of this wave equation and obtain a priori and a posteriori error estimates. A
posteriori error estimate is a very powerful mathematical tool in this problem
by Sd method. We try to obtain optimal bounds and the eigenvalues and
eigenfunctions remains a challenge that deserves special attention and will be
consideration elsewhere.
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TWO-STEP METHOD FOR SOLVING
NONLINEAR EQUATIONS WITH
NONDIFFERENTIABLE OPERATOR

STEPAN SHAKHNO, HALINA YARMOLA

PE3IOME. 3anponoHoBaHO JBOKPOKOBUIA METOJ, /ijisi PO3B’A3yBaHHs HEJiHi-
HUX DiBHSIHB 3 HeandepeHIHioBHNM oTlepaTopoM, TobymoBanmii Ha 6a3i IBOX
METOZIIB 3 MOPIEIKOM 30ikHOCTI 14 1/2. BEBUEHO JTOKATIBHY Ta HAIBIOKAIBHY
3012KHICTh 3AIIPOIIOHOBAHOTO METOAY Ta BCTAHOBJIEHO MOPAIOK 301:KHOCTI.
TIpoBenero 4wc/IOBe HOCTIIKEHHST Ha TECTOBUX 33/1a9aX Ta 3pO0JIEHO TOPiB-
HAHHE OTPUMAHHAX Pe3yJIbTaTiB.

ABSTRACT. In this paper we propose a two-step method for solving nonlin-
ear equations with a nondifferentiable operator. Its method is based on two
methods of order of convergence 1 + /2. We study a local and a semilocal
convergence of the proposed method and set an order of convergence. We ap-
ply our results to the numerical solution of a nonlinear equation and systems
of nonlinear equations.

1. INTRODUCTION
We consider the equation

H(z) = F(x) + G(z) =0, (1)

where F' and G are nonlinear operators, defined on a convex subset D of a
Banach space X with values in a Banach space Y. F'is a Fréchet-differentiable
operator, G is a continuous operator.

There are kinds of methods to find a solution of (1). In [1] Argyros studied
the two-point iterative process

Tpi1 = 2n — AN (F(xy) + G(zn)), n=0,1,..., (2)

where A,, = A(xp_1,2,) is a bounded linear operator. There was provided a
local and a semilocal convergence analysis for the method (2) and some cases
where A, = F'(zy,), Ap = F'(xy,) + G(2p—1; 25,) were considered. Here G(z;y)
is a first order divided difference of the operator G at the points = and y. The
convergence analysis for the case where A,, = F’(x,) was given by Zabrejko and
Nguen [11]. In the paper [3] the convergence analysis results for modification
of the method (2) for some cases of A, were presented. There are studies
in which there are considered difference methods, i.e., the secant method, the
parametric secant method |5, 6] and the method based on the method of linear
interpolation and the secant method |7]. In [4] Chen studied a Broyden-like
method for solving (1). In |9] we researched a semilocal convergence of the

tKey words. Nondifferentiable operator, convergence order, local and semilocal
convergence.
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method (2) for A, = F'(x,) + G(2xy, — p—1;2n—1). The Newton’s method
cannot be applied, as differentiability of operator H is required.

In this work we propose a two-step method which is based on the methods
with the order of convergence 1+ /2 [8, 10],

ts = 0 =[PP+ Glonin)] (F(aa) + Glaw)),

Tn + Yn -1 3)
2

Ynt+l = Tpyl — [F/< ) + G(xm?/n)} (F(2n+1) + G(Tnt1)), (

n=20,1,....
Although the numbers of evaluations of the function values increases by one at

each step for the proposed method (3), the convergence order is higher than for
the one-step methods.

2. CONVERGENCE ANALYSIS

Definition 1. Let F' be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y and let x, y be two points of D. A
linear operator from X into Y, denoted as G(z;y), which satisfies the condition

G(zy)(z —y) = G(z) — G(y).
is called a divided difference of G at the points x and y.

Theorem 1. Let F' and G be nonlinear operators, defined on an open convez
subset D of a Banach space X with values in a Banach space Y. F is a twice
Fréchet-differentiable operator, G is a continuous operator. Let us suppose that
equation (1) has a solution ©* € D, G has a first order divided difference in

D and there exist [A(z,y)]™! = {F'(%) + G(x;y)}_l for all x # y and
I[A(x,3)] Y| < B. Let in D the following conditions fulfill

1F' () = F'(y)]| < 2p1llz =y, (4)

1F"(z) — F" ()|l < pallz —y]|* « € (0,1], (5)

1G(2;y) — G(w; )| < qulllx = ull + [y = vl]). (6)

Suppose that U = {x : ||z —2*|| < r.} C D, where ry is the smallest positive
zero of equations

(7)
3B(p1 + q)rq(r) =1,
_ b2 1+a
Q(T)—B|:(p1+Q1)T+4(a+1)(a+2)r :
Then the sequences {xyn}n>0, {yn}tn>0 generated by the iterative process (3)
are well defined for all xg, yo € U, remain in U and converge to the solution
x*. Moreover, the following inequalities hold for all n > 0

i1 = Il <B|(p1 + an)llyn — 2*l1+

8)
P2 _ x| 1ta o (
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lynss =" <B(p1 +a) Iy — 2|+
+ e =2l + 2ns1 = 2| lznss =27l

Proof. Since the following equality holds for all z, h € D [10]
1
F(zx+h)=F(z)+ F'(z)h + /(1 — t)F"(z + th)hhdt,
0

then

Flea) — F(a*) - F'(* ; il )(@n ) =

Ty + x* Ty + 2\ T — 2
_p _F( n )_F,< n ) n—t
(zn) 2 2 2

e -r(mE) P ()=

fl F,,(l‘n-l-l‘* wn—x*):nn—a?*a:n—a:*
0

t dt—
+ 2 2

2 2

_f F,,(xn—;—x*+ta:*;xn)xn;x*a:n;xdt.

Using the condltlon (5) and the equality (10), we obtain

HF(acn) — F(x*) — F’(%)(mn — ")
pol|z, — ¥ |2+ pol|zy, — a*|2te (11)

= 4 0/(1 — Dttt = Ao+ )(a+2)

<

Let us choose g € U and show that the sequences given in (3) are well
defined. We denote A,, = F’(W) + G(xn;Yn). U 2y, yn € U, then from
the definition of the first order divided difference and (4), (6), (11), we obtain

21 = 2*|| = [lan — 2% — AN (F(2n) + G(zn) — F(2*) = G(2"))|| <

Ty + 2

<45 Fa) = P =/ (F5) - 2)

Ty + ¥ Tn +
Azt F () = P () [l — w1+

+[lA, 1||||G(:13m ") = G(an; yn)llzn — 27| <

_l’_

P2 * 1+a:| *
< B[ + — || + Ty — X —
> (p1 Q1)Hyn T H A( 1)( 2)” n H Hxn x|

and
HynJrl - x*H = ”-Tn+1 -z - Agl(F(anrl) + G(fnJrl) - F(l‘*) - G(x*))H <

I bt 0”1+

< 1A {4t = o)~
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HIAT NG (@413 2%) = Glans yn)l[Jens — ¥ <

< B(pr + q)lllyn — ™[l + o — 2| + 201 — 2" [} 2nga — 27

We prove that inequalities (8) and (9) are fulfilled. Taking n = 0 above, we
obtain

* P2 1+a * *
T — <B[ +q1)ry + Ty }x—x <|lxg — 27| < r«
and
* P2 1+« *
— 2*|| <3B? + [ +q1)re + Ty }r* o — x| <
Jon = a1l <8B% 0+ ) [(01 + a0+ gy el — a7l <

<zg — || < 7.

Therefore, z1, y1 € U. If ||z, — 2*|| < r« and ||yn, — 2*|| < 7« then from (7) —
(9), it follows

* P2 l+a] *
— <B[ X " — <
s = a1 <B [ an)re + gyt e a7l <

n — 2| < ... <71y,

lynmss = @ <3B2(p1 +a1) (b1 + )7t

P2 1+a:| —_ | <
T lar @iy el —als

wn — || < ... <1y
So, iterative process (3) is well defined, the sequences {xp }n>0, {yn }n>0 belong

to U. From the last inequalities and estimates (8) and (9) we can see that
{zn}n>0 and {yn}n>0 converge to x*. O

Corollary 2. Let us suppose that the hypotheses of Theorem 1 hold. Then the
iterative process (3) converges to a solution x* of the equation (1) with the order
of convergence 1+ 1+ a.
Proof. We denote

Bpy
da+1)(a+2)

an = [lzn — 2|, bn = [lyn — 27|, C1 = B(pr + @), C2 =

By (8) and (9), we get
An+41 < Clanbn + CQCL%—H;Y)
bn+1 S Cl (an+1 + (79) + bn)an—‘,—l S Cl (2an + bn)an—i-l S
< C1(2an + C1(2a9 + bo)an)ant+1 = C1(2 4 C1(2ap + bo) )anan+1,
Then for large n and a,—1 < 1, from previous inequalities, we obtain

ani1 < Crapb, + Caa2a®_; <

n—1 —=

< C3(2 + C1(2a0 + bo))a2an_1 + CaaZa® | < (12)

n—1 —=

< [012(2 + C1(2a9 4+ bo)) + C'Q]a%agfl.
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From (12) we can write down an equation of the convergence order of the
iterative process (3): t2 — 2t — a = 0. The order of convergence is the unique
positive solution t* = 14+ +v/1+4+ . If @ = 1, we get that the iterative process
(3) converges to the solution of the equation (1) with the order 1 + /2. O

Theorem 2. Let F' and G be nonlinear operators, defined on an open convex
subset D of a Banach space X with values in a Banach spaceY . F is a Fréchet-

differentiable operator, G is a continuous operator. We assume that Uy = {z :
Zo + yo) "

G(z0;y0), where x9, yo € D, is invertible and the Lipschitz conditions are
fulfilled

llx — xo|| < ro} is contained in D, the linear operator Ay = F’(

145 (F' () = F' ()l < 2pollz — yll, (13)
1451 (G(a5y) = G(u; )| < qoll|2 = ul| + [ly = vl))- (14)

Let’s a, ¢ (¢ > a), ro be non-negative numbers such that
lzo —21ll < a, |45 (F(z0) + G(z0))| < ¢, (15)

ro > c/(L=7), (po+qo)(2ro—a) <1,
(po + qo) (10 — a) + 0.5poro
_ , 0<~y<L.
! 1 — (po + qo)(2r0 — a) !
Then the following inequalities hold for all n > 0

Hxn - xn—&—l” S tn - tn+17 ||yn - fEn—&—lH S Sn — ZL/n-‘,-la (16>
[2n — 2| <tn =t lyn — 27| < 55 — 17, (17)
where
to=719, So=710—a, t1=r9—¢,
Po+ qo)s —tpal +0.5p0t —tnal
bt — tapa = PO 90 = bnit) £ O5p0ltn b))

L — (po + qo0)[(to — tnt1) + (S0 — Snt1)]
(pO + QO)(Sn - thrl) + O'5p0(tn - thrl)

e (TSR Crirs) Bt
{tn}n>0, {Sn}tn>0 are non-negative, decreasing sequences that converge to cer-
tain t* such that ro—c/(1—~) < t* < to; sequences {Tn}n>0, {yn}n>0 generated
by the iterative process (3) are well defined, remain in Uy that converge to a
solution x* of equation (1).

Proof. Firstly, we prove, by mathematical induction, that the following inequal-
ities hold for all £ > 0

¢
tht1 > Sky1 = tpyo > 10 — T~ >0, (20)

thet — thp2 < V(e — thg1)s thgr — Ske1 < V(e — thg)- (21)

From (18), (19) for k£ = 0 we obtain
(po + qo)(so — t1) + 0.5pg(to — 1)
hh—t2= to —t1) < y(to — t1),
L 1*(100+QO)[(750*751)+(50751)]( 0—t) <9(to—t)

t1 —s1 = [(po + q0)(s0 — t1) + 0.5po(to — t1)](to — t1) < v(to —t1),
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(po + q0)s0 + 0.5poto

to >rg —c — c=
1 — (po + qo)[to + so]
(1-9%)c c
=rg — (1 —rg— -~ s = >
ro—(L+7)e=ro 1=, =7, =0

c
t1 > tg, 81 = o, t12512t227“0—1720-

Let us suppose that inequalities (20) and (21) hold for k£ =0,1,...,n — 1.
Then for k = n we obtain
(pO + QO)(Sn - tn—i—l) + O-5p0(tn - tn—i—l)
1 — (po + qo)[(to — tnt1) + (S0 — sn41)]

(o + qo)sn + 0.5potn
< t —tna1) < Aty — turt),
B 1—(po+QO)[to+80](n S

tn+1 - tn+2 = (tn - thrl) <

(pO + qO)(Sn - tn+1) + 0'5p0(tn - 75n+1)
1= (po + qo)[(to — tn) + (s0 = sn)]

(pO + QO)Sn + 0.5poty
< tn —tnt1) < Y(tn — tnta
1_(p0+q0)[t0+50](7’b n+ ) f)/(’fl n+ )

(tn - tn+1) S

tnt1 — Sp41 =

and
tn+1 > Sn+1 > tn42 > tn+1 — V(tn - tn+1) >
1— n+2
> 1o — g

c
czro—lizo.

So, we prove, that sequences {t, }n>0 and {s, }»>0 are non-negative, decreas-
ing sequences and converge to t* such that t* > 0.

Let us prove, by mathematical induction, that the iterative process (3) is
well defined and inequalities (16) hold for all n > 0.

Using (15) and t9 — t; = ¢, we prove that (16) hold for n = 0.

Let denote A, = F’(xn ;— yn) + G(zpn; yn). Using Lipschitz conditions (13)

and (14), we have
11 = A5 Anall = 145 [Ao — Ania]|| <

< agt [mr () - () |+

+1 45 G (203 y0) — G(@nt1; Yynr1)]]| <

< 2]90(”960 — ZTp1]| + lvo — Ynt1||

; 2 E8) 4 ao(lleo = o | + 190 — vt ) <

< (po + 90)(lzo — T+l + [lvo — Yn+1ll) <
< (po + qo)(to — tn+1 + S0 — Sn+1) <
< (po + qo)(to + s0) = (po + qo)(2ro — a) < 1.

By Banach lema on invertible operator, it follows that A,+; is invertible and
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-1
14741 4ol < [1 — (o + @0)([[x0 = Zntall + lvo = ynralD| -

Let us prove that iterative process (3) is well defined for £ = n + 1. From
the definition of the first order divided difference and (13), (14), we obtain

1AG (F (@ns1) + G(zn41))l =

= ||A(;1 [F(zn41) + G(Tns1) — F(2n) — G(20) — An(Tng1 — z0)] || <

< A [ (P st ) (20 ] e s
+ HA51 (G (2n;yn) — G($n§$n+1)”| |xn — zpi1]] <

Hyn — xn—&-lH
2

+ollyn — otz = znnall =

1 1
< 2o llen =zl [ ¢ = 5 at + Jlen = znsall+
0

= (Po + q0)llyn — Tnalllzn — o[l +0.5pof|n — i[>

Hence, using (16), we have
|01 = Tnsall = 1473 (F(@nr1) + G(@ns)]| <

< A1 Aol A (F(2n41) + G(@ns))l|zn — 2]l <

(pO + QO)Hyn - xn—i—l” + 05p0HfL‘n - xn-{—l”

~ 1= (o +q0)([[zo — zns1ll + lyo — ynt1l)
(pO + QO)(Sn - tn+1) + 0.5p0(tn - tn+1)
1 — (po + qo)[(to — tnt1) + (S0 — Sn+1)]

[Znt2 — Yntoll = | Apty (F(2nt2) + Gni2))|| <

< 1A 1 Aol A (F(zn42) + G(@ns2))l|zn — 2nsa]l <

Zn — Znsa |l <

S (tn - tn+1) - tn—i—l - tn+2;

< o+ @0)[[yn+1 = Tnsal + 0.-5pol|Tn+1 — Tnyiall
1= (po + qo)(lzo — zniall + llvo — ynsall)
(Po + qo)(Snt1 — tnt2) + 0.5po(tng1 — tny2)
1= (po + qo)[(to — tny1) + (s0 = snt1)]
So, iterative process (3) is well defined and (15) holds for all n > 0. From this
it follows

|Znt1 — Tnial| <

(tn—i-l - tn+2) = Sp+2 — tnto.

lzn =2kl < tn—tr, |Yn—2kll < sn—tis [y —ykll < sSn—5k, 0<n <k, (22)

e, {xn}tn>0 and {yn}n>0 are fundamental sequences in a Banach space X.
From (22) for k — oo it follows inequalities (17). Let’s show that * is solution
of equation (1). Indeed,

1A (F(@n+1) + G(zns1) Il <

< (po + q0)lyn — Tns1ll|Tn — Tngall + 0.5p0)|lzn — Tnsa]* = 0, 1 — oc.
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So, H(z*) = 0. O

Remark 5. If we choose F(x) =0, p1 =0, po = 0 then the estimates (8) and
(9) reduce to similar ones in (8] for the case o = 1.

Remark 6. If the divided difference of the operator G satisfies the condi-
tion (6), i.e. the operator G(x;y) is Lipschitz continuous, then G is Fréchet-
differentiable.

3. NUMERICAL EXPERIMENTS
For the numerical investigation we choose the equation and the systems of
equations considered in [1, 4, 5, 6, 7.

Example 1.
e?=05 — 1.05 + 0.2z|z — 1| = 0,
z* =0.5.
Example 2.
322y —y? — 1+ |z —1| =0,
ot 4oy — 14|yl =0,
(z*;y*) ~ (0.894655; 0.327827).
Example 3.
$2—y+1+é|x—1]:0,
Vb= T4 gyl =0,
(z*;y*) ~ (1.15936; 2.36182).
Example 4.

2(1—y) —ay+|y—2* =0,

2@ —z) -y + |3y -2+ 1| =0,
6y + 222 —wy’z + |z + 2 —y| =0,
(259" 2") = (=1;2;3).

Let X =Y =1R™, m =1,2,3. In this case the first order divided difference
G(z;y) is a matrix of dimension m x m. Its elements are calculated as [8]

Gi(zt, ..., it y™) = Gt Ty ™)
o — g

Y

G(z3y)iy =
ij=Tm.

In calculations we use the norm ||z|lec = max |z'|. In the following Tables
=m

there are results obtained by methods (3) and (2) in particular, for such cases

Tyl = Ty — [F'(20)] N (F(2,) + G(x,)), n=0,1,..., (23)
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Tyl = T — [F'(20) + G(zn_1;2)] H(F(2n) + G(zn)), n=0,1,..., (24)
Tpy1 = Tn — [H(xp_1; xn)]_l(F(xn) + G(zp)), n=0,1,.... (25)
TABL. 1. Numbers of iterations for solving equations with ini-

tial points xg = 1-d, z—1 = yo = 2 -d — for Example 1,
xo = (1,0)d, z—1 = yo = (5,5)d — for Example 2

Example 1 Example 2

(23) [ (24) [ (25) [ (3) | (23) [ (24) | (25) | 3)
1[10°] 5 [ 5|6 [5[11][4]5 5
100" 6 [ 7 | 8 [6 3696
10 [10° [ 14 [ 15 [ 20 [13] 19 [ 13 | 18 |12
100715 [ 17 | 22 [14] 41 [ 15 | 21 |13
100 [ 107° [104 [ 105 | — [88] 27 [ 21 | 30 |19
10-[105 [ 107 | — [89] 49 [ 23 | 32 |20

d €

The calculations were conducted in MATLAB 7.1. Iterations were stopped
after conditions ||Zp4+1 — Znlleo < € and [|H (2n41)]|co < € were satisfied. Sign
""" means, that in this case the solution was not possible to be found. We
examined the convergence of the considered method for such variants of choice
of the additional initial approximation yg: for Example 1 —x_1 = yg = 2 - d,
for Examples 2, 3 yo was chosen as z_1 in the works [1, 5, 6, 7] and 2% | = y, =
zb +1071 i =1,2,3 — for Example 4.

The obtained results show that the methods (24) and (3) differ a little for
the initial points that are close to the solution. But the method (3) converge
faster than (2) for the initial points with d = 100. In this case ||zg — || takes
the largest value. The method (23) has the lowest speed of convergence.

TABL. 2. Numbers of iterations for solving equations with ini-
tial points zo = (1,1)d, z—1 = yo = (0.9,1.1)d — for Example 3,
zo = (=2,3,5)d, 2° | =y} = z} + 10~* — for Example 4

d - Example 3 Example 4
(23) [ (24) [ (25) [ (3) | (23) | (24) | (25) | (3)
1110° | 6 5 6 | 5] 8 | 7 10 |7
1077131 7 9 | 6 266 10 | 12 | 8
10 10°] 8 7 9 6 | 102 10 | 25 | 14
1000715 [ 9 11 | 7 [ 2841 20 | 27 [ 16
10010 [ 11 | 11 [ 14 | 9 [ 110 ] 28 | 39 | 23
100718 [ 12 [ 16 [ 10292 ] 30 | 41 | 24

In Table 3 the numerical results are presented for the example 1 with € =
10719 where n is the iteration number, z, is the approximate value for z*,
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TABL. 3. Numerical results for the Example 1: g =1, yg = 2

Tn

‘xn - xn—l‘

|H ()]

1

0.5987212707001

0.8079964212227

0.1920035787772

0.3417237602029

0.5200746907444

0.28792173047835

0.02019694382837

0.5000182789519

0.02005641179247

1.827905217970 - 10~°

0.5000000000006

1.827895124595 - 10~°

6.967343368913 - 10~ 13

(SIS RICIE I el ]

0.5

6.967759702547 - 1013

4.163336342344 - 10~ 17

|xy, — xp—1| is the norm of correction and |H (x,)| is the norm of deviation on
every step of the iterative process (3).

Now we verify whether the hypothesis of Theorem 2 are satisfied. The re-
search are carried out for the example 1. Since m =1 than || - ||oc = | - |- In [9]
we showed that the following estimates hold for all z, y € [0;1]

60'5
A (F' () = F'(y))| <A |(F'(2) = F'(y))] < o]

|45 (G(z,y) = G(u,))] <|AT(G(2,y) = G(u,v))| <

|x—y|,

<

1
r—ul+ |y —v|).
sy 7 =l + by =)

60'5

1
———and g = ———
2| Ao

Hence pg = 5T Ag]’

Let us choose zg = 0.43, yg = 0.47. Then
we get

1
m = 1.049985813745361, po = 0.8655669725276801,
0

qo = 0.2099971627490723, ¢ = 0.07201451611773883, a = 0.04.

Let us choose 79 = 0.1. Then, according to formulas (18) and (19), we get
to = 0.1000000000000000, so = 0.06000000000000000,
t1 = 0.0798548388226117, s; = 0.02326130579394141,
ta = 0.0226355142098747, s9 = 0.02261740817032270,
t3 = 0.02261727501017343, ..., t* =~ 0.02261727484294557,
0.01720355125317807 < t* < 0.1, ~ = 0.1302221628134378 < 1.

The solution z* is obtained in 3 iterations with ¢ = 1075.

TABL. 4. Numerical results for the Example 1

Sp—1 —tpn
3.2014516 - 102
6.2579158 - 10~ %
1.3316015 - 10~ 7

|yn—1 - xn‘
3.0617898 - 1072
1.8418431-107°
6.1617378 - 10~ 13

tn—l - tn
7.2014516 - 102
5.3499697 - 103
1.8239200 - 10—°

‘xn—l - xn’
7.0617898 - 102
6.1790108 - 10~ 7
3.4257955 - 1077

w3

Thus for the given values hypothesis of the Theorem 2 are satisfied (See
Tabl.4). According to this theorem, the iterative process (2) is well-defined,
remains in Uy and converges to the solution z* € Uy.
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ON THE RECOVERY OF CONTINUOUS FUNCTIONS
OF TWO VARIABLES FROM NOISY FOURIER
COEFFICIENTS

KOSNAZAR SHARIPOV

PE3IOME. Po3risayTo HEKOpPEKTHY 3a7a4y BIIHOBJIEHHS IVIAAKAX (DyHKIIIH
BOX 3MIHHUX 110 Hab/mxKeHO 3amanuM kKoedimientam Pypoe. Is 3amaga
PO3TJIAHYTA IS ABOX MOJIEIbHUX KJIaciB (YHKINH CKIHYEHHOI TJIaKOCTi:
dyuKIiil CO00IEBCHKOTO TUILY IVIAIKOCTI Ta (PYHKIIH 3 JOMIHYIOYO0I0 3MIITaHOIO
YACTUHHOIO ITOXITHOIO.

ABsTRACT. We consider the ill-posed problem of the recovery of smooth
functions of two variables from noisy Fourier coefficients.This problem is con-
sidered for two model classes of function of finite smoothness: functions of
Sobolev type of smoothness and functions with dominating mixed partial de-
rivative.

1. INTRODUCTION

Let Lo = La(Qy) be the space of square integrable real-valued functions of n
variables on a cube @, = [0, 1]™. Denote by C' = C(Q,,) the space of continuous
functions on Q.

This paper is dedicated to the problem of summation of Fourier series of
continuous functions with inaccurately given coefficients. Note that almost all
previously known results on this problem were obtained mainly for classes of
functions of one variable (n = 1).

Let us briefly consider the history of the problem under investigation. As-
sume that the system of functions {¢y(t)}72, is orthonormal in Lo(Q1) with
respect to the standard scalar product (-,-), and > 27, yx - ¢x(t) is a Fourier
series of the function y(t) € C. Suppose that instead of Fourier coefficients
their approximate values ys ) are given : the condition

[e.e]
(e — yox)* < 07
k=1
is fulfilled.

It is well known (see, for example [6],[7]) that the problem of summation of
Fourier series of a continuous function y(t) with approximately given coefficients
{ys k13, on some orthonormal system {pg(t)}22, isill-posed, since deviation
of a function y(t) € C of the amount of its series > oo Ysk - px(t) in the
metric of the space C can be arbitrary large.

Papers of the many authors, see, example |1]-[8] are dedicated to the solution
of this problem.

tKey words. Orthonormal system, stable summation, Fourier series, regularization method.
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For the first time to solve this problem A.N. Tikhonov proposed regulariza-
tion method [7], having the form

(0.9]
Yo,k
T° t) = —_— 13 1
where « is a regularization parameter, and s characterizes the smoothness of the
function to be recovered. Convergence and stability of the method (1) to small
perturbations of Fourier coefficients on any orthonormal system {y(t)}7, on

the class of continuous functions, satisfying the condition

oo

S pedl? i < oo

k=1
were proved in [8]. In the condition {1 }72 is a sequence of positive numbers,
the order of which is not less than k%1%, ¢ > 0.

Later V.A. II’in and E.G. Poznjak [3] in the case of the trigonometric system

and B.Aliev [1] in the case of any orthonormal uniform boundary systems for
the special classes of functions have obtained the estimate

o) - T ) Oc < € (va+2). &)

We note that one of the major topics within the theory of ill-posed problems is
the optimal choice of the regularization parameter «, or the discretization level
n, depending on the level of error §. From (2) one can see that the optimal
choice for « is oy = 62/3 for which

1
ly(®) = T**(ws) (D)o < € - 65
Later,in [4] P.Mathe and S.V.Pereverzev have considered a general method
of summation which is defined as follows

T2 (W) (1) = > Mk~ Yok - or(t) (3)
k=1

where for a triangular array A = {\ = A}, k= 1,2,.n, n € N} itis
assumed that there exists a constant C' and some number € > 0, such that the

condition
k 6
11— <C- <>
n

is satisfied. In this case we say that the method of summation (3) is of degree
0.
Error estimates of the method (3) in [4] were obtained for the class

W= {yema@) Il = K )P < oo

k=1
in the cases of arbitrary orthonormal systems that satisfy various conditions.
In particular, in the case of systems of functions {y(t) } 32, satisfying condition

lerlle < &7, B >0 (4)
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the estimate was obtained
1

n—pB—

2

ly =T (ys)le < C -6 ()

In [5] the last result was generalized to the case of a class of continuous

functions Wgw related to a given orthonormal system {yy(t)}72,, satisfying the
condition (4) as follows

ng) = {y € La(Q1) : Hy”fb — ZwZ(k) . ‘<y’(pk>‘2 < OO}
k=1

where (k) is some monotone increasing function. At the same,for the method
of summation (3) from [4] on a class of functions Wgw the estimate

/1)1
lv-m2wle<c s [ (5]
was obtained.

The aim in this paper is to obtain results on this problem for some classes
of continuous functions of two variables (n = 2). Bellow we will consider two
model classes of functions of finite smoothness: functions of Sobolev type class
and a class of functions with dominating mixed partial derivative.

2. GENERALIZED CLASS OF FUNCTIONS WITH DOMINATING
MIXED PARTIAL DERIVATIVE
Let {ox(t)}32, be an orthonormal system of functions in Lp(Q1) for which
the condition (4) is fulfilled, and

oo oo
SO wig i) - 0i(1), vy =y is),
i=1 j=1
is Fourier series of a function y(t,7) € C(Q2).
Suppose that instead of Fourier coeflicients {yij};?j-:l their inaccurate values
are given, i.e. a sequence of numbers ys := {ys j};5_; is given, such that
y5,i,j :yl,]+552,]7 7/7.] = 1727"' (6)
where £ = {&; j}75_1 is a noise. It is assumed that ¢ € (0,1) and

€l = (ZZ |&,j12)2

i=1 j=1

Consider the two-dimensional analogue of the summation method (3) from
[4] and [5], which has the form

T3 (ys)(t,7) ZZM Yo pi(t)ei(T) . (7)

=1 j=1

The quality of the method T7\(ys) depends on truncation level n and on the

properties of the set A = {\;; = Ayt Lj=12,.. né€ N}. We will
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assume that there exists a constant C' and some 6 > 0, such that

ij
1-aslzc () ®)

In this section we study regularization properties of the summation methods
(7) on the class

2o =2 (i) [y, i) * < oo} .

i=1 j=1

1 = {y(z:r) € Lo(Q2): |yl

It is easy to see that the functions from L% are generalization of a class of
functions with dominating mixed partial derivative of degree 2pu.

Lemma 1. At p > 8+ % we have the following estimates

[ee] n
_ 1

S i) ei(n)| < ConTt Ry,

i=n+1j=1 c

n o0 L

SN vt o) < ConTHEE Ly, 9)
i=1 j=n+1 c

o0 o0 1

SN vt e <ConTE Ly, (10)
i=n-+1j=n-+1 c

Proof. An application of the Cauchy-Schwarz inequality provides

Sy pilt) - o4 (7)
Z Zyz’,j'%(t)'%‘(ﬂ Z Z i g “Yig - ﬁ <
i=n+1 j=1 i=n+1 j=1 J c
2,u 2 |902 ‘2
S >0 > oy sl & Qu <
i=n+1 j=1 i=n+1 j=1 ‘] c
=n+1j 1 C

& }
sc-(ZZm 26) ( . w) Iv
i=n-+1 j=1

= &

2 <C -y

2
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The relations (9) and (10) can be proved in the same way. Respectively we
have

n o0
SN wigwilt) ()| <
i=1 j=n+1 c
n 1 % IS 1 %
—u+ 1
= (Zﬂu—%) ( > W> [Yllp2 < C-n 2 ly|
i=1 j=n+1
and

o0 [ee]
SN wigeit) @) <
i=n+1j=n+1 c

n

1 0 1
1 2 1 2
<C- (Z Z‘2u—26> : < Z j2u—2ﬁ> ly]

i=1 Jj=n+1

2 <

< C-n 2yl .

The main result of this section is given in the foll?wving theorem. .

Theorem 1. Let for an orthonormal system {p(t)} k=1 the condition (5) is
fulfilled. Assume that we have a sequence of noisy values (6) and a priori it
is known that y € L5(Q2) at p > B+ 1/2 . Then for the summation method

2
TMys) of degree O > i at n < § 2¥28%1 we have the following estimate

ufﬁf%

o L

sup  sup ||y(t,7) — T (ys)(t, 7)

Iyl 2<1 €], <1

c

Proof. Taking into consideration (6) for T (ys) we have

C

'y(tv T) - Tri\(yé)(m T)

n n

DD v i) @) = DY N vsag - wilt) - 9i(7)

i=1 j=1 i=1 j=1

<
c

n o0

< Z Zyi,j'SOi(t)"Pj(T) + Z Z Yij - ei(t) - ei(T)|| +

i=n+1 j=1 c i=1 j=n+1

XX wiw o) +

i=n+1j=n+1 c

DD = ig) i eilt) - 9(7)

i=1 j=1

DD NG wilt) - o(7) ;

i=1 j=1

+ +

C

+5 -
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First we estimate the fourth summand of the relation (11)

ZZ g - pilt) - (7)

=1 j=1

<|{zx w} {;;m )] <
H{izﬁﬂ“"yivj'”“-w'wﬁm}% Eyer) -

=1 j=1 i=1 j=1

<
c

.\ 20 1
1 3
< 2# L L 12
- H{;; Zj |Z/z,]| 1<zy<n [<n2> (U)Q#}} C’>< ( )
() (57
i=1 j=1
< Con7H e lyllpe -0 = O Ty
For the last summand of the relation (11) we have
ZZ)‘W “Gijpi(t) ()| <
i=1 j=1 c
n n % n n %
53 DINCHENG WD 9) BIFURFTOI N HERE)
i=1j=1 i=1 j=1 c
<C.3 ’ {ZZ!&JIQ} H <O 5P

=1 j=1
Summarizing the estimates (12), (13) and the results of the Lemma 1 for
lylln2 < 1 we have
ly(t,7) = TAws) (£, 7)o < C - 2P (0% 4 ).

If we choose n such that 7= 6~ 7T, it follows
n=p=3
Hy(t’T) - Tri\<y5)(t, T)HC <C.§PtE

The theorem is proved. g

3. CLASS OF FUNCTIONS OF SOBOLEV TYPE OF SMOOTHNESS
In this section we study the approximating properties of the summation
method (7) on the class of functions of Sobolev type, which has the following
form

Wi (Q2) = {y € La(Q2) : HyH?/V; = ZZ (i2“ —|—j2“) . ’yi’j’2 < 00 }

i=1 j=1
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To prove the main result of this section we need the following lemma.
Lemma 2. For ye€ W) at p>28+1 we have the following estimates

Z Zyi,j “@i(t) - pi(T)|| <C- n=EH0s Hwa;v

i=n+1 j=1

e}

S wigeeil) ()| SConTEIE Lyl (14)

i=1 j=n+1

S Y el e sCon Ryl ()

i=n+1j=n+1 c

Proof. Applying Cauchy-Schwarz inequality for y € W' (Q2) at pu>23+1
we have the following

DD vyt 94(7) .

i=nt+1j=1
o0 n
i2“—|—j2“ %y pi(t) - ¢ (7_) <
z;r”;( ) (120 +32ﬂ)% c
— 2 2 2 : lpi | :
rﬂZZWHWwHZZQ#%}S
i=nt1j=1 i=n+1j=1 7 c
n_ ;2828
]
i=n+1 j=1
LY (= 1) —4ypyl
< g |( £ ) -(zjﬂm) < OBy
i=n+1 j=1 C

Similarly, for proofs of (14) and (15) respectively we have

n o0
SN wigwilt) ()| <
i=1 j=n+1 C
<C'HyHW£"H<ZM> '(Z: ],—23> —
=1 j=n-+1

R
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and
o oo
S wigeit) @) <
i=n+1j=n+1 c
1 0o 1
1 2 1 2
<o (2 79) (2 75) .=
H ku A= i 273 j;—l ]H 23 o
<Con By
The lemma is proved. O

Now we state the main result of the section.

Theorem 2. Let for an orthonormal system {gpk(t)}kzloo the condition (5)
is fulfilled. Assume that we have a sequence of noisy values (6) and a priori it
is known that y € W' (Q2) for u> QB + 1. Then for the summation method

T ys) of degree 0 >4 at n<§ AT e have the estimate

p—28—1
< O - fnt2st,
C

y(t, T) - Tvi\(yé)(t’ T)

sup sup
lyllp2<1 fI€lly <1

Proof. To prove the theorem we need to estimate the summands of the relations
(11) for y € WA (Q2), u > 2B8+1. Using the fact that for T (ys) the condition
(8) is fulfilled and 6 > 1/2 we estimate the fourth summand of the relation (11)

ZZ “Yij - pi(t) - i(T)

=1 j=1

§H{gg(1 i) Iywlg} {ZZI% }5

=1 j=1

<

c

IN

C

c
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Taking into consideration that from (8) it follows that |); ;| < oo, then for the
last summand of the relation (11) we have

SN N vig - @ilt) - pi(r)

i=1 j=1

< C--on?PHL (17)

c

Summarizing the estimates (16), (17) and the estimates from the Lemma 3.1
for y € W4 (Q2) we obtain
1

|y(t,7) — — TMys)(t, T Hc <C. n26+1( el ).
When choosing n = ch it follows that

Hy(t77 T)‘(y(; t, T HC <C- 6u+2ﬁ+1
Thus, the theorem is proved. .
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ON ACCURACY OF SOLVING SEMIDISCRETE ILL-POSED
PROBLEMS IN SOBOLEV SPACES WITH »-METHODS

SERGEI SOLODKY, KEVGENY VOLYNETS

PE3IOME. st po3B’si3yBaHHs HEKOPEKTHOI 33/a4i y COOOIIBCHKUX IIKAIAX,
OTPUMAHOI B Pe3y/IbTaTi 3aCTOCYBAHHA METOMY KOJIOKAIl 0 IHTErpaJibHOTO
piBHauHa PpearosabMa MEepPUIOTO POMAY, BUKOPHUCTAHO IMOETHAHHA V-METOJIB 3
IIPUHITATIOM OAJTAHCY K AIlOCTEPIOPHUM MMPABUIOM BHOODY IIapaMeTpa pery-
Jgpu3arii.

ABsTrRACT. To solve ill-posed problem in Sobolev scales appearing as a re-
sult of application by a collocation method to Fredholm integral equation
of the first kind a combination of v-methods with balancing principle as an
a-posteriori regularization parameter choice rule is used.

1. INTRODUCTION
Let us consider an equation
Af =g (1)
with integral operator A defined as

Af(x) := /Qk;(x,t)f(t)dt, x €€

Here Q C R? is a bounded domain with a Lipschitz continuous boundary and
kernel k(z,t) : © x  — R is such that A is compact operator with infinite
dimensional range acting from Lo = Lo(£2) into L. Without loss of generality
we may assume that ||A] < 1.

To guarantee a stable solution some regularization method should be used.
In the paper we use v-methods, but regularization process will be done not
for original problem (1) but for semi-discrete equation obtained from it by
collocation scheme. Let X = {x1,...,2,} C Q be some set of pairwise distinct
points. Consider an equation

where g = {g1,...,9.}7, 9j = 9(z;), and Ax is defined as
(Axf)j = Af(zj), 1<j<mn,

ie. Ax is the restriction of A to set X (Axf = Af|x). To obtain good
approximation to exact solution in the framework of v-methods it is important
to choose regularization parameter in properly way. In this case regularization
parameter is the number of iteration step. As a rule we use balancing principle

(see [5], [7])-

' Key words. Inverse problems, v-methods, Sobolev scales, collocation method, a-posteriori
parameter choice, error bound.
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In practice exact right-hand side of (1) is usually unavailable and only noisy
data vector g° = {g?,...,95}7 such that

lgi — gl <8, j=1n

is known. Let n-dimensional Euclidean space R™ provided with standard norm
||-||r» and corresponding inner product (-, -)ge. Then the whole data error can
be estimated as

15 — 8°llrn < 3v/m.

Our aim is stable recovery of unknown solution of (2) from noisy values g°.

2. V-METHODS IN SOBOLEV SCALES
Following [2| we assume that A acts along scale of Sobolev spaces H™, 7 >
d/2, with step a > 0 i.e. there are constants ¢ > c > 0 such that for fixed
aeR ) ,
cllflls < NAfllr4a <c £l (3)

Recall that Sobolev space H™ = H™ () is completion in norm of space of square-
summable function in  together with derivatives of order 7, and H" = Lo(Q).

For the first time ill-posed problems in Hilbert scales was considered in [6].
But in the paper we consider the case of discretization by projection methods.
The first result in Hilbert scales for the case of discretization by collocation
method was obtained recently in [2] where a-priori rule is used for regularization
parameter choice. We consider aposteriory rule for choosing the parameter, i.e.
without information about smoothing of exact solution.

Let f* be an exact solution of original problem (1). Then f* also solves
semi-discrete problem (2) and can be represented in the form

"= fs+vo,

where fs = AE( g, AE( is the Moore-Penrose generalized inverse of Ax, and g
belongs to the null space of Ax.

We will obtain approximation to solution fs. Since Ax acts from H7 into
R"™ than fs € H” for some 7 > 0.

In [3] was shown that always exists some continuous increasing index function
#(N), A € [0,1], such that ¢(0) = 0 and

fs = o(Ax Ax)v, (4)

where v € H, |[v]|; < p, p > 0, and A% : R” — H" is the adjoint of Ax. Later
we assume that (4) is fulfills.

Recall that v-methods is the process of successive computation of elements
flf, k=1,2,... by the rule

R = pe(Ax Ax) A% G,
where {py} is some series of the polynomials of order k — 1. Consider one more
polynomial:
Tk()\) =1- )\pk(A)

It is easy to obtain that for f = pp(A% Ax)A% g we have

fr — 8 = (A% Ax)A% (G- 3°),
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f5 = fr = (A% Ax) f1,
sup Vapp(\) < 2k, (5)
0<A<1
sup Api(A) < 2, (6)
0<A<1
INrE(N)] < euk ™2, (7)
re(M)] < 1, (8)
where A € [0,1], ¢, > 0 is some constant, 0 < p < v.
3. AUXILIARY ASSERTIONS
Lemma 1. If 1/2 1s the decreasing function then estimations
Ifs = fell- < spp(k~2), (9)
JAX f5 — Ax frller < copk™ p(k7?), (10)

are hold, where c and c, are some constants.
Proof. In [1, Theorem 6.15] the estimate
||f(5 - fk” < %Hfzi - f'y;c,l/| 5

14 . 3
is obtained, where f,, , = 'yli_l(A}AX + v, I) 7' A% g is the approximate
=1

solution obtained by iterated Tikhonov method of order v (v is integer), v, €
[(k+1)72,k72], and 5 is a constant. On the other hand, it is easy to show that

fs — ka,V”T < po(Vk)-

So, first statement of the Lemma is proved.
Further

|Ax fs — Ax fullrr = |Ax (f5 — fr)llrn = | Axri(A% Ax) fs|rn =
= [[Axri(Ax Ax)p(Ax Ax)v||rn < HU||TO§;21\F>\TIC(>\)¢(>\)-

To estimate expression in the right-hand side we consider two cases.
1. A < k™2 Due to (8) and increase of the function ¢ we have

VA (No(\) < Elg(k2).

2. k72 < \. Due to decrease of the function t,fﬁ,(f)/z and (7) we obtain

VA0 = Vw220 < V- ”ZM
ArE(A)
<

— k21/

K lo(k™2) < ek o(k72).

Hence,
|Ax f5 — Ax frller < copk™ @(k™?)
and Lemma is proved.
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Remark 7. It is follows from decreasing of tfa_(?p that in the case of ¢(y) =+

the restriction is arisen f: 0 < 3 <v —1/2.

Lemma 2. Following estimations
I = SRll- < 2K/, (11)

|Ax fr — Ax flllrn < 20v/n. (12)
are hold.

Proof. Due to (5) we obtain the following estimation
1fx = fRll- = Ipe(Ax Ax) A% (G~ 3+ <
< g9 llre sup Vapp(A) < 2k8v/n
0<A<1

and the first statement of Lemma is proved.
Later due to (6) we have

1Ax fr — Ax flller = [ Axpe(Ax Ax) A% (G — 3°)l|rn <
<|[lg = llzn sup Apr(\) < 26v/n.
0<X<1

Thus, Lemma is proved. O

Define data density of the set X in domain €2 as

h:=sup min ||z — z;||ga.
zeQ Ti€X

Below we need the sampling inequality obtained in [2, Theorem 4.8]. Namely,
for arbitrary function u € H? = H?(Q), # > d/2 and sufficiently small A it is
true

_ d_
lulle < (K ullo + A3 fulx ) (13)
where o € [0, [0]), and & is some constant, doesn’t depending on u and h.
4. ERROR ESTIMATE

Theorem 1. Let (3) is true. Then for any discrete set X with sufficiently
small data density h there is constant ¢y > 0 such that

15 = fRllza < er(AT (52pp(k %) + 20k/n) + (14)
+hE (e, ok p(k2) + 204/n)).
Proof. First of all we estimate || f5 — f||;. Due to (9) and (11) we have

s = Flle < s = fillz + 11 fe = SRlr < 5200 (k%) +2k6/n. (15)

Using the sampling inequality (13) with u = A(f;s —f,f), c=aand =74+«
we obtain

d_q
1AUs = FDlla < 5 (WA = FD)llrva +BE A5 = F)Ixr ) -
Now we apply condition (3) to last inequality

d_q
s = e < 5 (DN Ss = S2lle + RE=NAUSs = fD)lxlen ) -
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Taking into account that Af|x = Axf, we obtain

1fs = fillza < e (W710s = il + B3~ Ax (fs = FDlen )

where ¢; = £ max{1,c"}.
Considering estimates (10), (12), (15) we have Theorem’s statement. O

Let partition of the set X is uniform, i.e. h = Xn_% for some constant Y.
Then inequality (14) can be rewritten as

1f5 = fRllz. < D(k) + U(k),

where

O(k) = cop (ngan%fék_lgé(k_Q) + XTnfqu(k:_Q)) ,

U(k) = c <Xg_°‘n%5 + XTn_Eké\/ﬁ) ,

and c2 = ¢y max{2, s, ¢, }.

It is obvious that due to the monotonicity of ¢ the function ® is increasing
and ¥ is decreasing. Herewith optimal value of the regularization parameter
7 = Yopt balances functions ® and V¥, i.e. ®(Yopt) = V(Yopt) and

1fs = f,, 15 < 2@ (Kopr)-

In the case of unknown function ¢ such apriory rule for choosing regulariza-
tion parameter is inapplicable so it is necessary to use one of the aposteriory
rules. As a rule we use balancing principle.

Take into consideration following sets

Ay ={1,...,N, N = (6y/n)" 1}, (16)
and
M (An) = {k € Ay 1f] = [l <49Q), 1=Fk,...,N}.
To obtain approximate solution we use as regularization parameter such element
k=ki:=min{ke M"(AyN)}.
Let us consider one more set
M(AN) == {k € Ay ®(k) < U(k)}
and define
ke :=min{k € M(AnN)}.
Without loss of generality we assume that M (Ay) # ) and Axy\M (Ay) # 0.

Theorem 2. Let the set Ay is defined as (16). Then for reqularization pa-
rameter k = ky following estimate

Ifs = 2, Lo < 6 (Kopt), (17)
ky

holds, where 2 > q > BT
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Proof. From the beginning we show that k. < k4. For any element | > k., we
have

I = ol < Wfs— Follos + s — £l
< (k) + U(k) + (1) + (D)
< 2®(ky) + U(ky) + U(1)

< 3W (k) 4+ W(1) < 4T(1).

So, kv € M (Ay) and by the definition ky, > k..
Define the unknown norm using ¥(k.)

o=l < Ifs— Folla + 152 — 12, I

< 6U(k,).

U(ky) = co (ngan%é + XTnfgk*é\/ﬁ>
< qe <X%_O‘n%5 + xTn_g%*(S\/ﬁ>

= qU(%).

It follows from the definitions of the elements ks, kopt that ke > kopr > ki —1.
Then

1fs = £, Iz < 6 (ks) < 6q¥(ke/q) < 6qW (kopt) = 6 (Kop)
and Theorem is proved. O

Corollary 3. For 0(k) = ¢(k~2)k™! the estimate
5/n
165 = Bl < 00 (671 (22) ).

is true. In particular for ¢(y) =% with 0 < g < v —1/2
(e} —_ T i
15 = e, < 6gex (3200 + X7 pTHni(0vm) T ). (18)

Proof. By the definition of ko it holds that ®(kept) = W(kope), i.€.

o

ph™to(k7?) (x5~ E £y i k) = 6v/ (XBTonE Y2 4 T ER)).

Then k2 =0~ 1(%).

opt

2
Taking into account that for ¢(y) = v we have §~1(y) = 4231, then from
(17) we obtain (18). O
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Remark 8. In view of the data error estimation

g — 3°llrn < 0v/n

it is natural to assume that 6/n < 1, or, what is the same, n < 6~ 2. If n can
be chosen at will, then, as it has been shown in |2, Corollary 4.13|, under the
condition « + 7 > d/2, an optimal choice is n ~ & o+7. However, it is very
often, that the amount of available noisy data is limited such that one should
deal with
d
n <y atr.

For such n using a-priori parameter choice ¥ = on— suggested in |2,
Corollary 4.11| one has the following error bound

15 = £l < C(n~i +on¥ + Von'sr)

= O(n1).

At the same time, from Corollary 1 it follows that a-posteriori parameter
choice k = k4 allows a higher order error bound. Indeed, keeping in mind that

a—T

n~d>>0n"d, n-a>>\on =@
from (18) we have
Ifs — o, llp, <na.

Remark 9. Recall that we are looking for the solution f+ of a normally solvable
problem (2). It is well known (see, for ezample, |1, Section 3.3]) that in such
situation the error bound for direct reconstruction of f+ from noisy data is
determined by ﬁ, where € is a given data error level of the right-hand side
and X\, is the smallest singular value of Ax. In view of the condition (8) it is
natural to assume that in our case it holds A, ~ n~4. Then, keeping in mind

e = 0y/n we obtain

)\i ~dnate, (19)

. . 1, 2B+ (atT)
At the same time, from (18) it follows that for 61 < n3t

1fs — £, L, < O(nd3). (20)

Comparing (19) and (20) one can conclude that, if the amount n of available
discrete data is sufficiently large such that n < 62 but

_ 2d
0 20@2B8+D)(at7)+d < n,
or (see Remark 2)

_ 2d d
J 2@8+D)(at+m)+d LNy atr

then the regularized solution f,f+ allows a better error bound (in the sense of
order) than the direct reconstruction.
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THE MIXED DIRICHLET-NEUMANN PROBLEM
FOR THE ELLIPTIC EQUATION OF THE SECOND
ORDER IN DOMAIN WITH THIN INCLUSION

YURIY SYBIL

PE3tOME. Posrisinyro 3mimany 3amaay lipixme-Helimana mas esintuasoro
PIBHSTHHSI IPYTOTO TIOPSIAKY B 0OMerKeHiil TpuBmMipHiit Jlinmmumesiit obiacTi 3
TOHKHUM BKJIIOYEHHSIM, sIKe MOJIEIIOETHCS PO3IMKHYTOIO IToBepxHeo. ['pammana
ymoBa [lipixse 3amana Ha omHiil cTOpOHI 11i€l moBepxHi, a ymoBa Heiimamna —
Ha inmiii. BBemeno dynkmioHaabHI TTPOCTOPH B 06J/1ACTi 13 BKJIIIOYUEHHSM T
omepaTopu Caigy Ha po3iMkHyTiit Jlinmunesiit moBepxui. /loBemeHo exBiBa-
JIEHTHICTH 3324l y audepeniiaapraomy GopMyIioBaHHl Ta BigmoBiaHol Bapia-
mitiHoi 3amaqi. JIOC/TiIXKeHO MUTAHHS iICHYBaHHS Ta €IUHOCTI PO3B’SI3KY TIOC-
TaBJIEHOI 33Ja9i 3 HEOJHODINHUMHU TIDAHHYHUMH YMOBAMHK y BiAIOBLIHUX
GbYHKITIOHATBHUX TPOCTOPAX.

ABsTRACT. We counsider Dirichlet-Neumann mixed boundary value problem
for elliptic equation of the second order in three dimensional domain with thin
inclusion which is presented by an open Lipschitz surface. The Dirichlet con-
dition is posed on one side of the surface and the Neumann condition on the
other side. Functional spaces in the domain with inclusion and correspond-
ing trace operators on an open Lipschitz surface are introduced. We prove
the equivalence of initial mixed boundary value problem and connected varia-
tional problem. As a result we obtain existence and uniqueness of solution of
the posed problem with nonhomogeneous boundary conditions in appropriate
functional spaces.

INTRODUCTION

Mixed boundary value problems for the second order elliptic equations in the
case when on one part of closed boundary are given conditions of Dirichlet type
and on another one conditions of Neumann type were considered in |2, 5, 9].
Boundary value problems in domains with thin inclusion as well as crack in solid
bodies have a grate interest in applications. It’s pretty convenient to present
this thin object as an open double sided surface. Then for a mixed boundary
value problem in unregular domain we have the Dirichlet conditions on one side
of the open surface and the Neumann condition on the other one. Such kind of
problems were considered in [3, 7] where the posed problems were reduced to
systems of integral equations over the open boundary.

So far as domain with open surface is essentially unregular we have addi-
tional problems connected with definitions of corresponding trace maps and
appropriate functional spaces [1, 2].

TKey words. Mixed boundary value problem; elliptic operator; variational problem; open
surface.
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In present paper we use a variational formulation of the posed mixed bound-
ary value problem which gives us opportunity to obtain the existence and
uniqueness of solution.

1. FUNCTIONAL SPACES AND TRACE OPERATORS

Let Q, C R? be a bounded connected Lipschitz domain. This means that
its boundary ¥ is locally the graph of a Lipschitz function [1, 2]. Let us note
that X can be piecewise smooth and have edges and corners. Q, = Q, UX.
We suppose that S is an open Lipschitz surface bounded by closed curve T,
S=SuUT and S C ;. We denote Q@ = Q, \ S and consider S as a part of a
some closed bounded Lipschitz surface 3o = S U Sy, g C Q.

Since > and S are the Lipschitz surfaces almost everywhere we can define
outward pointing vector of the normal 7i,, z € 3, and depend on the direction
of iy, x € S, we consider S as a double sided surface with sides Sy and S_.

In Q4 we consider the elliptic operator of the second order

0 ou
Lu=— Z 87‘%'1 <a”6(£]> + agu,

and connected bilinear form

3
Ov Ou
a(u,v) = /Q{Z aija—xia—xj + apuv}dz.

i,j=1

Here a;j,a0 € C1(€24) are real functions which satisfy the following condi-
tions for z € 4

3 3
ZaijtithClzt%, tiER,i:m,Cl>0, a0<1‘)262>0.
ij=1 i=1

We use the Hilbert spaces H'(Q,) and H'(Q, L) of real functions with
norms and inner products

Hu||?{1(9+) = /Q {IVul® + v} d, (u, ) g1,y = (Vu, Vo) +uv} de,
+

{
Q4
2 2 2
lullzr o, ) = el + I1Lullz, @)
(u,v) oy ,0) = (W) g1y ) + (Lu, Lo) pya,)-

The following trace operators 7&2 . H'(Qp) — HY2(X) and
’VIE : HY(Q,,L) — H Y2(%) are continuous and surjective [1, 4]. Here
'yffzu € H'2(X) and coincides with 8‘% for u € CY(Qy) where % =
Z?,j:l cos(ﬁx,fi)aij% is a conormal derivative, cos(7i;,x;) are the coordi-
nates of the almost everywhere defined outward pointing vector of the normal
g to 2.

Let us denote by C5°(€2) the class of infinitely differentiable functions with
compact support in . We introduce the Hilbert spaces H'(Q) and H'(Q, L)
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of real functions with norms

2 2 2
lull o,y =l @) + 1Lull7, @),
where derivatives 6% € Ly(Q) are defined as

(85:%) ™~ vaite =~ (+37)
—p =— | uz—dz =—|u,

for all ¢ € C§°(Q).
We consider some trace maps in 2. We denote ’V(jfs and ’st the restrictions

of trace maps %jf 5, and Vli, v, on S respectively [6]. Then we have
’Ygfs : Hl(Q) — Hl/z(s) and ,yli’S . Hl(Q’L) N H_l/g(S)_

HHQ) = {u € H'(Q) : 1iqu=0, visu= o} . HTYQ) = (HH(Q)Y.

We also have that H}(Q) is a closure of C§°(€2) in the norm (1).

In what follows we use the next trace maps: [y0,5] = 'y&s —Yo.50 [1,8] =
'yfts —71.5- As it was shown in [6, 7] [yo,s] : HY(Q) — H%Q(S) and [y1,5] :
HY(Q,L) — Hyy'*(S), where Hi)*(S) = {g € HY2(S) : pog € HY2(Zy)}.
Here pog is extension by zero of the function g on Sp. The norm in H(%z(S)

is given as gl /205 = (P09l rvaqmy- Ho'*(S) = (HYA(S)Y, HV2(S) =

1/2
(Hol*(8))'
Let us denote HL(Q) = {u € HY(Q) : Yosu = 0} Ifu € HL(Q) then
1/2
s € Hog () 18]
In [6] we obtained the first Green’s formula for domain with an open surface

which in presented case for u € H'(2, L) and v € H(Q) has the following
form:

a(u,v) = (Lu,v) Ly@) + (7 g4 [0,510) + ([v1.s1u, 79 510) + (gu g 50)- (2)

Here (-, -) are relations of duality between HégQ(S) and H=/%(S), H/?(S) and
HO_Ol/z(S), H'Y2(%) and H-Y2(X) respectively.

We assume that €2y is a Lipschitz domain bounded by the closed surface Xq.
Q1 =N U, Q2 = Q4 \ Q1. We denote by u; the restriction of u € HY(Q) to
Q, i =1,2. It’s obviously that u; € H*(Q;), i = 1,2.

In ([8], Lemma 5) we obtained the next proposition.

(s

Lemma 1. Let u € HY(Q). Then the norm (1) can be presented in the following
form:

2 2 2
lullzr ) = luallzn @,y + llvallzn g,
and this norm doesn’t depend on the choice of Sp.

Lemma 2. The operator v 5 = (V(J)FZ’VJ,S) L HY(Q) — HY2(D) x HééQ(S) is
continuous and surjective.
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Proof. Let g € HY/2(X), go € H(%Q(S) are arbitrary functions. We denote by
do € H'Y2(%y) the extension gy by zero on Sy. Operator 7320  HY () —
H'Y2(%y) is continuous and surjective [1]. Thus we have function u; € H'(Q;)
with trace meaning V(Tzoul = go and

190l r1/2(550) = 1901l 1726y < erllunll g g,y (3)

Analogously there exists us € H'(£2) that Yo.x,u2 =0, WSLZUQ =g and

1901725y < ealluzll gy (1)
As a result we obtained the function u € Lo(£2) with restrictions u; € H(Q;)
to Q;, i = 1,2. Then [yp,5,]u = V(J)tsoul — Yo.5,u2 = 0 and by ([8], Lemma 4)
we have u € H*(Q). Since Yo.s% = 0 it follows that u € HL(Q).
In order to prove continuity of the trace map 79 s we consider function u €
HL(Q) with 7 yu =g € HY2(S) and v gu = go € Hy) (S).
Then from (3), (4) and Lemma 1 we obtain

gl sy + lgoll a2 gy < crllunll oy + c2lluzlliqy < cllullm o)-

Here ¢, c1, co are some positive constants. O

2. MIXED BOUNDARY VALUE PROBLEM AND
IT’S VARIATIONAL FORMULATION

Let us state a Dirichlet-Neumann mixed boundary value problem in domain

Q.
Problem M. Find a function v € H'(Q, L) that satisfies

Lu=h, ygu=g, ~gu=/[f rigu=z

Here h € Ly(Q), g € HY2(S), f € H-'/2(S), z € H~Y/2(X) are given functions.
A partial case of the problem M when g = 0 we denote as problem Mj.
With problem Mj it’s closely connected the following variational problem.
Problem V M. Find a function u € HL(9) that satisfies

a(u,v) = 1l(v) (5)

for every v € HL(Q).
Here

l(’l)) - (h7v)L2(Q) + <f7 fY(—]i:S’U> + <2778:EU>7 (6)
h e Ly(Q), f € H2(S), = € HY/2(X) are given functions.

Lemma 3. Bilinear form a(u,v) : H(Q) x HY(Q) — R is continuous and
HL(Y)-elliptic.

Proof. Since H,(Q) is a subspace of H'(£2) this lemma is a corollary of ([8],
Lemma 7). O

Theorem 1. Problems My and V My are equivalent.
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Proof. Let u € HL(2) be a solution of problem M. Then from the first Green’s
formula (1) for any v € HL(Q2) we have

CL(U,U) = (h)U)Lg(Q) + <f7 ’}/SCS’U> + <Z7’Y({E>'

Thus u is a solution of problem V Mj.

Let now u € HL(Q2) be a solution of problem V M. Since H{ () is a subspace
of H5(Q) for any v € H}(€2) from (5) we obtain

a(ua ’U) = (ha U)LQ(Q)'

But as it was shown in [6, 8] for any u € HY(Q) and v € H(Q) we have
a(u,v) = (Lu,v), where (-, -) is relations of duality between Hg(Q) and H~1(Q).
Thus (Lu,v) = (h,v) or (Lu — h,v) = 0 for any v € H}(2). It means that
Lu = h. So far as f € La(Q) we get u € H(Q, L).

In Lemma 2 we showed that the trace operator v s = (’yafz, 7({5) tHL(Q) —
H'Y?(%) x H&P(S} is surjective. Using (2), (5) and Lu = h we have

(7 gu = 7550 + (gu — 2,7550) =0

which is valid for an arbitrary v € H&(2). Thus 7 qu = f and v gu = 2. It
gives us that u is a solution of problem Mj. g

Theorem 2. Problem V My has a unique solution for arbitrary h € La(2),
fe HYV2(S), zc H2(%).

Proof. Lemma 3 gives us that the bilinear form a(u,v) : H{(Q) x H{(Q) — R
is continuous and H()-elliptic. Let’s show that the functional I : H&(2) — R
given by (6) is continuous. If v € HL(2) then using Lemma 2 we have:

)] < bl gy 91l gy + 1 o172 500 gz s+

20172 s gy < Wl llellan oy + el lar-rags) 1ol gy +

allzll g-2myllvlgg) < cllvll g

where ¢, c1, co some positive constants which do not depend on v. Then by the
Lax-Milgram Lemma we obtain what was to be proved. g

Corollary 4. Problem My has a unique solution for arbitrary h € Lo(Q),
fe HYV2(S), 2 H2(%).

Lemma 4. For every g € HY?(S) there exists function w € H'(Q, L) that
’Y(igw =g

Proof. From [8] it follows that for every g € H'/?(S) there exists u; € H(Q)
and Luy =0, 75 gu1 = g. Analogously for any hy € Ly () we have a function

uy € HY(Q) that Lug = hs and Yo.su2 = 0. Thus we obtain a class of function
w = uy + ug that w € H(Q, L) and 75 qw = g. O
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Now we consider problem M which differs from problem My only by non-
homogeneous boundary condition on S_. Lemma 4 gives us the function
w € H'(Q, L) which satisfies boundary condition Yosw = g. Let the func-
tion u; be a solution of problem Mj:

Luy = hi, w1 =0, ~fgu=fi, 7igu =2z,

where hy = h — Lw, f1 = f — 'yfsw, z1 = 2z — ’yfzw. Then the function
u = up + w is a solution of problem M. The preceding considerations imply
the following assertion.

Theorem 3. Problem M has a unique solution for arbitrary h € La(S2), g €
HY2(S), f e HY2(S), € HY*(%).
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NONLOCAL PROBLEM FOR AN EVOLUTION
FIRST ORDER EQUATION IN BANACH SPACE

VITALIY VASYLYK

PE3IOME. Po3risinyTo ABOTOYKOBY HEIOKAIbHY 3344y Ajd AudepeHIiaib-
HOTO €BOJIIOIITHOTO PIBHSHHS IIEPIIOro OPSIKY 3 OIIePATOPHUM KoedirieHToM
y 6aHaxoBOMYy IIpOCTOpPi. 3aIIPOIIOHOBAHO I OOIPYHTOBAHO €KCIIOHEHTIAIBLHO
3012KHUN AJTOPUTM y TMPUILYIIEHHI, 10 OIePATOpHUI KoedilieHT € cTporo
TMO3UTUBHUN 1 BUKOHYIOTHCS [I€SKi YMOBM iCHYBaHHs 1 €quHOCTI. AjropurMm
NPUBOIUTEH O CHUCTEMH JIHINHUX DIBHSHB, SKi MOXHA DO3B’S3aTH METOOM
npocroi irepamii. AsiropurM 3abe3ledye eKcroHermiaabHy 361KHICTD 3a Ya-
COM, IO B ITOE€IHAHHI 3 NIBUIKAMHU AJITOPUTMAMHU 32 IIPOCTOPOBUMHU 3MIHHUMMI
Moxke OyTr edeKTHBHHM [Jis PO3B’sI3yBaHHS TAaKuX 331a4. EdexrusnicThb
[POIIOHOBAHUX AJI'OPATMIB IIPOEMOHCTPOBAHA HA UCE/IbHUX €KCIIEPUMEHTAX.
ABSTRACT. Two-points nonlocal problem for the first order differential evolu-
tion equation with an operator coefficient in a Banach space X is considered.
An exponentially convergent algorithm is proposed and justified under the as-
sumption that the operator coefficient is strongly positive and some existence
and uniqueness conditions hold. This algorithm leads to a system of linear
equations that can be solved by fixed-point iteration. The algorithm provides
exponentially convergence in time that in combination with fast algorithms
on spatial variables can be efficient for solving such problems. The efficiency
of the proposed algorithms is demonstrated through numerical examples.
AMS Subject Classification: 65J10, 65M12, 65M15, 46N20, 46N40,
47N20, 47N40

1. INTRODUCTION

The m-point initial (nonlocal) problem for a differential equation with the

nonlocal condition
u(to) +g(ti;.. . itpiu) = uo

and a given function g on a given point set P = {0 =ty < t1 < --- < tp} is
one of the important topics in the study of differential equations. Interest in
such problems originates mainly from some physical problems with a control of
the solution at P. For example, when the function g(t1;...;t,;u) is linear we
will have a periodic problem u(tg) = u(t1). Problems with nonlocal conditions
arise in the theory of physics of plasma [15], nuclear physics [10], mathemat-
ical chemistry [11], waveguides [8] etc. Two-point problem is also useful for
considering the finale value problem [18].

Differential equations with operator coefficients in a Hilbert or Banach space
can be considered as meta-models for systems of partial or ordinary differential
equations and are suitable for investigating using the tools of the functional

T Key words. First order differential evolution equations in Banach space, nonlocal problem,
unbounded operator coefficient, operator exponential, exponentially convergent algorithms.
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analysis (see e.g. [4, 9]). Nonlocal problems can also be considered within this
framework |2, 3].

Discretization methods for differential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. [5, 7, 12, 13, 16, 17, 22,
23| and the references therein). Methods from |7, 12, 13, 17, 22, 23] possess an
exponential convergence rate, i.e. the error estimate in an appropriate norm is
of the type O(e™™"), a > 0 with respect to a discretization parameter N — oc.
For a given tolerance € such discretization provides optimal or nearly optimal
computational complexity [7].

In the present paper we consider the problem

P 4 Aoyt = 1)

u(0) + au(l) = ¢,

(1)

where A;(t) is a densely defined closed (unbounded) operator with the domain
D(A;) independent of ¢ in a Banach space X, ¢ is a given vector and fi(t)
is a given vector-valued function, o € R. We suppose that the operator A;(t)
is strongly positive; i.e. there exists a positive constant Mp independent of ¢
such that on the rays and outside a sector X9 = {z € C: 0 < arg(z) < 0,0 €
(0,7/2)} the following estimate for a resolvent holds:

Mg
. 2
1+ |z] )

This assumption implies that there exists a positive constant ¢, such that ( see
[6], p.103)

(21 = A ()} <

A5 (H)e MWD < ¢es™, 5>0, k>0. (3)
Our further assumption is that there exists a real positive w such that
le=s A1) < ems s, te[0,1] (4)

(see [14], Corollary 3.8, p.12, for corresponding assumptions on A;(t)). Let us
also assume that the following conditions are valid

1[Ax(0) — AL()AT (O]l < Ll —s| Ve 5, 0y <1, (5)

AT (£)AT7 (s) = I|| < Lyt — 5| V¢, s €[0,1]. (6)
We suppose also that

fi(t) € C(0,1; X). (7)
The aim of this paper is to construct an exponentially convergent approx-
imation for a solution to problem (1). The paper is organized as follows. In
Section 2 we discuss the existence and uniqueness of the solution as well as
its representation through input data. A numerical algorithm is presented in
section 3. The main result of this section is theorem 1 about the convergence
rate of the proposed discretization. In the next section 4 we present a numerical

example which confirm theoretical results from the previous sections.
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2. EXISTENCE AND UNIQUENESS OF THE SOLUTION
It is well known, that for & = 0 the problem (1) has a unique solution under
the assumptions (2)-(7) (se e.g. [14, 9]). This solution can be written down as
follows:

u(t) = U(t,0)u(0) + /0 U(t,s)fi(s)ds = U(t,0)¢ —I-/O Ul(t,s)fi(s)ds, (8)

where U(t, s) is an evolution operator that corresponds to (1) for a = 0.
Let us study conditions when there is a unique solution to the two-points
problem (1). We have from (8)

1
u(1l) = U(1,0)u(0) —|—/0 U(1,s)fi(s)ds

Substituting this expression into the nonlocal condition we obtain

w(0) = [I + alU(1,0)] [—a/Ulsfl ]

and for u(t) we have
1
u(t) = U(t,0) [I +alU(1,0)] [(p — a/o U, s)fl(s)ds] +
—i—/OtU(t, s)f1(s)ds.

It is necessary to establish conditions on « for the existence of u(t). In fact,

we have to explore when exists [I + aU/(1, ())]71 . So, we obtain using estimate
for U(t, s) (see e.g. [14, 9]).

[ir+au@,o || < 0=l Jo@, 07" < [1 = JalM] ! < €,
for small enough o (v < M~1).

3. NUMERICAL ALGORITHM
We use the approach developed in [7] and [21] to construct numerical method

for solving problem (1). First of all we change variable in (1) by ¢t — 1 and
for v(t) = u (1) we have
dv(t)
V04 Ale) = £0) o)
o(=1) +av(l) =¢

where A(t) = 341 (41, f(t) = 3 A (),
We choose a mesh w, = {tx, k =0,...,n} of n+ 1 various points on [—1, 1]

that are Chebyshev-Gauss-Lobatto nodes tr, = cos (” kw) and set 7, = t —
tk 1- Let

A(t) =Ap = A(tg),t € (te_1,tx], k=1,n,
Ay = A(—1).
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Let us rewrite the problem (9) in the equivalent form

% + At = [A(t) — A®Jo(t) + £(1), te(-1,1)

v(—=1) = ¢ — av(l).

Note that now all operators on the left hand side of these equations are
constant on each subinterval and piece-wise constant on the whole interval
[—1,1].

On each subinterval we can write down the equivalent to (10) integral equa-
tion

(10)

t
o(t) =e~ Mty (1) + / oM (A — A1) v(s)ds+
te—1
t (11)
+/ e A=) f(s)ds, te[tp_r,te], k=2 n,

tp—1

o(t) =e= 1D [, — au(1)] + /_ tl e A=) (4] — A(t)] v(s)ds+

t
+/ e~ A=) £(5)ds, te[-1,H].

-1
Let

n

Pa(t;v) = Pov =Y _w(t;)Ljn(t),
§=0
be the interpolation polynomial for v(¢) on the mesh wy,, x = (xq, ..., zp), z; € X
given vector and

n
Pu(tiy) = Pow = Y a;Ljn(t)
=0

the polynomial that interpolates x where
T (s)(1 — s2
Lin(s) = 2O Z5)
s (1 = 2) T3 (8)]s=s; (5 — 55)
are the Lagrange fundamental polynomials. Substituting P, (s;x) for v(s), xj

for v(tx) and then setting ¢t = t; in (11) we obtain the following system of linear
equations with respect to the unknown xj, :

7=0,...,n

To + arp = @,

(12)

n
zp =0 Ma g+ ) ok +op, k=1n,
J=0
which represents our algorithm. Here we use the notations

ti
;= / e AU [ A, — A(s)|Lyn(s)ds,

te—1

123
br = / M9 f(s)ds, k=T,m, j=0.m,

tk—1
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and suppose that we have an algorithm to compute these coefficients.
For the error z = (z1, ..., 2,), with zx = v(tx) — xx we have the relations

20+ az, =0,

Y (13)
2k = eiAkaZk—l + Zakaj + T/Jka k= 17”7

J=0

where

s / k o~ Ak (tr—s) [Ar — A(s)][v(s) — Pu(s;v)lds, k=1,n,

te—1

In order to represent algorithm (12) in a block-matrix form we introduce the
matbrix

I o o - - - 0 aog
-y I 0 - - - 0 0
S = 0 —oo I - - - 0 0 , (14)
0 o o - - - -0, I

— _A — - . ~
where 0g = AJAn", op = e AT A, k =1, n, the matrix B = {O‘k,j}z,jzo

with éy, ; = AZakJAj_V, k=1,n,j=0,n,and ao; =0, j = 0,n, the vectors

Alxo Ajp Ag#o 0
Az Al Az Al
i= , o= ‘ , 2= - |, = : - (15)

It is easy to check that for the (left) inverse
STl =6(Ri — Ry),

where

0= (I—|—a0001...0n)71,

I 0 N N
o1 I R
Ry =] o201 o2 - 0 0f,

O'n.--a'l O'n.--0'2 ... O'n I
0 op...00 Op...03 -+ On I
0 0 010n...03 -+ O10p o1
RQ:QSO . . . .

0 0 0 0 Op—1-.-.01

0 0 0 0 0

Remark 10. Using results of |7] one can get a parallel and sparse approzi-
mations with an exrponential convergence rate of the operator exponentials con-
tained in S~! and as a consequence a parallel and sparse approzimation of S™1.
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We multiply the equations in (12) and the equation in (13) by A}, k =0,n
and obtain
Alzo + aAlz, = A,

n
_A ~
Az =e KR Al wp g + E aij;.yxj + Aldr, k=1n,
Jj=0

Az + @Az, =0,
(17)

n
Az,zk = e_AkaAng_l + Z dij}Zj + AZ?/)k, k=1,n,
§=0
Then systems (16), (17) can be written down in the matrix form using notations
(14), (15) as
Si = BF + ¢,

S% = B3 + 9. (18)

Next, for a vector v = (v1,v2,...,v,)" and a block operator matrix A =
{aij}i ;=1 we introduce a vector norm

IollT = flivlll = max loe],

and the consistent matrix norm

n
Al = 1141 = max > il
7j=1
Due to (6) we have
ATAT | = IALADY, — T+ 1)) <1+ Lym,

looll = 44,7 <1+ L, T.
In our case T' = 2. So, we have the following, using these estimates

okl = le LA, | < e ATAL | < e (14 Lym),
—1 -1
151 = (-4 aooe o) | < (1= lallal o el .l ™ <

—1
< (1 — o] (142L,) e ™ (14 Lyri) e “™ (1+ Loym) ..o~ ™ (1 + LWn))

2L, ny\ —1
< <1\a| (1+2L,) e 2 <1+”> > <

n
—1
< (1 —|a| (1+2L) e*Qwe%) <e,

for a small enough.

In order to estimate the norm of matrix S we must estimate the norms of
matrices R1, Ro. In [7] it was proved that for a matrix similar to R; the estimate
[||R1]|| < cn holds true. Let us estimate the norm of matrix Ra.
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IRl < (1 +2¢) (14 e T (A+er) 4+ [T (Lt er)]" ) <
1 -1
<(A+2) 1+ +er)+-+(A+er)" i < HCT)) <
cT
620
< (1+20¢) < cn.
cT
Using these estimates we obtain that
IS~ < en. (19)
It was proved an estimate for the matrix B in [7]:
1B < en?2In(n). (20)

So we can formulate the following assertion

Lemma 1. Let assumptions (2)-(6) are fulfilled. Then estimates (19), (20)
hold true.

Using (18) we have
F=[E-S'B] s,
= [E-5'B] " 571y,

where I is a diagonal matrix with unit operators I on diagonal. Using lemma
1 we obtain that

(21)

[IST!B||| < en? tIn(n) — 0, n — oco. (22)
It means that for n large enough there exists the matrix [E — S_IB] ~!and
557 <

Consequently we obtain the following stability estimates from (21) using lem-
mal:

1zl < enlliglll,
20 < enlll]ll-

Let I1,, be the set of all polynomials in ¢ with vector coefficients of degree less
or equal than n. In complete analogy with [1, 19, 20] the following Lebesgue
inequality for vector-valued functions can be proved

u(®) = Palts )i = s [u(®) = Pafti)] < (14 An) Enlw)
with the error of the best approximation of u by polynomials of degree not
greater than n

(23)

En(u) = inf nax [u(t) = p@)]-

Now, we can go over to the main result of this section.

Theorem 1. Let the assumptions of Lemma 1 with v < 1 hold, then there
exists a positive constant ¢ such that
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1. For n large enough it holds
20 < e Inm - B, (Af),

where v is the solution of (9);
2. The first equation in (18) can be written in the form

z=S5"'Bi+ S 1o,
and can be solved by the fized point iteration
FD = 671 4 g 1g K =0,1,...; 29 — arbitrary,
with the convergence rate of an geometrical progression with the denom-

inator ¢ < cn?"'1n(n) < 1 for n large enough.

Proof. For Z we have the second estimate in (23). The norm of the first sum-
mand on the right hand side of this inequality can be estimated in the following
way

I[[]]| = max

tg
/ {AZe‘Ak‘(tk_s) [Af, — A(s)] %
tk—1

XA (ALAG)(AJu(s) = Pals; Av)) fs| <

ty
< ¢ max / |tk — s| 77|tk — s ||Agv(s) — Pn(s;Agv)Hds <
1§k§n tkfl

< CToaa | AGu(s) = Pa(3 AG0) ooy, ) < CTimat (14 An) En(AG0).

max —

So, we obtain

]| < en?™2 - Inn - EB,(AJu), (24)
Now, the first assertion of the theorem follows from (23), (24). The second
one follows from (18) and (22). O

TABL. 1. The error in the case n =4, x = 0.5

Point ¢ €
-1 0.00005276
-0.70710678 | 0.00097645
0 0.00063440
0.70710678 | 0.00029592
1 0.00010552

4. EXAMPLES
Let us consider the following problem

ou(z,t)  Ou(z,t) B
5 a2z Ta@tulet) = f(z),

u(0,t) = u(1,t) =0,
u(z,—1) + au(z, 1) = p(z),

(25)
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TABL. 2. The error in the case n =6, x = 0.5

Point ¢ €

-1 8.12568908Ee-7

-0.86602540 0.00010146

-0.5 0.00030932

0 0.00022136

0.5 0.00013419

0.86602540 0.00007182

1 0.00000162

TABL. 3. The error in the case n =8, x = 0.5

Point ¢

3

-1

0.00000117

-0.92387953

0.00000613

-0.70710678

0.00004544

-0.38268343

0.00005753

0

0.00004745

0.38268343

0.00003362

0.70710678

0.00002096

0.92387953

0.00000846

1

0.00000235

The error in the case n =12, x = 0.5

Point ¢

3

-1

0.49451310e-8

-0.96592582

0.14687232e-7

-0.86602540

0.23393074e-6

-0.70710678

0.54494052e-6

-0.5

0.76722515e-6

-0.25881904

0.82803283e-6

0

0.76362937e-6

0.25881904

0.63174173e-6

0.5

0.47173110e-6

0.70710678

0.30381367e-6

0.86602540

0.14341583e-6

0.96592582

0.21271757e-7

1

0.98902621e-8

with f(z,t) = e ™ W sin(rz)(1+1), a = 0.5, o(z) = <1 + 0.56*2”2) sin(mz),
q(z,t) = 1+t. Then, the solution of this problem is u(z,t) = e~ (141 sin(mz).
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Point ¢ €

-1 0.20628738e-11
-0.98078528 | 0.28602854¢-10
-0.92387953 | 0.48425552¢-9
-0.83146961 | 0.14258845e-8
-0.70710678 | 0.25968220e-8
-0.55557023 | 0.36339719e-8
-0.38268343 | 0.42916820e-8
-0.19509032 | 0.44975339¢-8

0 0.43045006e-8
0.19509032 | 0.38169887e-8
0.38268343 | 0.31414290e-8
0.55557023 | 0.23686579¢-8
0.70710678 | 0.15787207e-8
0.83146961 | 0.85640040e-9
0.92387953 | 0.30309439¢-9
0.98078528 | 0.16809109e-10

1 0.41257476e-11

TABL. 5. The error in the case n =16, X = 0.5

The problem (25) can be written down in the form (9) where the operator
A(t) is defined by

D(A(t)) = D(A) = {v € H*(0,1) : v(0) = 0, v(1) = 0},
A(t)v = —g:; + (14 t)v.

Coefficients of the system (16) were calculated by using the Fourier series expan-
sion. The results of calculation presented in tables confirm our theory above.
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