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ON THE COMBINATION OF SINGULAR AND
HYPERSINGULAR BOUNDARY INTEGRAL EQUATIONS
FOR THE NEUMANN BOUNDARY VALUE PROBLEM FOR
AN ELLIPTIC EQUATION WITH VARIABLE COEFFICIENTS

Christina Babenko, Roman Chapko

Ðåçþìå. Äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ âíóòðiøíüî¨ çàäà÷i Íåéìàíà äëÿ
åëiïòè÷íîãî ðiâíÿííÿ çi çìiííèìè êîåôiöi¹íòàìè çàïðîïîíîâàíî ïiäõiä,
ÿêèé ïðèâîäèòü äî ñèñòåìè ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü ç ñèíãóëÿð-
íèìè i ãiïåðñèíãóëÿðíèìè ÿäðàìè. Äèñêðåòèçàöiþ iíòåãðàëüíèõ ðiâíÿíü
çäiéñíåíî ìåòîäîì êâàäðàòóð iç âèêîðèñòàííÿì òðèãîíîìåòðè÷íèõ êâàä-
ðàòóðíèõ ôîðìóë iíòåðïîëÿöiéíîãî òèïó. Ïðèâåäåíî ïðèêëàäè ÷èñåëüíèõ
åêñïåðèìåíòiâ.
Abstract. We consider the interior Neumann boundary value problem for
an elliptic equation with variable coe�cients. For the numerical solution of
this problem we develop an approach, which leads to a system of boundary
integral equations with strong- and hypersingular kernels. The full discretiza-
tion is realized by the quadrature method with use of quadrature rules based
on trigonometrical interpolation. The results of numerical experiments are
presented.

1. Introduction
The boundary integral equation method is an e�ective tool for theoretical

investigations and numerical solution of various boundary value problems. For
the use of direct or indirect integral equation approach it is extremely impor-
tant to know the fundamental solution for the considered di�erential equation.
This is not a big problem for the large number of equations with constant coef-
�cients. But in the case of variable coe�cients the fundamental solution is very
di�cult to �nd and therefore the integral equation method is not used very of-
ten for such kind of problems. However, it is possible to involve the parametrix
which describes the main part of the fundamental solution and doesn't satisfy
the equation. Note that in the case of elliptic equation of the second order the
parametrix is also known as Levi's function [7, 8]. As a result, a given boundary
value problem can be reduced to a boundary-domain integral equation. This
approach doesn't contain the main advantage of integral equation method re-
lated to the decrease of the dimension of the di�erential problem. Therefore
we investigate another approach which does not have this disadvantage. This
approach has been applied in [2] for the case of the Dirichlet boundary value
condition. Its idea consists in the following: we introduce a set of closed nonin-
tersecting curves in the solution domain and consider the di�erential equation

†Key words. Elliptic equation with variable coe�cients; Levi's functions; System of bound-
ary integral equations; Strong and hyper-singularities; Quadrature method.
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on these curves. Next we construct potentials with the Levi's function and
reduce the given boundary value problem to boundary integral equations with
various singularities in the kernels.

In this paper we extend the described approach to the case of the Neumann
boundary value condition with the use of strong and hypersingular integral
equations.

Let D ⊂ IR2 be a bounded simply connected domain with the boundary
Γ0 ∈ C3. We search for the function u : D → IR which satis�es the elliptic
equation

Lu(x) = div(σ(x) gradu(x)) = 0, x ∈ D (1)
and the Neumann boundary value condition

σ(x)
∂u

∂ν
(x) = f(x), x ∈ Γ0. (2)

Here ν is the outward unit normal on Γ0, σ ∈ L∞(D̄), σ > 0 and f ∈ H−1/2(Γ0)
are given functions and ∫

Γ0

f(y)ds(y) = 0.

It is known [9] that the solution u ∈ H1(D) of the problem (1), (2) can be
determined uniquely up to an additive constant. Therefore we assume that the
coordinate origin belongs to the domain D and add the condition u(0) = 0.

2. Modified problem and boundary integral equations

De�nition 1. The function P (x, y), x, y ∈ D is called the parametrix (or
Levi's function) of a di�erential operator L if

LxP (x, y) = δ(x− y) + R(x, y),

where δ is the Dirac function and the function R has weak singularity for x = y.

It is easy to make sure that for the operator in (1) the Levi's function has
the form

P (x, y) =
ln |x− y|
2πσ(y)

, x, y ∈ IR2, x 6= y

and the remainder function is

R(x, y) =
(x− y) · gradσ(x)

2πσ(y)|x− y|2 , x, y ∈ IR2 x 6= y.

Now we introduce the set of smooth closed disjoint curves Γ =
⋃N

k=1 Γk in the
domain D. Assume that all curves have following parametric representations

Γk = {xk(t) = (x1,k(t), x2,k(t)), t ∈ [0, 2π]}, k = 0, . . . , N,

where xk : IR → IR2 are C3 and 2π�periodic with |x′k(t)| > 0 for all t.
We modify the problem (1), (2) as follows: �nd the function ũ : Γ → IR,

which satis�es the di�erential equation (1) on Γ and the boundary value con-
dition (2).
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Lets introduce the single layer potential

w(x) =
N∑

i=1

∫

Γi

ϕi(y)P (x, y)ds(y), x ∈ D (3)

with unknown densities ϕi ∈ L2(Γi). Then from the equation (1) considered
on Γ and the de�nition of the Levi's function we receive the system of integral
equation

ϕk(x) +
N∑

i=1

∫

Γi

ϕi(y)R(x, y)ds(y) = 0, x ∈ Γk, k = 1, . . . , N.

The boundary value condition (2) also needs to be satis�ed. In order to achieve
this we will combine the representation (3) with a potential over the boundary
Γ0.

We can present the solution of the modi�ed problem in the form

ũ(x) =
∫

Γ0

ϕ0(y)σ(y)
∂P (x, y)
∂ν(y)

ds(y) + w(x), x ∈ Γ. (4)

Then from the de�nition of the Levi's function and properties of a logarithmic
double layer potential the modi�ed problem can be reduced to the system of
boundary integral equations





ϕk(x) +
N∑

i=1

∫

Γi

ϕi(y)R(x, y)ds(y)+

+
∫

Γ0

ϕ0(y)σ(y)
∂R(x, y)
∂ν(y)

ds(y) = 0, x ∈ Γk,

N∑

i=1

∫

Γi

ϕi(y)
∂P (x, y)
∂ν(x)

ds(y)+

+
∂

∂ν(x)

∫

Γ0

ϕ0(y)σ(y)
∂P (x, y)
∂ν(y)

ds(y) =
f(x)
σ(x)

, x ∈ Γ0

(5)

for k = 1, . . . , N . Note here that in the case of σ = 1 the system (5) will be
simpli�ed to the integral equation

1
2π

∂

∂ν(x)

∫

Γ0

ϕ(y)
∂ ln |x− y|

∂ν(y)
ds(y) = f(x), x ∈ Γ0. (6)

It is known [1, 5], that the integral operator in this equation is not invertible.
Therefore we replace the equation (6) by the following modi�cation

1
2π

∂

∂ν(x)

∫

Γ0

ϕ(y)
∂ ln |x− y|

∂ν(y)
ds(y)+α = f(x), x ∈ Γ0,

∫

Γ0

ϕ(y)ds(y) = 0. (7)

Here ϕ ∈ H1/2(Γ0) and α ∈ IR are unknown. Now the integral operator in (7)
is invertible in corresponding Sobolev spaces [1, 5].
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Thus we consider the following �nal system of integral equations related to
(5)





ϕk(x) +
N∑

i=1

∫

Γi

ϕi(y)R(x, y)ds(y)+

+
∫

Γ0

ϕ0(y)σ(y)
∂R(x, y)
∂ν(y)

ds(y) = 0, x ∈ Γk,

N∑

i=1

∫

Γi

ϕi(y)
∂P (x, y)
∂ν(x)

ds(y)+

+
∂

∂ν(x)

∫

Γ0

ϕ0(y)σ(y)
∂P (x, y)
∂ν(y)

ds(y) + α =
f(x)
σ(x)

, x ∈ Γ0,

∫

Γ0

ϕ0(y)ds(y) = 0.

Taking into account the form of Levi's and remainder functions we can rewrite
this system in the following parametric form





(1− δk0)µk(t) +
1
2π

N∑

i=0

∫ 2π

0
µi(τ)Hk,i(t, τ)dτ+

+δk0α = gk(t), k = 0, . . . , N,

∫ 2π

0
µ0(τ)dτ = 0

(8)

with unknown densities µk(t) = ϕk(xk(t)), k = 0, . . . , N and an unknown
constant α and with right hand sides

gk(t) =





0 k = 1, . . . , N,

f(x0(t))
σ(x0(t))

k = 0,

and 2π-periodic kernels Hk,i(t, τ) = 2πR(xk(t), xi(τ))|x′i(τ)|, k = 1, . . . , N ,
i = 1, . . . , N ,

Hk,0(t, τ) =
2(xk,1(t)− x0,1(τ))(xk,2(t)− x0,2(τ))

|xk(t)− x0(τ)|4 ×

×(x′2(τ)σ′x2
(xk(t))− x′1(τ)σ′x1

(xk(t))) +
(xk,1(t)− x0,1(τ))2

|xk(t)− x0(τ)|4 −

−(xk,2(t)− x0,2(τ))2(x′1(τ)σ′x2
(xk(t)) + x′2(τ)σ′x1

(xk(t)))
|xk(t)− x0(τ)|4 −

−(xk(t)− x0(τ)) · gradσ(xk(t))ν(x0(τ)) · gradσ(x0(τ))
|xk(t)− x0(τ)|2σ(x0(τ))

,
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H0,k(t, τ) = |x′k(τ)|(x0(t)− xk(τ)) · ν(x0(t))
|x0(t)− xk(τ)|2σ(xk(τ))

for k = 1, . . . , N and

H0,0(t, τ) =
{
−ν(x0(t)) · ν(x0(τ))

|x0(t)− x0(τ)|2 +

+
2ν(x0(t)) · (x0(t)− x0(τ))ν(x0(τ)) · (x0(t)− x0(τ))

|x0(t)− x0(τ)|4 −

−ν(x0(t)) · (x0(t)− x0(τ))ν(x0(τ)) · gradσ(x0(τ))
|x0(t)− x0(τ)|2σ2(x0(τ))

}
|x′0(τ)|.

As we see some kernels in (8) have various singularities. We split the strong
singularity in H`,`, ` = 1, . . . , N in the following form

H`,`(t, τ) = H
(1)
`,` (t, τ) cot

τ − t

2
with smooth kernels

H
(1)
`,` (t, τ) =





tan
τ − t

2
H`,`(t, τ) for t 6= τ,

x′0(t) · gradσ(x0(t))
2σ(x0(t))|x′0(t)|

for t = τ.

To handle the hypersingularity in the kernel H0,0 we rewrite it as

H0,0(t, τ) = − 1

4|x′0(t)| sin2 t− τ

2

+ H̃0,0(t, τ),

where
H̃0,0(t, τ) = H0,0(t, τ) +

1

4|x′0(t)| sin2 t− τ

2
with the diagonal term

H̃0,0(t, t) = −ν(x0(t)) · x′′0(t)
2|x′0(t)|4

+
ν(x0(t)) · x′′0(t) ν(x0(t)) · gradσ(x0(t))

σ(x0(t))|x′0(t)|
+

+
|x′0(t)|4 − 2|x′0(t)|2x′0(t) · x′′′0 (t) + 3(x′0(t) · x′′0(t))2

12|x′0(t)|5
−

−3(x′0,1(t)x
′′
0,2(t)− x′0,2(t)x

′′
0,1(t))

2

12|x′0(t)|5
.

Based on the uniqueness results of the boundary value problem (1)�(2) and the
Riesz-Schauder theory for compact operators [6] we have the following result
about well-posedness for the system of 2π-periodic integral equations (8).
Theorem 1. Let p > 1/2. For every f ∈ Hp[0, 2π] the system (8) posses an
unique solution µ0 ∈ Hp+1[0, 2π] and µk ∈ Hp[0, 2π], k = 1, . . . , N .
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3. Quadrature method
We begin by describing the appropriate quadrature rules. For this we con-

sider trigonometric interpolation with 2n equidistant nodal points

t
(n)
j =

jπ

n
, j = 0, . . . , 2n− 1

with respect to the 2n-dimensional space of trigonometric polynomials, and use
the following quadrature rules

1
2π

∫ 2π

0
f(τ) dτ ≈ 1

2n

2n−1∑

k=0

f(t(n)
k ), (9)

1
2π

∫ 2π

0
f(τ) ln

(
4 sin2 t− τ

2

)
dτ ≈

2n−1∑

k=0

R̃
(n)
k (t) f(t(n)

k ), (10)

1
2π

∫ 2π

0
f(τ) cot

τ − t

2
dτ ≈

2n−1∑

k=0

T̃
(n)
k (t) f(t(n)

k ), (11)

1
2π

∫ 2π

0
f ′(τ) cot

τ − t

2
dτ ≈

2n−1∑

k=0

T
(n)
k (t) f(t(n)

k ). (12)

The weight functions are given by

R̃
(n)
k (t) = − 1

n

n−1∑

m=1

1
m

cosm(t− t
(n)
k )− 1

2n2
cosn(t− t

(n)
k ),

T̃
(n)
k (t) = − 1

n

n−1∑

m=1

sinm(t− t
(n)
k )− 1

2n
sinn(t− t

(n)
k ),

T
(n)
k (t) = − 1

n

n−1∑

m=1

m cosm(t− t
(n)
k )− 1

2
cosn(t− t

(n)
k ).

These quadratures are obtained by replacing f with its trigonometric interpo-
lation polynomial and then integrating exactly [3, 6]. Note that some of given
quadratures coincide with quadrature formulas used in the method of discrete
charges [4].

Thus we use quadrature rules (9),(11) and (12) to approximate three types of
integrals in the system of integral equations (8) and collocate the approximate
equations to obtain the linear system

Aµ̃ = b

with matrix coe�cients

A
(ij)
k,0 =

1
2n

Hk,0(t
(n)
i , t

(n)
j ), k = 1, . . . , N,
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A
(ij)
0,k =





1
2n

H0,k(t
(n)
i , t

(n)
j ), k = 1, . . . , N,

− 1

2|x0(t
(n)
i )|

Tj(t
(n)
i ) +

1
2M

H̃0,0(t
(n)
i , t

(n)
j ), k = 0,

A
(ij)
k,` =





1
2n

Hk,`(t
(n)
i , t

(n)
j ), k 6= `,

T̃j(t
(n)
i )Hk,`(t

(n)
i , t

(n)
j ), k = `

and A
(2n,j)
0,0 = 1, A

(i,2n)
0,0 = 1 and with the right hand side b

(i)
k = gk(t

(n)
i ),

k = 0, . . . , N , i = 0, . . . , 2n− 1 and b
(2n)
0 = 0.

To �nd the numerical solution of the modi�ed problem we parametrize the
reprezentation (4)

ũ(xk(t)) =
1
2π

N∑

`=0

∫ 2π

0
µ`(τ)Lk,`(t, τ)dτ, (13)

where Lk,`(t, τ) = π
n |x′`(τ)|P (xk(t), x`(τ)) for `, k = 1, . . . , N and

Lk,0(t, τ) = −(xk(t)− x0(τ)) · ν(x0(τ))
σ(x0(τ))|xk(t)− x0(τ)|2 −

− gradσ(x0(τ)) · ν(x0(τ))
σ2(x0(τ))

ln |xk(t)− x0(τ)|.

As we see the kernels L`,` have logarithmic singularity and we split it in the
following form

L`,`(t, τ) = L1
`,`(t, τ) ln

(
4 sin

t− τ

2

)
+ L2

`,`(t, τ)

with
L1

`,`(t, τ) =
|x′`(τ)|

2σ(x`(τ))

and

L2
`,`(t, τ) =





L`,`(t, τ)− L1
`,`(t, τ) ln

(
4 sin

t− τ

2

)
for t 6= τ,

|x′`(t)|
σ(x`(t))

ln |x′`(t)| for t = τ.

Now according to (13) and using quadratures (9) and (10) we have the following
formula for the numerical solution of the modi�ed problem

ũn(xk(t)) =
N∑

`=1

2n−1∑

i=0

µ̃
(i)
` L̃k,`(t, t

(n)
i ),
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where

L̃2
k,`(t, t

(n)
i ) =





1
2n

Lk,`(t, t
(n)
i ) for ` 6= k,

L1
`,`(t, t

(n)
i )R̃(n)

i (t) +
1
2n

L2
`,`(t, t

(n)
i ) for ` = k.

4. Numerical examples
Example 1. We consider the domain D bounded by a circle Γ0 with the radius
R = 1. The given function σ and f are given as
σ(x) = 1 + x2

1 + x2
2, x ∈ D and f(x) = x1e

x1 cosx2 − x2e
x1 sinx2, x ∈ Γ0.

The numerical solution of the boundary value problem (1),(2) received by pro-
posed method is presented in the Fig. 1a. Here we used the following discretiza-
tion parameters n = 64 and N = 13 and the set of curves

Γk =
{

xk(t) = (1− k

N + 1
)(cos t, sin t), 0 ≤ t ≤ 2π

}
, k = 0, . . . , N.

The numerical result obtained by FEM method by PDE Toolbox in Matlab is
illustrated in Fig. 1b. As we see both results are su�ciently close.

a) Numerical solution by BIEM b) Numerical solution by FEM

Fig. 1. Results of numerical experiments for the example 1

Example 2. Assume that the boundary curve Γ0 and the set of curves Γ (see
Fig. 2a) have the parametric representation

Γk =
{

xk(t) = r(t)(1− k

N + 1
)(cos t, sin t), 0 ≤ t ≤ 2π

}
, k = 0, . . . , N

with the radial function

r(t) =

((
1
2

cos t

)10

+
(

2
3

sin t

)10
)−0.1

.

Let
σ(x) = 1 + e0.3(x2

1+x2), x ∈ D
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and
f(x) = ex1 (cosx2ν1(x)− sinx2ν2(x)) , x ∈ Γ0.

The numerical solution obtained via proposed method is given in Fig. 2b.

a) Set of curves Γ b) Numerical solution by BIEM

Fig. 2. Results of numerical experiments for the example 2

We considered the numerical solution of the interior planar Neumann bound-
ary value problem for an elliptic di�erential equation of second order with vari-
able coe�cients. The proposed method is based on boundary integral equa-
tions. First we approximated the given problem by a modi�ed problem on the
introduced set of closed curves in the solution domain. Then the potentials
with Levi's function are used for the modi�ed problem. As result the system
of boundary integral equations with singular and hypersingular kernels is re-
ceived. The full discretization is realized by trigonometric quadrature method.
The presented numerical examples con�rmed the applicability of the proposed
method.
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RIGOROUS VANISHING SOLUTIONS OF
A NONLINEAR HAMMERSTEIN INTEGRAL EQUATION

RELATED TO PROBLEMS WITH FREE PHASE

Olena Bulatsyk, Ihor Tupychak, Yuriy Topolyuk

Ðåçþìå. Ðîçãëÿäà¹òüñÿ íåëiíiéíå iíòåãðàëüíå ðiâíÿííÿ Ãàììåðøòåéíà,
ÿêå âèíèêà¹ â çàäà÷àõ ç âiëüíîþ ôàçîþ. Äîñëiäæó¹òüñÿ íîâèé êëàñ äiéñ-
íèõ òà êîìïëåêñíèõ ðîçâ'ÿçêiâ öüîãî ðiâíÿííÿ. Ðîçâ'ÿçêè ïîäàþòüñÿ ó
ÿâíîìó âèãëÿäi çi ñêií÷åíèì ÷èñëîì íåâiäîìèõ êîìïëåêñíèõ ïàðàìåòðiâ,
ùî ¹ íóëÿìè ñïåöiàëüíî ïîáóäîâàíîãî ïîëiíîìà, i ñêií÷åíèì ÷èñëîì äiéñ-
íèõ ïàðàìåòðiâ � íóëiâ öèõ ðîçâ'ÿçêiâ ó ¨õ îáëàñòi âèçíà÷åííÿ. Äëÿ
çíàõîäæåííÿ öèõ ïàðàìåòðiâ ñòðîãî îòðèìàíà íîâà êîðåêòíà ñèñòåìà
òðàíñöåíäåíòíèõ ðiâíÿíü. Ðîçâ'ÿçêè öi¹¨ ñèñòåìè äîñëiäæóþòüñÿ ÷èñåëü-
íî. Àíàëiçóþòüñÿ òî÷êè ãàëóæåííÿ öèõ ðîçâ'ÿçêiâ âiäíîñíî äiéñíîãî ïàðà-
ìåòðà çàäà÷i.
Abstract. A nonlinear Hammerstein integral equation that arises in prob-
lems with free phase is considered. A new class of real and complex solutions
of this equation is investigated. Solutions are represented in an explicit form
with a �nite number of unknown complex parameters being zeros of a spe-
cially built polynomial, and a �nite number of real parameters � zeros of these
solutions in their domain of de�nition. A new correctly determined form of
earlier obtained transcendental equations system is found. The solutions of
this system are numerically investigated. Their branching points are analyzed
with respect to a real parameter of the problem.

1. Introduction
Problems with free phase, covering, in particular, the phase problem, at-

tracted the attention of researchers for a long time [1]� [4]. A wide class of
these problems complete the phase optimization problems, main idea of which
consists in the mean square approximation of a given non-negative function by
modulus of the functions being the result of action of a bounded operator on
compactly supported complex functions [5]�[9]. These variational problems are
reduced in a usual way to nonlinear integral equations of Hammerstein type
as the Lagrangue-Euler equations for respective functionals. As a nonlinear-
ity, these equations involve the phase factor (argument of unknown complex
function) in the integrant.

One of the ways of solving such type of equations was an approach suggested
and developed in [10], [11], and described in details in [12]. In this approach the
solutions are represented in an explicit form with a �nite number of unknown
complex parameters. A system of transcendental equations for calculation of

†Key words. Nonlinear integral equation of Hammerstein type, �nite-parametric solutions,
branching of solutions, phase problem, vanishing solution.
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these parameters was obtained. The approach was extended to a general class
of Hammerstein equations of the considered type.

As it was noted in [12], above approach does not cover all solutions of the
equations, it considers only nonvanishing solutions. The solutions having ze-
ros in their de�nition domain were particularly considered in [13], [14]. Such
problems arise, in particular, when the desired function to be approximated
has zeros in its support domain. Among the physical problems of such type
we should, in particular, mention the antenna synthesis problem by the given
multi-lobe amplitude directivity pattern [15].

Similar problems were investigated in [13]. There were announced the ideas
of analytical presentation of the solution for solving the problems. The main
theoretical results are given in [14]. Partial numerical results are also considered
there. Numerical results of investigation of real solutions of partial system of
equations obtained in [14] are conducted in [16].
It should be also mentional the work [17], [18] on the approximation of functions
de�ned on the real axis by the classes of entire functions and more universal
approach in works [19], [20] which are close to the ideology of problems in our
article.

In the article we consider more general one-dimensional case. Some results
given here were announced in [21]. Real solutions, having zeros in the do-
main of �niteness of given non-negative function were considered in [16]. Some
results concerning the solution branching with respect to the real parameter
which is included in the kernel of nonlinear equation of Hammerstein type were
described. It turns out that the sets of real and complex solutions are not
separated. There are such values of the real kernel parameters, at which the
complex solution branches into the real one. Branching of the initial complex
solutions (this class of solutions will be described later) into other complex solu-
tions is numerically investigated in this article. The starting point of the article
is a system of complex transcendental equations, correctness of which is proved
theoretically. Numerical results for several particular cases are presented and
analyzed.

2. Problem formulation
Consider the Hammerstein integral equation

f(ξ) =

b∫

a

K(ξ, ξ′)F (ξ′)ei arg f(ξ′)dξ′. (1)

with the kernel

K(ξ, ξ′) =
s(ξ)q(ξ′)− s(ξ′)q(ξ)

τ(ξ)− τ(ξ′)
, (2)

where s(ξ), q(ξ), τ(ξ) are real continuous functions, such that the systems of
functions, {τn(ξ)s(ξ)}, {τn(ξ)q(ξ)}, (n = 0, 1, . . .) are linearly independent,
F (ξ) ∈ L2(a, b) is a given non-negative function. It is assumed that the solu-
tions of the equation may have real zeros in the interval [a, b].
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3. The theoretical results
Let us represent the solution of equation (1) in the form

f(ξ) = γf̂(ξ)PN (τ)
M∏

j=1

(ξ − pj) , (3)

where f̂(ξ) is a real positive function in ξ ∈ [a, b]; γ is a complex constant with
|γ| = 1; a ≤ pj ≤ b are real zeros of function f(ξ) : f(pj) = 0, M is a positive
integer number;

PN (τ) =
N∏

k=1

(1− ηNkτ)

is polynomial of the degree N with complex, pairwise nonconjugated zeros η−1
Nk :

ηNk − η̄Nm 6= 0, k, m = 1, 2, ..., N. (4)
Without loss of generality, we can set γ = 1. From (3) we obtain

ei arg f(ξ) =
PN (τ)
|PN (τ)|

M∏

j=1

sgn (ξ − pj) . (5)

The function f̂(ξ) can be uniquelly de�ned from the equality

f̂(ξ)

∣∣∣∣∣∣

M∏

j=1

(ξ − pj)

∣∣∣∣∣∣
=

=
1

|PN (τ)|

∣∣∣∣∣∣

b∫

a

K(ξ, ξ′)F (ξ′)
PN (τ ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
dξ′

∣∣∣∣∣∣

(6)

which follows from (1).
Theorem 1. Function f(ξ) of the form (3) is a solution of equation (1) if and
only if the real parameters pj , j = 1, ..., M and complex ηNk, k = 1, ..., N, with
the condition (4) satisfy the system of transcendental equations:

TNn(pj , ηN1, ηN2, ..., ηNN ) = 0, n = 1, 2, ..., N, j = 1, 2, ..., M, (7)
ΦNn(pj , ηN1, ηN2, ..., ηNN ) = 0, n = 1, 2, ..., N, j = 1, 2, ..., M, (8)
ΨNn(pj , ηN1, ηN2, . . . , ηNN ) = 0, n = 1, 2, ..., N, j = 1, 2, ..., M, (9)

where

TNn =

b∫

a

K(pj , ξ
′)F (ξ′)

Re
[
P̄N (τ(pj))PN (τ ′)

]

|PN (τ ′)|
M∏

j=1

sgn
(
ξ′ − pj

)
dξ′,

ΦNn =

b∫

a

τn−1s(ξ)
F (ξ)
|PN (τ)|

M∏

j=1

sgn (ξ − pj) dξ, (10)
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ΨNn =

b∫

a

τn−1q(ξ)
F (ξ)
|PN (τ)|

M∏

j=1

sgn (ξ − pj) dξ. (11)

Proof. Necessity. Let function f(ξ) represented as (3) with γ = 1 be the solu-
tion of equation (1). Substituting expressions (3), (5) into (1) and multiplying
both sides by P̄N (ξ) result in

f̂(ξ) |PN (τ)|2
M∏

j=1

(ξ − pj) =

= P̄N (τ)

b∫

a

K(ξ, ξ′)F (ξ′)
PN (τ ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
dξ′.

(12)

After extracting the imaginary part from (12), we obtain

b∫

a

(
τ − τ ′

)
K(ξ, ξ′)

F (ξ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
RN−1(τ, τ ′)dξ′ = 0, (13)

where

RN−1(τ, τ ′) =
2i Im[PN (τ ′)P̄N (τ)]

τ − τ ′
=

N∑

k,m=1

akmτk−1(τ ′)m−1 (14)

is a polynomial of two variables with matrix coe�cients A = {akm}. Substitu-
tion (14), (2) into (13) and interchanging the variables ξ and ξ′, give

N∑

k,m=1

akm


q(ξ′)

b∫

a

τk−1s(ξ)
F (ξ)
|PN (τ)|

M∏

j=1

sgn (ξ − pj) dξ −

− s(ξ′)

b∫

a

τk−1q(ξ)
F (ξ)
|PN (τ)|

M∏

j=1

sgn (ξ − pj) dξ


(

τ ′
)m−1 ≡ 0.

(15)

Since the functions {τks(ξ)}, {τkq(ξ)}, k = 0, 1, . . . , N − 1, are linearly
independent, expression (15) results in the following systems:

N∑

k=1

akmΦNn = 0, n = 1, 2, ..., N, (16)

N∑

k=1

akmΨNn = 0, n = 1, 2, ..., N, (17)

where ΦNn, ΨNn are de�ned in (10), (11). They can be considered as indepen-
dent systems of linear algebraic equations for the unknown ΦNn, ΨNn, with the
same matrix of coe�cients A.
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Determinant of matrix A has been found in [11]:

det A = (−1)[N/2]
N∏

k,m=1

(η̄Nm − ηNk),

where the square brackets mean the integer part of the number. From (4) we
get detA 6= 0, and the equation systems (16), (17) have only zero solutions.
This means that transcendental equations (8), (9) are satis�ed.

Let the solution of equation (1) satisfy the condition f (pj) = 0, j = 1, ..., M.
Then, according to (1),

b∫

a

K(pj , ξ
′)F (ξ′)ei arg f(ξ′)dξ′ = 0. (18)

Multiplying both sides of (18) by P̄N (ξ) and using (5) result in

b∫

a

K(pj , ξ
′)F (ξ′)

P̄N (τ(pj))PN (τ ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
dξ′ = 0. (19)

After extracting the real part from (19), we obtain the system of equations (7).
Imaginary part (19) gives the following system:

b∫

a

(
τ(pj)− τ ′

)
K(pj , ξ

′)
F (ξ′)
|PN (τ ′)|×

×
M∏

j=1

sgn
(
ξ′ − pj

)
RN−1(τ(pj), τ ′)dξ′ = 0.

(20)

System of equations (20) coincides with the system (13) in case of ξ = pj and
τ = τ (pj) .

Su�ciency. Let the system of transcendental equations (7), (8), (9) be sat-
is�ed for some integer N, complex numbers ηNk, k = 1, 2, ..., N, which satisfy
the condition (4) and real numbers pj , j = 1, ...,M. We show that the function
of the form (3) is a solution of equation (1) and pj , j = 1, ...,M, are real zeros
of the solution.

After reducing system (8), (9) to equalities (16), (17) and substituting (10),
(11) into them we get the equality (15). Then, using (13), we have

Im


P̄N (τ)

b∫

a

K(ξ, ξ′)
F (ξ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
PN (τ ′)dξ′


 = 0.

Add the real function f̂(ξ) |PN (τ)|2
M∏

j=1

(ξ − pj) under the symbol of imaginary

part:
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Im


f̂(ξ) |PN (τ)|2

M∏

j=1

(ξ − pj)+

+P̄N (τ)

b∫

a

K(ξ, ξ′)
F (ξ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
PN (τ ′)dξ′


 = 0.

(21)

Dividing both sides of equality (21) by the positive function |PN (τ)| and taking
into account the equality

f̂(ξ) |PN (τ)| = |f(ξ)|∣∣∣∣∣∣

M∏

j=1

(ξ − pj)

∣∣∣∣∣∣

, (22)

we get

Im


|f(ξ)|

M∏

j=1

sgn (ξ − pj)+

+
P̄N (τ)
|PN (τ)|

b∫

a

K(ξ, ξ′)
F (ξ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
PN (τ ′)dξ′


 = 0.

(23)

On the other hand, (6) gives

Re


|f(ξ)|

M∏

j=1

sgn (ξ − pj)+

+
P̄N (τ)
|PN (τ)|

b∫

a

K(ξ, ξ′)
F (ξ′)
|PN (τ ′)|

M∏

j=1

sgn
(
ξ′ − pj

)
PN (τ ′)dξ′


 = 0.

(24)

Equalities (23) and (24) mean that the expression in brackets equals to zero
and, according to (5), function (3) is a solution of integral equation (1). ¤

Let then the equation system (7) be satis�ed. Using (24), (22), (3) with
ξ = pj , we get

Re [f (pj)] = 0.

Similarly, (23), (13), (22), (3) give

Im [f (pj)] = 0.

Thus, the parameters pj , j = 1, ..., M are zeros of the function f of form (3).
The theorem is proved.
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4. The numerical results
The Newton method was used for solving system (7), (8), (9). Integrals from

the left part of the equation system were calculated by the Simpson method.
The integration interval was divided into segments by points so, that the inte-
grand was smooth there. Iterative process of Newton method can be described
by the following formula:

~x(m+1) = ~x(m) −
(
=′

(
~x(m); c

))−1
=

(
~x(m); c

)
, m = 0, 1,

where ~x(m) =
{

η′n(m), η′′n(m), p
(m)
l

}
is an approximation of zeros of the system

(7), (8), (9) on the m-th step, η
(m)
n = η′n(m) + iη′′n(m), i is the imaginary unit,

= is a vector of the left parts of the equation system (7), (8), (9), =′ (~x(m); c
)

is the Jacobian matrix of this system in the point ~x(m); c is a real positive
parameter; m is an iteration number. The end-point condition of the iterative
process in the Newton method is

max
n=1,N

∣∣∣η′n(m+1) − η′n
(m)

∣∣∣ + max
n=1,N

∣∣∣η′′n(m+1) − η′′n
(m)

∣∣∣+

+ max
l=1,M

∣∣∣p(m+1)
l − p

(m)
l

∣∣∣ < ε.

The structure of the Jacobian matrix in general case is

=′ (η′n, η′′n, pl

)
=




{
∂ΦNj

∂η′Nk

}N

j,k=1

{
∂ΦNj

∂η′′Nk

}N

j,k=1

{
∂ΦNj

∂pk

}N,M

j,k=1{
∂ΨNj

∂η′Nk

}N

j,k=1

{
∂ΨNj

∂η′′Nk

}N

j,k=1

{
∂ΨNj

∂pk

}N,M

j,k=1{
∂TNj

∂η′Nk

}M,N

j,k=1

{
∂TNj

∂η′′Nk

}M,N

j,k=1

{
∂TNj

∂pk

}M,M

j,k=1




.

Equation system (7), (8), (9) was investigated numerically for the case s (ξ) =
sin cξ, q (ξ) = cos cξ, τ = ξ, a = 1, b = −1, c > 0. In this case equation (1) has
the form

f(ξ) =

1∫

−1

sin c(ξ − ξ′)
ξ − ξ′

F (ξ′) exp(i arg f(ξ′))dξ′. (25)

We consider two types of given non-negative functions F (ξ) : F1(ξ) = |ξ − t|
and F2(ξ) = sin(π·|ξ−t|/(1+|t|)), t ∈ (−1, 1), having one zero in the integration
domain.

Real solutions. We consider �rst the real solutions that correspond to N = 0.
According to (3), each real solution of equation (1) is represented in the form:
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f
(
ξ′

)
=

1∫

−1

F (ξ)
sin c (ξ − ξ′)

ξ − ξ′

M∏

j=1

sgn (ξ − pj) dξ. (26)

It follows from (7), that the real parameters pj of are found from the equation
system

1∫

−1

F (ξ)
sin c (ξ − pl)

ξ − pl

M∏

k=1

sgn (ξ − pk) dξ = 0, l = 1, ..., M. (27)

The cases M=1 and M=2 are investigated numerically. In these cases the
real solution of equation (1) has one or two zeros in the interval [-1,1], respec-
tively.

In case M=1, system (27) becomes the transcendental equation with respect
to p = p1:

1∫

−1

F (ξ)
sin c(ξ − p)
|ξ − p| dξ = 0. (28)

We solve this equation by the chord method. Integrals in the left hand sides
of the equation are calculated by Simpson method. To apply this method, the
integration interval [-1;1] is divided into parts by zeros of the functions F, f
so that the integrand is smooth in each of these parts. Then, in particular,
unknown parameter p occurs in the integration limits.

Solutions of equation (28) are shown in Fig. 1. Di�erent solutions depending
on parameter c are marked by p1j , where j means the solution number.

Fig. 1. Solutions of equation (28): (a) F1(ξ) = |ξ − t|, (b)
F2(ξ) = sin(π · |ξ − t|/(1 + |t|)); t = 0.1

As follows from Fig. 1, number of solutions varies depending on the real
parameter. For c<c1 only one solution p11 exists. At the point c = c1 two
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Fig. 2. Solutions of equation system (27) at M = 2: (a)
F1(ξ) = |ξ − t|, (b) F2(ξ) = sin(π · |ξ − t|/(1 + |t|)); t = 0.1

more solutions (p12 and p13) appear. These results show that the point c1 is
an isolated bifurcation point, namely a point of appearance of new solutions.
For c>c1 we already have three solutions of equation (28).

The more complicated situation arises in the case when two zeros of real
solution of equation (1) exist in the interval [−1; 1] (M = 2). In this case the
equation system (27) is solved by the Newton method. As before, the interval
[−1; 1] is divided into parts so that the integrand is smooth in each of these
parts.

Fig. 3. Di�erent solutions to (25) for given function F2(ξ) =
sin(π · |ξ − t|/(1 + |t|)) at c = 3.5, t = 0.1

The solutions with two zeros p1, p2 exist for arbitrary value of c>0. The
curves corresponding to these solutions are marked with symbols 1j and 2j,
respectively. Similarly to the previous case, there is a pair of new solutions
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with parameters {p12, p22} and {p13, p23} at the point c = c2. One more pair
of solutions {p14, p24} and {p15, p25} appears at the point c = c3. Thus, when
c>c3, there are 5 di�erent solutions of system (27) each of which has two real
zeros in the interval: {p11, p21}, {p12, p22}, {p13, p23}, {p14, p24}, {p15, p25}.

Moduli |fi(ξ)| of all found solutions (26) with M = 1 and M = 2 of the
initial equation (25) in case F2(ξ) = sin(π · |ξ − t|/(1 + |t|)), c = 3.5 are shown
in Fig. 3. It turns out that the closest in modulus to the given function F2(ξ),
is f12 having one real zero at the point ξ = p12.

Complex solutions. Complex solutions of the system of transcendental equa-
tions (7), (8), (9) in the considered particular case were numerically investigated
for N = 1, M = 1. These solutions have one real and one complex parameter.
The equation system for this case is of the form

1∫

−1

F (ξ)
sin c (ξ − p1)

ξ − p1

Re
[
P̄1(p1)P1(ξ)

]

|P1(ξ)| sgn (ξ − p1) dξ = 0, (29)

1∫

−1

sin cξ
F (ξ)
|P1(ξ)| sgn (ξ − p1) dξ = 0,

1∫

−1

cos cξ
F (ξ)
|P1(ξ)| sgn (ξ − p1) dξ = 0,

where P1(ξ) = 1− η1ξ. This system was solved by the Newton method.

c

4 6 8 10
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0.2

0.15

0.1

0.05

0
c2

p12 14, p

p12

p14

c

4 6 8 10

0

-2

-1

-3

-4
c1

(b)(a)

h1

h1

v

w

h1,v h1
w

Fig. 4. Parameters of complex solution with M = 1, N = 1 to
equation (29) for F1(ξ) = |ξ − 0.1|

We investigate the real solution f12 (with one parameter p12) of initial equa-
tion (25). This solution appears at the point c = c1 (see Fig. 1, curve 12). At
the point c = c2 two complex conjugated solutions are branched o� from f12.
At c > c2 they have one real parameter p14 and one of two complex parameters
η1,2 = η′1 ± iη′′1 .

Numerical results are shown in Fig. 4 and Fig. 5 for the given functions F1(ξ)
and F2(ξ), respectively. The results demonstrate that sets of real and complex
solutions of equation (1) are not isolated and real solutions branch into the
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(b)
c2

p12 14, p

p12
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h1,v h1
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h1
v

h1
w

c2

Fig. 5. Parameters of complex solution with M = 1, N = 1 to
equation (29) for F2(ξ) = sin(π · |ξ − 0.1|/1.1)

complex ones (the example of transforming the complex nonvanishing solutions
into the real vanishing ones for this type of given function F (ξ) see in [21]).

5. Conclusions
A nonlinear Hammerstein integral equation arisen in problems with free

phase has been considered. A new class of real and complex solutions of this
equation has been investigated. Solutions have been represented in an explicit
form with a �nite number of unknown complex parameters being zeros of a
complex polynomial, and a �nite number of real parameters � zeros of these
solutions in their domain of de�nition. A new correctly determined form of ear-
lier obtained transcendental equations system has been found. The solutions
of this system have been numerically investigated for a particular case. The
branching points of these solutions with the respect to a real parameter of the
problem have been analyzed.
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NUMERICAL INVESTIGATION OF A PLAIN
STRAIN STATE FOR A BODY WITH THIN COVER

USING DOMAIN DECOMPOSITION

Ivan Dyyak, Yarema Savula, Andriy Styahar

Ðåçþìå. Ðîçãëÿäà¹òüñÿ ìîäåëü, ÿêà îïèñó¹ íàïðóæåíî äåôîðìîâàíèé
ñòàí äâîâèìiðíîãî ãåòåðîãåííîãî òiëà ç òîíêèì ïîêðèòòÿì. Ñïî÷àòêó
äîâåäåíî çáiæíiñòü iòåðàòèâíîãî àëãîðèòìó, ïîáóäîâàíîãî íà îñíîâi ïî¹ä-
íàííÿ ìåòîäó ñêií÷åííèõ åëåìåíòiâ (ÌÑÅ) òà ìåòîäó ãðàíè÷íèõ åëåìåíòiâ
(ÌÃÅ) ç âèêîðèñòàííÿì äåêîìïîçèöi¨ îáëàñòåé. Ïiñëÿ öüîãî àëãîðèòì
ïðîiëþñòðîâàíî íà ïðèêëàäi äâîâèìiðíî¨ çàäà÷i äëÿ òiëà ç ïîêðèòòÿì.

Abstract. We consider a model, that describes the plain stress state of the
2D heterogeneous elastic body with the thin cover. First we prove the con-
vergence of the iterative algorithm based on �nite element method/boundary
element method (FEM/BEM) coupling using domain decomposition. Further
we illustrate this algorithm with an example of 2D problem for the body with
a cover.

1. Introduction
A lot of structures, both natural and arti�cial, contain thin covers or thin

inclusions. Therefore, the problem of analyzing the stress-strain state of such
bodies is of great importance. Typically they consist of two or more homoge-
neous parts that have a big di�erences in physical dimensions and properties
between them. A lot of aspects of the problems, related to this subject, were
analyzed (see for example [2, 4, 5, 7, 8]). In this paper we use the combined
model, where the parts of the body with comparable physical dimensions are
described by the linear elasticity equations, whereas the sress state of the thin
cover is described by Tymoshenko shell theory equations [5]. These parts are
connected using the appropriate coupling conditions on the common bound-
aries.

In order to perform numerical analysis of our model we solve the correspond-
ing problems in thin shells by �nite element method (FEM) with bubble basis
functions, and the other parts of the body are solved numerically using bound-
ary element method (BEM) with linear basis functions; the iterative domain
decomposition algorithm is then used to connect the solutions in both domains.

In this paper we also prove the properties of our model and prove the con-
vergence of the algorithm.

†Key words. Elasticity theory, boundary element method, �nite element method, domain
decomposition.
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2. Problem statement
Let us consider a problem of plane strain of cylindrical body Ω1 with the

cover Ω2.

Fig. 1. Body with cover

The plane strain stress of the body in Ω1 can be described by [1]

∂σ11

∂x1
+

∂σ12

∂x2
= f1,

∂σ21

∂x1
+

∂σ22

∂x2
= f2

(1)

that holds for x ∈ Ω1, x = x1, x2. Here f = f1, f2 denotes the volume forces
that act on the body in Ω1. From the Hook's law it follows that the components
of the stress tensor can be written as

σij =
1
2
E1

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2,

where u(x) = u1(x), u2(x) is the displacement vector with ui being the dis-
placements in the directions xi for i = 1, 2; E1 is the Young's modulus of the
body in Ω1. In the following we assume that no volume forces act on the body
in Ω1.

Let us denote by n the outer normal vector to Ω1, and by τ � the tangent
vector. Equations (1) are considered together with the boundary conditions

uv = 0, uτ = 0, x ∈ ΓD

and

σvv = 0, σvτ = 0, x ∈ ΓN ,

where uv and uτ are the components of the stress tensor in the coordinate
system n, τ . Similarly, σvv and σvτ are the components of the stress tensor in
the n, τ coordinate system.

For the description of the cover in Ω2 we use the equations of Timoshenko
shell theory for the cylindrical shell of the form [5]
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− 1
A1

dT11

dξ1
− k1T13 = p1,

− 1
A1

dT13

dξ1
+ k1T11 = p3,

− 1
A1

dM11

dξ1
+ T13 = m1, −1 ≤ ξ1 ≤ 0,

(2)

where v1, w, γ1 are the displacements and angle of revolution in the shell; T11,
T13, M11 are the forces and moments in the shell; A1 = A1 (ξ1), k1 = k1 (ξ1)
correspond to Lame parameter and median surface curvature parameter; p1,
p3, m1 are given functions; it holds

T11 =
E2h

1− v2
2

ε11, T13 = k′G′hε13, M11 =
E2h

3

12
(
1− v2

2

)χ11, (3)

ε11 =
1

A1

dv1

dξ1
+ k1w, ε13 =

1
A1

dw

dξ1
+ γ1 − k1v1, χ11 =

1
A1

dγ1

dξ1
, (4)

p1 =
(

1 + k1
h

2

)
σ+

13 −
(

1− k1
h

2

)
σ−13,

p3 =
(

1 + k1
h

2

)
σ+

33 −
(

1− k1
h

2

)
σ−33,

m1 =
h

2

((
1 + k1

h

2

)
σ+

13 −
(

1− k1
h

2

)
σ−13

)
.

(5)

Here E2 is the Young's modulus for the shell, v2 is the Poisson's ratio; g1, g3

are the components of the volume forces vector, that act on the shell; σ+
ij , σ

−
ij ,

i, j = 1, 3 are the components of the stress tensor on the outer (ξ3 = h
2 ) and

inner (ξ3 = −h
2 ) surfaces of the shell. It is known, that in the case of isotropic

bodies we have k′ = 5
6 , G′ = E2

2(1+v2) .
At each end of the thin cover we impose boundary conditions either on the

displacements v1, w and γ1 or on the forces T11, T13 and moment M11 in the
shell (if the end is subjected to load or free). At the outer surface of the shell
we prescribe to σ+

13 and σ+
33 some given stresses.

Remark 1. The choice of 2D curvilinear coordinate system for the shell as
ξ1, ξ3 (instead of ξ1, ξ2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the cylinder being in�nite in the direction of ξ2.

On the boundary ΓI , common to both Ω1 and Ω2 we prescribe the following
coupling conditions [5]:
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uv = w, uτ = v1 − h

2
γ1,

σvv = σ−33, σvτ = σ−13.

(6)

Let us rewrite the coupling conditions (6) on ΓI as follows:

uv = w, uτ = v1 − h

2
γ1,

A1

(
1− k1

h

2

)
σvv −A1

(
1− k1

h

2

)
σ−33 = 0,

A1

(
1− k1

h

2

)
σvτ −A1

(
1− k1

h

2

)
σ−13 = 0.

(7)

3. The properties of the Steklov-Poincare operators
and convergence of the domain decomposition

iterative algorithm
Let us suppose that on the inferface ΓI the displacement is equal to ϕ =

ϕ1, ϕ2, ϕi ∈ H1 (ΓI), i = 1, 2. In the following we consider the Steklov-Poincare
operator S for our problem as well as local Steklov-Poincare operators Si, that
correspond to Ωi, i = 1, 2. Therefore, we have from (7)

〈Sϕ,ψ〉ΓI
= 〈S1ϕ,ψ〉ΓI

+ 〈S2ϕ, ψ〉ΓI
, ∀ϕ,ψ ∈ H1 (ΓI)×H1 (ΓI)

〈S1ϕ,ψ〉ΓI
=

〈
A1

(
1− k1

h

2

)
GIσvv (ϕ) , ψ1

〉

ΓI

+

+
〈

A1

(
1− k1

h

2

)
GIσvτ (ϕ) , ψ2

〉

ΓI

,

〈S2ϕ,ψ〉ΓI
=

〈
−A1

(
1− k1

h

2

)
σ−33 (ϕ) , ψ1

〉

ΓI

+

+
〈

A1

(
1− k1

h

2

)
σ−13 (ϕ) , ψ2

〉

ΓI

,

(8)

where GIσ is the trace of σ on ΓI ; 〈u, v〉ΓI
denotes the bilinear form which

formally can be written as

〈u, v〉ΓI
=

∫

ΓI

uvdΓI .

First we prove that there exists a unique solution to the problem for Steklov-
Poincare operators. For this purpose we will use the Lax-Milgram lemma.

Let Ω∗2 be a midline of Ω2. Without loss of generality we assume that g1 =
g3 = σ+

13 = σ+
33 = 0. Moreover, one notices that all the displacements de�ned
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in Ω2 are continuous with respect to ξ3, since both equations and boundary
conditions are independent of ξ3. Using the coupling conditions (7), one can
rewrite (8) as

〈S2ϕ, ψ〉ΓI
=

〈
−A1

(
1− k1

h

2

)
σ−33 (ϕ) , w̃

〉

ΓI

+

+
〈
−A1

(
1− k1

h

2

)
σ−13 (ϕ) ,

(
ṽ1 − h

2
γ̃1

)〉

ΓI

=

=
(
−A1

(
1− k1

h

2

)
σ−33, w̃

)

Ω∗2

+
(
−A1

(
1− k1

h

2

)
σ−13, ṽ1

)

Ω∗2

+

+
(

A1
h

2

(
1− k1

h

2

)
σ−13, γ̃1

)

Ω∗2

,

(9)

where
(u, v)Ω∗2 =

∫

Ω∗2

uv dΩ∗2.

Let us substitute into (9) the corresponding left sides of the system of equa-
tions (2)-(5):

〈S2ϕ,ψ〉ΓI
=

(
−dT13

dξ1
+ k1A1T11, w̃

)

Ω∗2

+

+
(
−dT11

dξ1
− k1A1T13, ṽ1

)

Ω∗2

+
(
−dM11

dξ1
+ A1T13, γ̃1

)

Ω∗2

.

After integrating by parts one can easily notice that the coerciveness and
symmetry of the Steklov-Poincare operator S2 follows from the properties of
the corresponding operator de�ned on the midline Ω∗2 which has been proven
in [2]. Therefore, one obtains

〈S2ϕ,ϕ〉ΓI
≥ c2

0∫

−1

((
dv1

dξ1

)2

+
(

dw

dξ1

)2

+
(

dγ1

dξ1

)2
)

dΩ∗2+

+c2

0∫

−1

(
v2

1 + w2 + γ2
1

)
dΩ∗2, c 6= 0.

Further,

〈S2ϕ,ϕ〉ΓI
≥ c2

1

0∫

−1

((
dw

dξ1

)2

+
(

dv1

dξ1
− h

2
dγ1

dξ1

)2
)

dΩ∗2+
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+c2
1

0∫

−1

(
w2 +

(
v1 − h

2
γ1

)2
)

dΩ∗2, c1 6= 0.

Thus, S2 is coercive. The linearity of S2 follows directly from the linearity
of the corresponding operator in Ω∗2.

Let us now prove the continuity of S2. For this purpose, �rstly one proves
the continuity of the following operator in Ω∗2

(Ay, ỹ)Ω∗2 =
(
−dT13

dξ1
+ k1A1T11, w̃

)

Ω∗2

+

+
(
−dT11

dξ1
− k1A1T13, ṽ1

)

Ω∗2

+
(
−dM11

dξ1
+ A1T13, γ̃1

)

Ω∗2

,

where y = v1, w, γ1, ỹ = ṽ1, w̃, γ̃1. Using Cauchy-Schwarz inequality, one
obtains for y, ỹ ∈ H1 (ΓI)×H1 (ΓI)×H1 (ΓI)

(Ay, ỹ)Ω∗2 =

0∫

−1

(
T13

dw̃

dξ1
+ k1A1T11w̃

)
dξ1+

+

0∫

−1

(
T11

dṽ1

dξ1
− k1A1T13ṽ1

)
dξ1 +

0∫

−1

(
M11

dγ̃1

dξ1
+ A1T13γ̃1

)
dξ1 =

=

0∫

−1

(
k′G′h

(
1

A1

dw

dξ1
+ γ1 − k1v1

)
dw̃

dξ1
+

+k1A1
E2h

1− v2
2

(
1

A1

dv1

dξ1
+ k1w

)
w̃

)
dξ1+

+

0∫

−1

(
E2h

1− v2
2

(
1

A1

dv1

dξ1
+ k1w

)
dṽ1

dξ1
−

−k1A1k
′G′h

(
1

A1

dw

dξ1
+ γ1 − k1v1

)
ṽ1

)
dξ1+

+

0∫

−1

(
E2h

3

12
(
1− v2

2

) 1
A1

dγ1

dξ1

dγ̃1

dξ1
+ A1k

′G′h
(

1
A1

dw

dξ1
+ γ1 − k1v1

)
γ̃1

)
dξ1 ≤

≤ k′G′h
1

Am
1




0∫

−1

(
dw

dξ1

)2

dξ1




1
2



0∫

−1

(
dw̃

dξ1

)2

dξ1




1
2

+
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+k′G′h




0∫

−1

(γ1)
2 dξ1




1
2



0∫

−1

(
dw̃

dξ1

)2

dξ1




1
2

+

+k′G′h
∣∣kM

1

∣∣



0∫

−1

(v1)
2 dξ1




1
2



0∫

−1

(
dw̃

dξ1

)2

dξ1




1
2

+

+
E2h

1− v2
2

∣∣kM
1

∣∣



0∫

−1

(
dv1

dξ1

)2

dξ1




1
2



0∫

−1

(w̃)2 dξ1




1
2

+

+(A1 |k1|)M E2h

1− v2
2




0∫

−1

(w)2 dξ1




1
2



0∫

−1

(w̃)2 dξ1




1
2

+

+
E2h

1− v2
2

1
Am

1




0∫

−1

(
dv1

dξ1

)2

dξ1




1
2



0∫

−1

(
dṽ1

dξ1

)2

dξ1




1
2

+

+
E2h

1− v2
2

∣∣kM
1

∣∣



0∫

−1

(w)2 dξ1




1
2



0∫

−1

(
dṽ1

dξ1

)2

dξ1




1
2

+

+
E2h

1− v2
2

∣∣kM
1

∣∣



0∫

−1

(
dw

dξ1

)2

dξ1




1
2



0∫

−1

(ṽ1)
2 dξ1




1
2

+

+k′G′h (A1 |k1|)M




0∫

−1

(γ1)
2 dξ1




1
2



0∫

−1

(ṽ1)
2 dξ1




1
2

+

+k′G′h
(
A1k

2
1

)M




0∫

−1

(v1)
2 dξ1




1
2



0∫

−1

(ṽ1)
2 dξ1




1
2

+

+
E2h

3

12
(
1− v2

2

) 1
Am

1




0∫

−1

(
dγ1

dξ1

)2

dξ1




1
2



0∫

−1

(
dγ̃1

dξ1

)2

dξ1




1
2

+
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+k′G′h




0∫

−1

(
dw

dξ1

)2

dξ1




1
2



0∫

−1

(γ̃1)
2 dξ1




1
2

+

+k′G′hAM
1




0∫

−1

(γ1)
2 dξ1




1
2



0∫

−1

(γ̃1)
2 dξ1




1
2

+

+k′G′h (A1 |k1|)M




0∫

−1

(v1)
2 dξ1




1
2



0∫

−1

(γ̃1)
2 dξ1




1
2

≤

≤ C2 ‖y‖H1(Ω∗2) ‖ỹ‖H1(Ω∗2) , C 6= 0.

In the above fM = sup
Ω∗2

f , fm = inf
Ω∗2

f . As a result, the continuity of the

operator A is proven. Taking into account the continuity of the operator A, we
can conclude

〈S2ϕ,ψ〉ΓI
≤

≤ C2




0∫

−1

((
dv1

dξ1

)2

+
(

dw

dξ1

)2

+
(

dγ1

dξ1

)2

+ v2
1 + w2 + γ2

1

)
dΩ∗2




1
2

×

×



0∫

−1

((
dṽ1

dξ1

)2

+
(

dw̃

dξ1

)2

+
(

dγ̃1

dξ1

)2

+ ṽ2
1 + w̃2 + γ̃2

1

)
dΩ∗2




1
2

, C 6= 0.

Thus, one obtains

〈S2ϕ,ψ〉ΓI
≤

≤ C2
1




0∫

−1

((
dw

dξ1

)2

+
(

dv1

dξ1
− h

2
dγ1

dξ1

)2

+ w2 +
(

v1 − h

2
γ1

)2
)

dΩ∗2




1
2

×

×



0∫

−1

((
dw̃

dξ1

)2 (
dṽ1

dξ1
− h

2
dγ̃1

dξ1

)2

+ w̃2 +
(

ṽ1 − h

2
γ̃1

)2
)

dΩ∗2




1
2

, C1 6= 0.

Let us consider now the local Steklov-Poincare operator S1.
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〈S1ϕ,ψ〉ΓI
=

〈
A1

(
1− k1

h

2

)
GIσvv (ϕ) , ψ1

〉

ΓI

+

+
〈

A1

(
1− k1

h

2

)
GIσvτ (ϕ) , ψ2

〉

ΓI

.

It can be shown similarly to the case of linear elasticity that the operator
S1 is coercive, symmetric, linear and continuous on H1/2 (ΓI) [3, 6]. From
the equivalence of the H1/2 (ΓI) and L2 (ΓI) norms with the use of Friedrichs'
inequality, we obtain, that the operator S1 is linear, continuous, symmetric and
coercive on H1 (ΓI).

To conclude, the Steklov-Poincare operator S is linear, continuous, symmet-
ric and coercive on H1 (ΓI) as the sum of the operators having such properties.
By the Lax-Milgram lemma, our problem for the Steklov-Poincare operator has
a unique solution on H1 (ΓI).

We remark that for the case of nonzero volume forces as well as nonzero
boundary conditions, the proof can be carried out in a similar way.

Let Q, Q1 and Q2 be the corresponding preconditioners in the domain de-
composition algorithm [6]. It is known, that in the case of Dirichlet-Neumann
iterations these preconditioners can be expressed through S1 and S2 as [6]

Q = Q1 + Q2,

〈Q1ϕ,ψ〉ΓI
= 〈S1ϕ,ψ〉ΓI

,

〈Q2ϕ,ψ〉ΓI
= 〈S2ϕ,ψ〉ΓI

(10)

Since the Steklov-Poincare operators S1 and S2 are linear, continuous, sym-
metric and coercive on H1 (ΓI), we conclude that the operators Q, Q1 and Q2

also possess these properties.
Therefore, by the convergence of the Dirichlet-Neumann iterations, the fol-

lowing method is convergent for 0 < θ < θmax:

ϕk+1 = ϕk + θQ−1
2

(
G−Qϕk

)
, k = 0, 1, 2, ...

where G is the right-hand side of the equation Qϕ = G.
It is worth mentioning that all the properties of the continuous operators

can be transferred to the corresponding discrete operators, and in the case of
quasi-uniform mesh, these properties also hold for the discrete operators [6].

4. Numerical example
In this section we consider a rectangular object lying in Ω that consists of

a concrete main part in Ω1 with a thin steel cover Ω2 attached to its top.
The physical dimensions are as follows: xb

1 = 0.05, xb
2 = 0.05, xe

1 = 1.05,
xe

2 = 0.55, h = 0.02. The physical parameters for the main part are ν = 0.33,
E = 25000MPa, for the shell � ν = 0.33, E = 200000MPa. The body is kept
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�xed on both sides and subjected to the load on the bottom of p = 1MPa/m2

(see Fig. 2) with zero load on top.

Fig. 2. Numerical Example

Fig. 3. Displacements in x2 direction on the interface

The solution on each iteration in the main part is done by BEM with linear
basis functions with the Galerkin method applied to integral representation
formula [1]

1
2
ui =

∫

Γ
(Fij (x, y) tj (y)) dΓ +

∫

Γ
(Gij (x, y) uj (y)) dΓ, i = 1, 2,

where Fij and Gij are the Green's function and the co-normal derivative of
Green's function respectively; ti = σijnj are the tractions.

The solution in Ω2 is seeked as the linear combination of bubble basis func-
tions which are de�ned on each element by

Φ0 (ξ) =
1− ξ

2
, Φ1 (ξ) =

1 + ξ

2

Φj (ξ) =

√
2j − 1

2

∫ ξ

−1
Pj−1 (t) dt, j = 2, 3...,
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where Pj (ξ) are the Legendre polynomials. The solution in both domains is
then combined using the iterative algorithm (10).

For our example we choose 96 equally spaced boundary elements. The re-
laxation parameter θ is taken to be equal 0.00225

In Fig. 3 the displacement in x2 direction along the interface is shown. The
displacement achieves its maximum in the middle point A of the interface.
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EXACT THREE-POINT DIFFERENCE SCHEME FOR
SECOND ORDER NONLINEAR ORDINARY

DIFFERENTIAL EQUATIONS WITH BOUNDARY
CONDITIONS OF THE THIRD KIND

Lyubomyr Gnativ, Marta Kr�ol, Myroslav Kutniv

Ðåçþìå. Äëÿ íåëiíiéíèõ çâè÷àéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü äðóãîãî
ïîðÿäêó ç ïîõiäíîþ â ïðàâié ÷àñòèíi òà êðàéîâèìè óìîâàìè òðåòüîãî
ðîäó ïîáóäîâàíî òà îá ðóíòîâàíî òî÷íó òðèòî÷êîâó ðiçíèöåâó ñõåìó íà
íåðiâíîìiðíié ñiòöi. Äîâåäåíî iñíóâàííÿ òà ¹äèíiñòü ðîçâ'ÿçêó öi¹¨ ñõåìè,
çáiæíiñòü ìåòîäó ïðîñòî¨ iòåðàöi¨ äëÿ ¨¨ ðîçâ'ÿçóâàííÿ.
Abstract. Exact three-point di�erence scheme on a nonuniform grid for
the second-order nonlinear ordinary di�erential equations with derivative in
the right-hand side and boundary conditions of the third kind is constructed
and justi�ed. The existence and uniqueness of solution of this scheme, the
convergence of the method of simple iteration for its solution are proved.

1. Introduction
The exact three-point di�erence scheme (ETDS) and three-point di�erence

schemes (TDS) of high order accuracy on a uniform grid for the second-order
nonlinear ordinary di�erential equations with no derivative in the right-hand
side and Dirichlet boundary conditions is constructed and justi�ed in [10, 11].
These results on a nonuniform grid were generalized and developed in [9] and for
monotone boundary value problems in [1, 7]. Di�erence boundary conditions
of the third kind is constructed in [6, 8].

In this chapter for the nonlinear boundary value problem (BVP)

d

dx

[
k(x)

du

dx

]
= −f

(
x, u,

du

dx

)
, x ∈ (0, 1), (1)

k(0)
du(0)
dx

− β1u(0) = −µ1, −k(1)
du(1)
dx

− β2u(1) = −µ2, (2)

where k(x), f (x, u, ξ) are given functions and β1, β2, µ1, µ2 are given numbers,
exact three-point di�erence scheme is constructed. We prove the existence and
the uniqueness of the solution of the ETDS and convergence of the method of
simple iteration its solution for the operator of BVP (1), (2) with monotone
conditions.

†Key words. Nonlinear boundary value problem, exact three-point di�erence schemes,
method of simple iteration.
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2. Existence and uniqueness of a solution
The function u(x) ∈ W 1

2 (0, 1) is a week solution of problem (1), (2), if
∀u(x), v(x) ∈ W 1

2 (0, 1) satis�es the relation
1∫

0

k(x)
du

dx

dv

dx
dx + (β1u(0)− µ1)v(0) + (β2u(1)− µ2)v(1) =

=

1∫

0

f

(
x, u,

du

dx

)
v(x)dx.

Su�cient conditions for the existence and uniqueness of a weak solution of
problem (1), (2) are given in the next theorem.
Theorem 1. Let the following assumptions be satis�ed

0 < c1 ≤ k(x) ≤ c2 ∀x ∈ [0, 1] , k(x) ∈ Q1[0, 1], (3)

fuξ(x) ≡ f (x, u, ξ) ∈ Q0[0, 1] ∀u, ξ ∈ R1,
fx (u, ξ) ≡ f (x, u, ξ) ∈ C(R2) ∀x ∈ [0, 1],

(4)

|f (x, u, ξ)− f0(x)| ≤ c(|u|)[g(x) + |ξ|] ∀x ∈ [0, 1], u, ξ ∈ R1, (5)
[f (x, u, ξ)− f (x, v, η)] (u− v) ≤ 0 ∀x ∈ [0, 1], u, v, ξ, η ∈ R1, (6)

β1 > 0, β2 > 0, (7)

then, the BVP (1), (2) has a unique solution u(x) ∈ W 1
2 (0, 1), with u(x), k(x)

du

dx∈ C[0, 1].
Here c(t) is a continuous function, f0(x) ∈ L2(0, 1), g(x) ∈ L1(0, 1), c1 , c2 , c3

are constants, Qp[0, 1] is the class of functions having p piece-wise continuous
derivatives and a �nite number of discontinuity points of �rst kind.
Proof. Due to (4) and (5) the function f (x, u, ξ) satis�es the Caratheodory
conditions [3, p.63] and belongs to the class L1(0, 1) (see e.g.[3, ñ.113]), we can
de�ne the operator A (x, u) the identity

(A (x, u) , v) =

1∫

0

k(x)
du

dx

dv

dx
dx−

1∫

0

f̃

(
x, u,

du

dx

)
v(x)dx+

+ (β1u(0)− µ1)v(0) + (β2u(1)− µ2)v(1) ∀u(x), v(x) ∈ W 1
2 (0, 1),

where
f̃(x, u, ξ) = f(x, u, ξ)− f0(x).

Note that the function u(x) ∈ W 1
2 (0, 1) is absolutely continuous on [0, 1],

ànd its generalized derivative du

dx
is equal to the classical derivative almost

everywhere on [0, 1] (see e.g. [3, ñ.74]). Thus, u(x) ∈ C[0, 1],
du

dx
∈ L2(0,1).

Let us show that the operator A (x, u) is bounded. Actually, taking into ac-
count the Cauchy-Bunyakovsky-Schwarz inequality, the conditions (3) and (5),
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the inequality c(|u|) ≤ C2 for all x ∈ [0, 1] as well as ‖v‖C[0,1] ≤ C1‖v‖1,2,(0,1)

for all v(x) ∈ W 1
2 (0, 1) (see e.g.[3, ñ.112]) we obtain

|(A (x, u) , v)| ≤




1∫

0

[
k(x)

du

dx

]2

dx





1/2 



1∫

0

[
dv

dx

]2

dx





1/2

+

+ ‖v‖C[0,1]




1∫

0

∣∣∣∣f̃
(

x, u,
du

dx

)∣∣∣∣ dx + (β1 + β2)‖u‖C[0,1] + |µ1 + µ2|

 ≤

≤
[
(c2 + C2

1 (β1 + β2)) ‖u‖1,2,(0,1) +

+C1

∥∥∥f̃
∥∥∥

0,1,(0,1)
+ C1|µ1 + µ2|

]
‖v‖1,2,(0,1) ≤

≤
[
(c2 + C1(C2 + C1(β1 + β2))) ‖u‖1,2,(0,1) + C1C2 ‖g‖0,1,(0,1)+

+C1|µ1 + µ2|] ‖v‖1,2,(0,1) ,

where

‖u‖C[0,1] = max
x∈[0,1]

|u(x)|, ‖u‖0,1,(0,1) =

1∫

0

|u(x)|dx,

‖u‖0,2,(0,1) =




1∫

0

(u(x))2 dx




1/2

,

‖u‖1,2,(0,1) =




1∫

0

(u(x))2 dx+

1∫

0

(
du

dx

)2

dx




1/2

.

If un → u0 in W 1
2 (0, 1), then f̃

(
x, un,

dun

dx

)
→ f̃

(
x, u0,

du0

dx

)
,

k(x)
dun

dx
→ k(x)

du0

dx
in L1(0, 1) (see e.g.[3, ñ.113]). Thus, for ∀v(x) ∈ W 1

2 (0, 1)
we have

lim
n→∞ (A (x, un) , v) = lim

n→∞




1∫

0

k(x)
dun

dx

dv

dx
dx−

1∫

0

f̃

(
x, un,

dun

dx

)
v(x)dx+

+(β1un(0)− µ1)v(0) + (β2un(1)− µ2)v(1)] =

=

1∫

0

k(x)
du0

dx

dv

dx
dx−

1∫

0

f̃

(
x, u0,

du0

dx

)
v(x)dx+

+ (β1u(0)− µ1)v(0) + (β2u(1)− µ2)v(1) = (A (x, u0) , v) ,

i.e. the operator A (x, u) is demicontinuous.
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Let us show that the operator A (x, u) is strongly monotone. Due to the
conditions (3), (6) and (7), taking into account the Friedrichs inequality (see
e.g. [2, ñ.187])

1∫

0

u2(x)dx ≤ 16
π2

1∫

0

(
du

dx

)2

dx +
4
π

[
u2(0) + u2(1)

]
,

we obtain

(A (x, u)−A (x, v) , u− v) =

1∫

0

k(x)
[
du

dx
− dv

dx

]2

dx−

−
1∫

0

[
f

(
x, u(x),

du

dx

)
− f

(
x, v(x),

dv

dx

)]
[u(x)− v(x)] dx+

+ β1(u(0)− v(0))2 + β2(u(1)− v(1))2 ≥ c1

∥∥∥∥
du

dx
− dv

dx

∥∥∥∥
2

0,2,(0,1)

+

+ β1(u(0)− v(0))2 + β2(u(1)− v(1))2 ≥

≥ min
{

π2c1

16
,
πβ1

4
,
πβ2

4

}
‖u− v‖2

0,2,(0,1) .

From the strong monotonicity follows the coerciveness of A (x, u).
Thus, the Browder-Minty theorem (see [3, ñ.204]) guaranties the existence of

a unique solution u ∈ W 1
2 (0, 1) of problem (1), (2). ¤

Since

k(x)
du

dx
=

x∫

0

f

(
t, u,

du

dt

)
dt + C

almost everywhere on [0,1] (see e.g. [3, ñ.134]), i.e. the �ux k(x)
du

dx
is the

unde�ned Lebesgue integral, this function is absolutely continuous on [0,1],
and the claim k(x)

du

dx
∈ C[0, 1] is shown.

3. Existence of an exact three-point difference scheme
On the closed (0, 1) we introduce an nonuniform grid

ω̂h =



xj ∈ (0, 1), j = 1, 2, ..., N − 1, hj = xj − xj−1 > 0,

N∑

j=1

hj = 1





such that the discontinuity points of functions k(x), f (x, u, ξ) coincide with the
nodes of the grid ω̂h. Denote by ρ the set of all discontinuity points and assume
that N is such that ρ ⊆ ω̂h. At points of discontinuity we use the continuity
conditions for BVP(1), (2)
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u(xi − 0) = u(xi + 0), k(x)
du

dx

∣∣∣∣
x=xi−0

= k(x)
du

dx

∣∣∣∣
x=xi+0

∀xi ∈ ρ.

We will use the following notation
ej
α = (xj−2+α, xj−1+α) , ēj

α = [xj−2+α, xj−1+α] .

Consider the boundary value problems
d

dx

(
k(x)

dY 0
2 (x, u)
dx

)
= −f

(
x, Y 0

2 (x, u),
dY 0

2 (x, u)
dx

)
, x ∈ e0

2,

k(x0)
dY 0

2 (x0, u)
dx

− β1Y
0
2 (x0, u) = −µ1, Y 0

2 (x1, u) = u(x1),

(8)

d

dx

(
k(x)

dY j
α (x, u)
dx

)
= −f

(
x, Y j

α (x, u),
dY j

α (x, u)
dx

)
, x ∈ ej

α,

Y j
α (xj−2+α, u) = u(xj−2+α), Y j

α (xj−1+α, u) = u(xj−1+α),

j = 3− α, 4− α, ..., N − α, α = 1, 2,

(9)

d

dx

(
k(x)

dY N
1 (x, u)
dx

)
= −f

(
x, Y N

1 (x, u),
dY N

1 (x, u)
dx

)
, x ∈ eN

1 ,

Y N
1 (xN−1, u) = u(xN−1),

−k(xN )
dY N

1 (xN , u)
dx

− β2Y
N
1 (xN , u) = −µ2.

(10)

Lemma 1. Let the assumptions of Theorem 1 be satis�ed. Then each of the
problems (8)-(10) has a unique solution Y j

α (x, u) ∈ W 1
2 (ej

α), j = 2 − α, 3 −
α, ..., N + 1− α, α = 1, 2, with

Y j
α (x, u), k(x)

dY j
α (x, u)
dx

∈ C(ēj
α)

and for the solution BVP (1), (2) it holds

u(x) = Y j
α (x, u), x ∈ ēj

α. (11)

Proof. We introduce the nonlinear operators for problems (8)-(10) by the equa-
tions

(A0
2(x, Y 0

2 ), v) =

x1∫

x0

k(x)
dY 0

2 (x, u)
dx

dv(x)
dx

dx−

−
x1∫

x0

f̃

(
x, Y 0

2 (x, u),
dY 0

2 (x, u)
dx

)
v(x)dx + (β1Y

0
2 (0, u)− µ1)v(0),
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(
Aj

α

(
x, Y j

α

)
, v

)
=

=

xj−1+α∫

xj−2+α

k(x)
dY j

α (x, u)
dx

dv(x)
dx

dx−
xj−1+α∫

xj−2+α

f̃

(
x, Y j

α (x, u),
dY j

α (x, u)
dx

)
v(x)dx,

(AN
1 (x, Y N

1 ), v) =

xN∫

xN−1

k(x)
dY N

1 (x, u)
dx

dv(x)
dx

dx−

−
xN∫

xN−1

f̃

(
x, Y N

1 (x, u),
dY N

1 (x, u)
dx

)
v(x)dx + (β2Y

N
1 (1, u)− µ2)v(1),

f̃(x, u, ξ) = f(x, u, ξ)− f0(x),

that true for ∀Y j
α (x, u), v(x) ∈ W 1

2 (ej
α).

Let us show that the operators A0
2

(
x, Y 0

2

)
, Aj

α

(
x, Y j

α

)
, AN

1

(
x, Y N

1

)
are

bounded. Taking into account the Cauchy-Bunyakovsky-Schwarz inequality,
the conditions (3), (5) with c(|Y j

α (x, u)|) ≤ C2, ∀x ∈ ēj
α and inequality

‖v‖
C(ēj

α)
≤ C1‖v‖1,2,ej

α
, ∀v(x) ∈ W 1

2 (ej
α), we obtain

∣∣(A0
2

(
x, Y 0

2

)
, v

)∣∣ ≤




x1∫

x0

[
k(x)

dY 0
2

dx

]2

dx





1/2 



x1∫

x0

[
dv

dx

]2

dx





1/2

+

+ ‖v‖C(ē0
2)




x1∫

x0

∣∣∣∣f̃
(

x, Y 0
2 ,

dY 0
2

dx

)∣∣∣∣ dx + β1

∥∥Y 0
2

∥∥
C(ē0

2)
+ |µ1|


 ≤

≤
[(

c2 + C2
1β1

) ∥∥Y 0
2

∥∥
1,2,e0

2
+ C1

∥∥∥f̃
∥∥∥

0,1,e0
2

+ C1 |µ1|
]
‖v‖1,2,e0

2
≤

≤
[
(c2 + C1 (C2 + C1β1))

∥∥Y 0
2

∥∥
1,2,e0

2
+ C1C2 ‖g‖0,1,e0

2
+ C1 |µ1|

]
‖v‖1,2,e0

2
,

∣∣(Aj
α

(
x, Y j

α

)
, v)

∣∣ ≤





xj−1+α∫

xj−2+α

[
k(x)

dY j
α

dx

]2

dx





1/2 



xj−1+α∫

xj−2+α

[
dv

dx

]2

dx





1/2

+

+ ‖v‖
C(ēj

α)

xj−1+α∫

xj−2+α

∣∣∣∣∣f̃
(

x, Y j
α (x, u),

dY j
α

dx

)∣∣∣∣∣ dx ≤

≤
[
c2

∥∥Y j
α

∥∥
1,2,ej

α
+ C1

∥∥∥f̃
∥∥∥

0,1,ej
α

]
‖v‖

1,2,ej
α
≤

≤
[
(c2 + C1C2)

∥∥Y j
α

∥∥
1,2,ej

α
+ C1C2 ‖g‖0,1,ej

α

]
‖v‖

1,2,ej
α

,

∣∣(AN
1

(
x, Y N

1

)
, v

)∣∣ ≤





xN∫

xN−1

[
k(x)

dY N
1

dx

]2

dx





1/2 



xN∫

xN−1

[
dv

dx

]2

dx





1/2

+



40 LYUBOMYR GNATIV, MARTA KR�OL, MYROSLAV KUTNIV

+ ‖v‖C(ēN
1 )




xN∫

xN−1

∣∣∣∣f̃
(

x, Y N
1 ,

dY N
1

dx

)∣∣∣∣ dx + β2

∥∥Y N
1

∥∥
C(ēN

1 )
+ |µ2|


 ≤

≤
[(

c2 + C2
1β2

) ∥∥Y N
1

∥∥
1,2,eN

1
+ C1

∥∥∥f̃
∥∥∥

0,1,eN
1

+ C1 |µ2|
]
‖v‖1,2,eN

1
≤

≤
[
(c2 + C1 (C2 + C1β2))

∥∥Y N
1

∥∥
1,2,eN

1
+ C1C2 ‖g‖0,1,eN

1
+ C1 |µ2|

]
‖v‖1,2,eN

1
.

The demicontinuity of operators A0
2

(
x, Y 0

2

)
, Aj

α

(
x, Y j

α

)
, AN

1

(
x, Y N

1

)
follows

from the condition (5). Really (see[3, p.113]), if Y j
αn(x, u) → Y j

α0(x, u) in
W 1

2 (ej
α), then

f̃

(
x, Y j

αn(x, u),
dY j

αn(x, u)
dx

)
→ f̃

(
x, Y j

α0(x, u),
dY j

α0(x, u)
dx

)
,

k(x)
dY j

αn(x, u)
dx

→ k(x)
dY j

α0(x, u)
dx

,

j = 2− α, 3− α, ..., N + 1− α, α = 1, 2,

in space L1(e
j
α). Thus, for ∀v(x) ∈ W 1

2 (ej
α)

lim
n→∞

(
A0

2

(
x, Y 0

2,n

)
, v

)
= lim

n→∞




x1∫

x0

k(x)
dY 0

2,n

dx

dv

dx
dx−

−
x1∫

x0

f̃

(
x, Y 0

2,n,
dY 0

2,n

dx

)
v(x)dx +

(
β1Y

0
2,n(0, u)− µ1

)
v(0)


 =

=

x1∫

x0

k(x)
dY 0

2,0

dx

dv

dx
dx−

x1∫

x0

f̃

(
x, Y 0

2,0,
dY 0

2,0

dx

)
v(x)dx+

+
(
β1Y

0
2,0(0, u)− µ1

)
v(0) =

(
A0

2

(
x, Y 0

2,0

)
, v

)
,

lim
n→∞

(
Aj

α

(
x, Y j

αn

)
, v

)

= lim
n→∞





xj−1+α∫

xj−2+α

k(x)
dY j

αn

dx

dv(x)
dx

dx −
xj−1+α∫

xj−2+α

f̃

(
x, Y j

αn,
dY j

αn

dx

)
v(x)dx





=

=

xj−1+α∫

xj−2+α

k(x)
dY j

α0

dx

dv

dx
dx−

xj−1+α∫

xj−2+α

f̃

(
x, Y j

α0,
dY j

α0

dx

)
v(x)dx =

=
(
Aj

α

(
x, Y j

α0

)
, v

)
,
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lim
n→∞

(
AN

1

(
x, Y N

1,n

)
, v

)
=

= lim
n→∞




xN∫

xN−1

k(x)
dY N

1,n

dx

dv

dx
dx−

−
xN∫

xN−1

f̃

(
x, Y N

1,n,
dY N

1,n

dx

)
v(x)dx +

(
β2Y

N
1,n(1, u)− µ2

)
v(1)


 =

=

xN∫

xN−1

k(x)
dY N

1,0

dx

dv

dx
dx−

xN∫

xN−1

f̃

(
x, Y N

1,0,
dY N

1,0

dx

)
v(x)dx+

+
(
β2Y

N
1,0(1, u)− µ2

)
v(1) =

(
AN

1

(
x, Y N

1,0

)
, v

)
,

that operators A0
2

(
x, Y 0

2

)
, Aj

α

(
x, Y j

α

)
, AN

1

(
x, Y N

1

)
are demicontinuous.

Let us show that the operators A0
2

(
x, Y 0

2

)
, Aj

α

(
x, Y j

α

)
, AN

1

(
x, Y N

1

)
are

strongly monotone. Due to the conditions (4), (7), taking into account the
Friedrichs inequalities (see e.g. [2, ñ.187])

b∫

a

u2(x)dx ≤ 16(b− a)2

π2

b∫

a

(
du

dx

)2

dx +
π(b− a)

4
u2(a),

b∫

a

u2(x)dx ≤ 16(b− a)2

π2

b∫

a

(
du

dx

)2

dx +
π(b− a)

4
u2(b)

we obtain
(
A0

2(x, Y 0
2 )−A0

2(x, Ỹ 0
2 ), Y 0

2 − Ỹ 0
2

)
=

x1∫

x0

k(x)

(
dY 0

2

dx
− dỸ 0

2

dx

)2

dx−

−
x1∫

x0

[
f

(
x, Y 0

2 ,
dY 0

2

dx

)
− f

(
x, Ỹ 0

2 ,
dỸ 0

2

dx

)][
Y 0

2 (x, u)− Ỹ 0
2 (x, u)

]
dx+

+β1

(
Y 0

2 (0, u)− Ỹ 0
2 (0, u)

)2
≥ c1

∥∥∥∥∥
dY 0

2

dx
− dỸ 0

2

dx

∥∥∥∥∥
2

0,2,e0
2

+

+β1

(
Y 0

2 (0, u)− Ỹ 0
2 (0, u)

)2
≥ min

{
π2c1

16
,
πβ1

4

} ∥∥∥Y 0
2 − Ỹ 0

2

∥∥∥
2

0,2,e0
2

(
Aj

α(x, Y j
α )−Aj

α(x, Ỹ j
α ), Y j

α − Ỹ j
α

)
=

xj−1+α∫

xj−2+α

k(x)

(
dY j

α

dx
− dỸ j

α

dx

)2

dx−
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−
xj−1+α∫

xj−2+α

[
f

(
x, Y j

α ,
dY j

α

dx

)
− f

(
x, Ỹ j

α ,
dỸ j

α

dx

)] [
Y j

α (x, u)− Ỹ j
α (x, u)

]
dx ≥

≥ c1

∥∥∥∥∥
dY j

α

dx
− dỸ j

α

dx

∥∥∥∥∥
2

0,2,ej
α

,

(
AN

1 (x, Y N
1 )−AN

1 (x, Ỹ N
1 ), Y N

1 − Ỹ N
1

)
=

xN∫

xN−1

k(x)

(
dY N

1

dx
− dỸ N

1

dx

)2

dx−

−
xN∫

xN−1

[
f

(
x, Y N

1 ,
dY N

1

dx

)
− f

(
x, Ỹ N

1 ,
dỸ N

1

dx

)][
Y N

1 (x, u)− Ỹ N
1 (x, u)

]
dx+

+β2

(
Y N

1 (1, u)− Ỹ N
1 (1, u)

)2
≥ c1

∥∥∥∥∥
dY N

1

dx
− dỸ N

1

dx

∥∥∥∥∥
2

0,2,eN
1

+

+β2

(
Y N

1 (1, u)− Ỹ N
1 (1, u)

)2
≥ min

{
π2c1

16
,
πβ2

4

} ∥∥∥Y N
1 − Ỹ N

1

∥∥∥
2

0,2,eN
1

From the strong monotonicity follows the coerciveness of operators
A0

2

(
x, Y 0

2

)
, Aj

α

(
x, Y j

α

)
, AN

1

(
x, Y N

1

)
.

Thus, the Browder-Minty theorem (see e.g.[3, p.204]) guaranties the existence
of a unique solutions of problems (8)-(10).

Since

k(x)
dY j

α (x, u)
dx

=

xj−1+α∫

xj−2+α

f

(
t, Y j

α (t, u),
dY j

α (t, u)
dt

)
dt + C,

then the function is absolutely continuous on ēj
α, that k(x)

dY j
α (x, u)
dx

∈ C(ēj
α),

j = 2− α, 3− α, ..., N + 1− α, α = 1, 2.
Since Y j

α (x, u) is the solution of (8)-(10), this function is also the solution of
BVP (1), (2) which is unique due to the assumptions of our lemma. ¤

Now we are at the position to prove the next statement

Theorem 2. Let the assumptions of Theorem 1 be satis�ed. Then there exists
the following ETDS for problem (1), (2)

(aux̄)x̂ = −T̂ x

(
f

(
ξ, u(ξ),

du(ξ)
dξ

))
, x ∈ ω̂h, (12)

a1ux,0 − β1u0 = −µ1 − h1T̂
x0

(
f

(
ξ, u(ξ),

du(ξ)
dξ

))
,

− aNux̄,N − β2uN = −µ2 − hN T̂ xN

(
f

(
ξ, u(ξ),

du(ξ)
dξ

))
.
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This ETDS has a unique solution u(x) ∀x ∈ ω̂h which coincides with the solu-
tion (1), (2) at the points of the grid ω̂h, where

ux̄,j =
uj − uj−1

hj
, ux̂,j =

uj+1 − uj

~j
, ~j =

hj + hj+1

2
,

a(xj) =
[

1
hj

V j
1 (xj)

]−1

,

T̂ xj (w(ξ)) = [~jV
j
1 (xj)]−1

xj∫

xj−1

V j
1 (ξ)w(ξ)dξ + [~jV

j
2 (xj)]−1

xj+1∫

xj

V j
2 (ξ)w(ξ)dξ,

T̂ x0(w(ξ)) = [h1V
1
1 (x1)]−1

x1∫

x0

V 0
2 (ξ)w(ξ)dξ, (13)

T̂ xN (w(ξ)) = [hNV N
1 (xN )]−1

xN∫

xN−1

V N
1 (ξ)w(ξ)dξ,

V j
1 (x) =

x∫

xj−1

dx

k(x)
, V j

2 (x) =

xj+1∫

x

dx

k(x)
.

The function u(x) on the right-hand side of (12) is de�ned by (11) and depends
only on u(xj), j = 0, 1, ..., N .

Proof. Applying the operator T̂ xj to both sides of equation (1) we obtain

T̂ xj

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
= −T̂ xj

(
f

(
ξ, u(ξ),

du(ξ)
dξ

))
, j = 0, 1, 2, ..., N,

where

T̂ x0

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
=

[
h1V

1
1 (x1)

]−1

x1∫

x0

V 0
2 (ξ)

d

dξ

[
k(ξ)

du(ξ)
dξ

]
dξ,

T̂ xj

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
=

[
~jV

j
1 (xj)

]−1
xj∫

xj−1

V j
1 (ξ)

d

dξ

[
k(ξ)

du(ξ)
dξ

]
dξ+

+
[
~jV

j
2 (xj)

]−1
xj+1∫

xj

V j
2 (ξ)

d

dξ

[
k(ξ)

du(ξ)
dξ

]
dξ, j = 1, 2, ..., N − 1,

T̂ xN

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
=

[
hNV N

1 (xN )
]−1

xN∫

xN−1

V N
1 (ξ)

d

dξ

[
k(ξ)

du(ξ)
dξ

]
dξ.
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The integration by parts implies

T̂ x0

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
=

1
h1

(a1ux,0 − β1u0 + µ1) ,

T̂ xj

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
= (aux̄)x̂,j , j = 1, 2, ..., N − 1,

T̂ xN

(
d

dξ

(
k(ξ)

du(ξ)
dξ

))
=

1
hN

(−aNux̄,N − β2uN + µ2) ,

which together with (8)-(10) proves the existence of the ETDS (12), (13).
To prove the uniqueness of the ETDS (12), (13) we consider the operator

Ah (xj , u) =

=





− 2
h1

(
a1ux,0 − β1u0 + µ1 − h1T̂

x0

(
f

(
ξ, u,

du

dξ

)))
, j = 0,

−(aux̄)x̂,j − T̂ xj

(
f

(
ξ, u,

du

dξ

))
, j = 1, 2, ..., N − 1,

2
hN

(
aNux̄,N + β2uN − µ2 − hN T̂ xN

(
f

(
ξ, u,

du

dξ

)))
, j = N

which is de�ned in the �nite-dimensional Hilbert space of grid functions H(ˆ̄ωh),
with the scalar products

(u, v) ˆ̄ωh
=

∑

ξ∈ω̂h

~(ξ)u(ξ)v(ξ) + 0, 5h1u0v0 + 0, 5hNuNvN

(u, v)ω̂+
h

=
∑

ξ∈ω̂+
h

h(ξ)u(ξ)v(ξ), ω̂+
h = ω̂h ∪ xN ,

and the norms

‖u‖0,2, ˆ̄ωh
= (u, u)1/2

ˆ̄ωh
, ‖u‖0,2,ω̂+

h
= (u, u)1/2

ω̂+
h

,

‖u‖1,2, ˆ̄ωh
=

(
‖u‖2

0,2, ˆ̄ωh
+ ‖ux̄‖2

0,2,ω̂+
h

)1/2
.

Due to condition (5) the operator Ah (x, u) is continuous. Let as show that
the operator Ah (x, u) is strongly monotone. Actually, taking into account the
equality

∑

ξ∈ ˆ̄ωh

~(ξ)T̂ ξ(w(η))g(ξ) =
N∑

j=1

xj∫

xj−1

ĝ(η)w(η)dη =

1∫

0

ĝ(η)w(η)dη,

ĝ(η) = g(xj)
V j

1 (η)

V j
1 (xj)

+ g(xj−1)
V j−1

2 (η)

V j
1 (xj)

, xj−1 ≤ η ≤ xj ,
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and the �rst di�erence Green's formula (see. [5, p.234]), we have

(Ah (x, u)−Ah (x, v) , u− v) ˆ̄ωh
=

(
a(ux̄ − vx̄)2, 1

)
ω̂+

h
+

+ β1(u0 − v0)2 + β2(uN − vN )2−

−
∑

ξ∈ ˆ̄ωh

~(ξ)T̂ ξ

(
f

(
η, u(η),

du(η)
dη

)
− f

(
η, v(η),

dv(η)
dη

))
[u(ξ)− v(ξ)] =

=
(
a(ux̄ − vx̄)2, 1

)
ω̂+

h
+ β1(u0 − v0)2 + β2(uN − vN )2−

−
1∫

0

[û(η)− v̂(η)]
[
f

(
η, u(η),

du(η)
dη

)
− f

(
η, v(η),

dv(η)
dη

)]
dη

where the functions u(x)and v(x) are de�ned by (11). Then using (6), we have

(Ah (x, u)−Ah (x, v) , u− v) ˆ̄ωh
=

(
a(ux̄ − vx̄)2, 1

)
ω̂+

h
+

+ β1(u0 − v0)2 + β2(uN − vN )2−

−
1∫

0

[u(η)− v(η)]
[
f

(
η, u(η),

du(η)
dη

)
− f

(
η, v(η),

dv(η)
dη

)]
dη−

−
1∫

0

[û(η)− v̂(η)− u(η) + v(η)]×

× d

dη

{
k(η)

d

dη
[û(η)− v̂(η)− u(η) + v(η)]

}
dη ≥

≥ (
a(ux̄ − vx̄)2, 1

)
ω̂+

h
+ β1(u0 − v0)2 + β2(uN − vN )2+

+

1∫

0

k(η)
{

d

dη
[û(η)− v̂(η)− u(η) + v(η)]

}2

dη.

Since (see [5, p.244]) γ1 ‖u‖2
0,2, ˆ̄ωh

≤ (
u2

x̄, 1
)
ω̂+

h
+β1u

2
0 +β2u

2
N , γ1 > 0, then have

(Ah (x, u)−Ah (x, v) , u− v) ˆ̄ωh
≥

≥ (
a(ux̄ − vx̄)2, 1

)
ω̂+

h
+ β1(u0 − v0)2 + β2(uN − vN )2 ≥

≥ max {c1, 1}
[(

(ux̄ − vx̄)2, 1
)
ω̂+

h
+ β1(u0 − v0)2 + β2(uN − vN )2

]
≥

≥ max {c1, 1} γ1 ‖u− v‖2
0,2, ˆ̄ωh

,

(14)

i. e. the operator Ah (x, u) is strongly monotone. This yields (see e.g.[4, p.461])
the uniqueness of the solution of the equation Ah (x, u) = 0. ¤

Lemma 2. Let the assumptions of Theorem 1 be satis�ed and

|f (x, u, ξ)− f (x, v, η)| ≤ L {|u− v|+ |ξ − η|} ∀x ∈ (0, 1), u, v, ξ, η ∈ R1.
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Then the iteration method

Bh
u(n) − u(n−1)

τ
+ Ah

(
x, u(n−1)

)
= 0, x ∈ ˆ̄ωh,

u(0)(x) =
µ1 + µ2 + µ1β2V1(1)
β1 + β2 + β1β2V1(1)

V2(x)
V1(1)

+
µ1 + µ2 + µ2β1V1(1)
β1 + β2 + β1β2V1(1)

V1(x)
V1(1)

,

(15)

Bhu =





− 2
h1

(a1ux,0 − β1u0) , j = 0,

−(aux̄)x̂,j , j = 1, 2, ..., N − 1,

2
hN

(aNux̄,N + β2uN ) , j = N,

Ah (xj , u) =

=





− 2
h1

(
a1ux,0 − β1u0 + µ1 − h1T̂

x0

(
f

(
ξ, u,

du

dξ

)))
, j = 0,

−(aux̄)x̂,j − T̂ xj

(
f

(
ξ, u,

du

dξ

))
, j = 1, 2, ..., N − 1,

2
hN

(
aNux̄,N + β2uN − µ2 − hN T̂ xN

(
f

(
ξ, u,

du

dξ

)))
, j = N

with

τ = τ0 =

[(
1 + 2L

(
2K1K2

γ1

)1/2
)(

1 +
√

2(1 + π2)L
c1π2

)]−2

,

K1 = max
{

1
c1

(
4
γ1

+
c2

c1

)
,

4
γ1

}
, K2 = max

{
1
c1

, 1
}

,

γ1 =
8 (β1 + β2 + β1β2)

2

(2 + β1) (2 + β2) (2β1 + 2β2 + β1β2)

converges in the space HBh
and the error estimate

∥∥∥u(n) − u
∥∥∥

Bh

≤ qn
∥∥∥u(0) − u

∥∥∥
Bh

, (16)

where
q =

√
1− τ0, ‖u‖Bh

= (Bhu, u)1/2
ˆ̄ωh

.

Proof. The operator Bh is selfadjoint and of positive de�nite Bh = B∗
h > 0.

From the �rst di�erence Green's formula implies that

(Bhu, u) ˆ̄ωh
=

(
au2

x̄, 1
)
ω̂+

h
+ β1u

2
0 + β2u

2
N ,

and from (14) we obtain

(Ah(x, u)−Ah (x, v) , u− v) ˆ̄ωh
≥ ‖u− v‖2

Bh
. (17)
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Using the Cauchy-Bunyakovski-Schwarz inequality we can now deduce
(Ah (x, u)−Ah (x, v) , z) ˆ̄ωh

= (Bh(u− v), z) ˆ̄ωh
−

−
∑

ξ∈ ˆ̄ωh

~(ξ)T ξ

(
f

(
η, u(η),

du

dη

)
− f

(
η, v(η),

dv

dη

))
z(ξ) =

= (Bh(u− v), z) ˆ̄ωh
−

1∫

0

[
f

(
η, u(η),

du

dη

)
− f

(
η, v(η),

dv

dη

)]
ẑ(η)dη ≤

≤ ‖u− v‖Bh
‖z‖Bh

+

+





1∫

0

[
f

(
η, u(η),

du

dη

)
− f

(
η, v(η),

dv

dη

)]2

dη





1/2 



1∫

0

[ẑ(η)]2dη





1/2

≤

≤ ‖u− v‖Bh
‖z‖Bh

+
√

2L ‖u− v‖1,2,(0,1) ‖ẑ‖0,2,(0,1) .

Since V j
1 (x) ≤ V j

1 (xj), V j−1
2 (x) ≤ V j

1 (xj) ∀x ∈ [xj−1, xj ], we have

‖ẑ‖2
0,2,(0,1) =

N∑

j=1

xj∫

xj−1

[
zj

V j
1 (x)

V j
1 (xj)

+ zj−1
V j−1

2 (x)

V j
1 (xj)

]2

dx ≤

≤ 2
N∑

j=1

xj∫

xj−1



z2

j

[
V j

1 (x)

V j
1 (xj)

]2

+ z2
j−1

[
V j−1

2 (x)

V j
1 (xj)

]2


 dx ≤ 4 ‖z‖2

0,2, ˆ̄ωh
,

(18)

∥∥∥∥
dẑ

dx

∥∥∥∥
2

0,2,(0,1)

≤
N∑

j=1

xj∫

xj−1

[
1

k(x)
1

V j
1 (xj)

(zj − zj−1)

]2

dx ≤

≤ c2

c2
1

N∑

j=1

hjajz
2
x̄,j =

c2

c2
1

(
az2

x̄, 1
)
ω̂+

h
.

(19)

So,
(Ah (x, u)−Ah (x, v) , z) ˆ̄ωh

≤ ‖u− v‖Bh
‖z‖Bh

+

+ 2
√

2L ‖u− v‖1,2,(0,1) ‖z‖0,2, ˆ̄ωh
.

(20)

Let us now show that

‖u− v‖1,2,(0,1) ≤
√

K1

(
1 +

√
2(1 + π2)L

c1π2

)
‖u− v‖Bh

. (21)

We write u(x) = ũ(x) + û(x), and reduce the problem
d

dx

[
k(x)

du

dx

]
= −f

(
x, u,

du

dx

)
, x ∈ ej

1,

u(xj−1) = uj−1, u(xj) = uj , j = 1, 2, ..., N
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to
d

dx

[
k(x)

dũ

dx

]
= −f

(
x, ũ + û,

dũ

dx
+

dû

dx

)
, x ∈ ej

1,

ũ(xj−1) = 0, ũ(xj) = 0, j = 1, 2, ..., N,

Considering (3), (6) and using a Lipschitz condition we get

π2c1

π2 + 1
‖ũ− ṽ‖2

0,2,ej
1
≤ c1

∥∥∥∥
dũ

dx
− dṽ

dx

∥∥∥∥
2

1,2,ej
1

≤
xj∫

xj−1

k(x)
[
dũ

dx
− dṽ

dx

]2

dx =

=

xj∫

xj−1

[
f

(
x, ũ(x) + û(x),

dũ

dx
+

dû

dx

)
−

−f

(
x, ṽ(x) + v̂(x),

dṽ

dx
+

dv̂

dx

)]
[ũ(x)− ṽ(x)] dx =

=

xj∫

xj−1

[
f

(
x, ũ(x) + û(x),

dũ

dx
+

dû

dx

)
−

−f

(
x, ṽ(x) + û(x),

dṽ

dx
+

dû

dx

)]
[ũ(x)− ṽ(x)]dx+

+

xj∫

xj−1

[
f

(
x, ṽ(x) + û(x),

dṽ

dx
+

dû

dx

)
−

−f

(
x, ṽ(x) + v̂(x),

dṽ

dx
+

dv̂

dx

)]
[ũ(x)− ṽ(x)]dx

≤





xj∫

xj−1

[
f

(
x, ṽ(x) + û(x),

dṽ

dx
+

dû

dx

)
−

−f

(
x, ṽ(x) + v̂(x),

dṽ

dx
+

dv̂

dx

)]2

dx

}1/2

×

×





xj∫

xj−1

[ũ(x)− ṽ(x)]2dx





1/2

≤

≤
√

2L ‖û− v̂‖
1,2,ej

1
‖ũ− ṽ‖

1,2,ej
1
,

Hence we get

‖ũ− ṽ‖
1,2,ej

1
≤
√

2(1 + π2)L
π2c1

‖û− v̂‖
1,2,ej

1
.

So taking into account inequalities (18), (19) and inequality (see [5, p.244])
γ1 ‖u‖2

0,2, ˆ̄ωh
≤ (

u2
x̄, 1

)
ω̂+

h
+ β1u

2
0 + β2u

2
N ,
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we have
‖u− v‖1,2,(0,1) ≤ ‖ũ− ṽ‖1,2,(0,1) + ‖û− v̂‖1,2,(0,1) ≤

≤
(

1 +
√

2(1 + π2)L
c1π2

)
‖û− v̂‖1,2,(0,1) ≤

≤
(

1 +
√

2(1 + π2)L
c1π2

)(
4 ‖u− v‖2

0,2, ˆ̄ωh
+

c2

c2
1

(
a (ux̄ − vx̄)2 , 1

)
ω̂+

h

)1/2

≤

≤
(

1 +
√

2(1 + π2)L
c1π2

){
1
c1

(
4
γ1

+
c2

c1

) (
a (ux̄ − vx̄)2 , 1

)
ω̂+

h

+

+
4
γ1

[
β1 (u0 − v0)

2 + β2 (uN − vN )2
]}1/2

≤

≤
√

K1

(
1 +

√
2(1 + π2)L

c1π2

)
‖u− v‖Bh

.

Based on the (18), (21) from inequality (20) we obtain
(Ah (x, u)−Ah (x, v) , z) ˆ̄ωh

≤ ‖u− v‖Bh
‖z‖Bh

+

+ 2L
√

2K1

(
1 +

√
2(1 + π2)L

c1π2

)
‖u− v‖Bh

‖z‖0,2, ˆ̄ωh
≤

≤ ‖u− v‖Bh
‖z‖Bh

+ 2L

(
2K1

γ1

)1/2
(

1 +
√

2(1 + π2)L
c1π2

)
‖u− v‖Bh

×

×
(

1
c1

(
az2

x̄, 1
)
ω̂+

h
+ β1z

2
0 + β2z

2
N

)1/2

≤

≤
(

1 + 2L

(
2K1K2

γ1

)1/2
)(

1 +
√

2(1 + π2)L
c1π2

)
‖u− v‖Bh

‖z‖Bh
.

Setting z = B−1
h (Ah (x, u)−Ah (x, v)), we obtain

∥∥B−1
h (Ah (x, u)−Ah (x, v))

∥∥
Bh
≤

≤
(

1 + 2L

(
2K1K2

γ1

)1/2
)(

1 +
√

2(1 + π2)L
c1π2

)
‖u− v‖Bh

.
(22)

Implies from (22), (17)
(
Ah (x, u)−Ah (x, v) , B−1

h (Ah (x, u)−Ah (x, v))
)

ˆ̄ωh
≤

≤
[(

1 + 2L

(
2K1K2

γ1

)1/2
)(

1 +
√

2(1 + π2)L
c1π2

)]2

‖u− v‖2
Bh
≤

≤
[(

1 + 2L

(
2K1K2

γ1

)1/2
)(

1 +
√

2(1 + π2)L
c1π2

)]2

×

(Ah (x, u)−Ah (x, v) , u− v) ˆ̄ωh
.
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Then (see [5, p.502]) the iteration method (15) converges in the space HBh
as

well as the estimate (16). ¤

Note that the space HBh
coincides with the space L2(ˆ̄ωh) and the conditions

of equivalence of norms are executed.

γ1 ‖u‖0,2, ˆ̄ωh
≤ ‖u‖Bh

≤ γ2 ‖u‖0,2, ˆ̄ωh
.

Lemma 3. Let the assumptions of Lemma 2 be satis�ed. Then the method of
simple iteration (15) and in addition to (16) the following estimate holds

∥∥∥∥∥k
du(n)

dx
− k

du

dx

∥∥∥∥∥
0,2, ˆ̄ωh

≤ M
∥∥∥u(n) − u

∥∥∥
Bh

≤ Mqn,

where

‖u‖0,2, ˆ̄ωh
=





N−1∑

j=1

~ju
2
j +

1
2
h1u

2
0 +

1
2
hNu2

N





1/2

=





1
2

N∑

j=1

hj(u2
j + u2

j−1)





1/2

.

Proof. Taking into account equality

k
du

dx

∣∣∣∣
x=xj

= ajux̄,j +
1

V j
1 (xj)

xj∫

xj−1

V j
1 (ξ)

d

dξ

[
k(ξ)

du

dξ

]
dξ =

= ajux̄,j − 1

V j
1 (xj)

xj∫

xj−1

V j
1 (ξ)f

(
ξ, u(ξ),

du

dξ

)
dξ,

k
du

dx

∣∣∣∣
x=xj−1

= ajux̄,j − 1

V j−1
2 (xj−1)

xj∫

xj−1

V j−1
2 (ξ)

d

dξ

[
k(ξ)

du

dξ

]
dξ =

= ajux̄,j +
1

V j
1 (xj)

xj∫

xj−1

V j−1
2 (ξ)f

(
ξ, u(ξ),

du

dξ

)
dξ,

the inequality (a+b)2 ≤ 2(a2+b2) as well as the Cauchy-Bunyakovsky-Schwarz
inequality and a Lipschitz condition we obtain
∥∥∥∥∥k

du(n)

dx
− k

du

dx

∥∥∥∥∥
0,2, ˆ̄ωh

=





1
2

N∑

j=1

hj

[
aju

(n)
x̄,j − ajux̄,j−

− 1

V j
1 (xj)

xj∫

xj−1

V j
1 (ξ)

(
f

(
ξ, u(n)(ξ),

du(n)

dξ

)
− f

(
ξ, u(ξ),

du

dξ

))
dξ




2

+
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+
1
2

N∑

j=1

hj

[
aju

(n)
x̄,j − ajux̄,j +

1

V j
1 (xj)

×

×
xj∫

xj−1

V j−1
2 (ξ)

(
f

(
ξ, u(n)(ξ),

du(n)

dξ

)
− f

(
ξ, u(ξ),

du

dξ

))
dξ




2


1/2

≤

≤


2

N∑

j=1

hj

[
aju

(n)
x̄,j − ajux̄,j

]2
+

N∑

j=1

hj [V
j
1 (xj)]−2×

×




xj∫

xj−1

V j
1 (ξ)

(
f

(
ξ, u(n)(ξ),

du(n)

dξ

)
− f

(
ξ, u(ξ),

du

dξ

))
dξ




2

+

+
N∑

j=1

hj [V
j
1 (xj)]−2×

×




xj∫

xj−1

V j−1
2 (ξ)

(
f

(
ξ, u(n)(ξ),

du(n)

dξ

)
− f

(
ξ, u(ξ),

du

dξ

))
dξ




2


1/2

≤

≤





2
N∑

j=1

hj

[
aju

(n)
x̄,j − ajux̄,j

]2
+

N∑

j=1

hj

xj∫

xj−1

[
V j

1 (ξ)
]2

+
[
V j−1

2 (ξ)
]2

[
V j

1 (ξ) + V j−1
2 (ξ)

]2 dξ×

×
xj∫

xj−1

[
f

(
ξ, u(n)(ξ),

du(n)

dξ

)
− f

(
ξ, u(ξ),

du

dξ

)]2

dξ





1/2

≤

≤


2

N∑

j=1

hja
2
j

[
u

(n)
x̄,j − ux̄,j

]2
+

+L2
N∑

j=1

hj

xj∫

xj−1

[∣∣∣u(n)(ξ)− u(ξ)
∣∣∣ +

∣∣∣∣∣
du(n)

dξ
− du

dξ

∣∣∣∣∣

]2

dξ





1/2

≤

≤ √
2c2

(
a

(
u

(n)
x̄ − ux̄

)2
, 1

)

ω̂+
h

+
√

2L
∥∥∥u(n) − u

∥∥∥
1,2,(0,1)

.

Then based on the inequality (21) and Lemma 2 we have

∥∥∥∥∥k
du(n)

dx
− k

du

dx

∥∥∥∥∥
0,2, ˆ̄ωh

≤
√

2

[
√

c2 +
√

K1

(
1 +

√
2(1 + π2)L

c1π2

)]
×
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×
∥∥∥u(n) − u

∥∥∥
Bh

= M1

∥∥∥u(n) − u
∥∥∥

Bh

≤ Mqn.

So, in this page ETDS is constructed and justi�ed, which you can develop (see
[6]) a three-point di�erence schemes of high order accuracy for the numerical
solution of the BVP (1), (2). ¤
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FORMULATION AND WELL-POSEDNESS
OF THE VARIATIONAL PROBLEM OF VISCOUS

HEAT-CONDUCTING FLUID ACOUSTICS

Vitaliy Horlatch, Ira Klymenko, Georgiy Shynkarenko

Ðåçþìå. Íà ïiäñòàâi çàêîíiâ çáåðåæåííÿ ñôîðìóëüîâàíî ëiíiéíó ïî÷àò-
êîâî-êðàéîâó òà âiäïîâiäíó ¨é âàðiàöiéíó çàäà÷ó ó òåðìiíàõ íåâiäîìèõ
âåêòîðà çìiùåíü òà òåìïåðàòóðè, ÿêà îïèñó¹ ïðîöåñ ïîøèðåííÿ àêóñòè÷-
íèõ õâèëü ó â'ÿçêié òåïëîïðîâiäíié ðiäèíi ç óðàõóâàííÿì çâ'ÿçàíîñòi ìåõà-
íi÷íîãî òà òåìïåðàòóðíîãî ïîëiâ. Îêðåñëåíî êëàñ ðåãóëÿðíîñòi âõiäíèõ
äàíèõ âàðiàöiéíî¨ çàäà÷i, ÿêèé ãàðàíòó¹ ¹äíiñòü òà íåïåðåðâíó çàëåæíiñòü
øóêàíîãî ðîçâ'ÿçêó â åíåðãåòè÷íié íîðìi çàäà÷i. Íà äîäàòîê äîâåäåíî
iñíóâàííÿ ðîçâ'ÿçêó ðîçãëÿäóâàíî¨ çàäà÷i ÿê ãðàíèöi ïîñëiäîâíîñòi íàïiâ-
äèñêðåòíèõ (çà ïðîñòîðîâèìè çìiííèìè) àïðîêñèìàöié Ãàëüîðêiíà.

Abstract. On the basis of conservation laws, we formulate linear initial-
boundary value problem and corresponding variational problem in terms of
displacement vector and temperature, which describes the process of spreading
of acoustic waves in viscous heat-conducting �uid taking into account connec-
tivity of mechanical and thermal �elds. We determined input data regularity
for the variational problem, which guarantee uniqueness and continuous de-
pendence of the solution in the energy norm of the problem. In addition we
prove the existence of the solution of the problem as a limit of a sequence of
the semi-discrete spatial Galerkin approximations.

1. Introduction
In most applications, when considering acoustic vibrations, the viscosity of

�uid is neglected, hence considering it to be `ideal'[5, 3]. However, there is a
considerable number of problems, which are �rst of all connected to spreading of
the high-frequency vibrations and vibrations at frequencies close to resonance,
for which neglecting medium viscosity (even for traditionally �ideal� water or
air) leads to considerable inaccuracies in solutions [1, 2, 10]. Furthermore,
analysis of dissipative loss of energy in such problems, as well as estimation of
reciprocal in�uence of acoustic and thermal processes are impossible without
introducing viscosity of the medium to the model. The general principles of
building corresponding models of acoustics of viscous heat-conducting �uid
(�dissipative acoustics� is a widely-used term) are studied in papers [11, 6,
7, 9, 10].

†Key words. Thermohydrodynamycs, dissipative acoustics, initial-boundary value problem,
variation problem, balance equation, the semi-discrete Galerkin method, well-posedness of
variation formulation.
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In paper [9], for numerical analysis of problems of dissipative acoustics with
additional assumption of vortex-free �ow in �uid, it is proposed to use Raviart-
Thomas �nite element approximations, and time integration schemes for semi-
discretized problem are built by means of Galerkin method. However, the
authors [2] proved earlier the correctness of application of classical approxima-
tions of �nite element method for solving problems of spreading acoustic waves
in viscous �uids and �uid-structure systems in terms of unknown displacements
without additional assumptions. It is proposed that a similar approach should
be used for problems of thermal and hydro acoustics.

This paper is organized as follows. In section 2, with reference to conser-
vation law, we state a fundamental system of non-linear di�erential equations
and phenomenological relations, which describe the motion of viscous heat-
conducting Newtonian �uid, and complement them with possible initial and
boundary conditions. Although the obtained system of equations is open in
relation to density, mass, velocity, temperature, entropy of the �uid, the hy-
potheses of acoustics and thermodynamics applied in sections 3 and 4 allowed
us to formulate a linear initial-boundary value problem of acoustics with closed
system of equations of motion and heat conductivity in terms of acoustic dis-
placement vector and temperature. In section 5 we state variational formulation
of this problem as the main object of our study and in section 6 we characterize
the components of its equations with regard to continuity and ellipticity. Based
on these, in section 7 we describe an important instrument for research of the
variational problem � a concretized energy equations of dissipative acoustics.
A priori estimates, constructed on this basis in sections 8 and 9, make it pos-
sible to determine (quite usable) conditions of regularity of input data of the
problem, which guarantee uniqueness and stability of its solution. To prove
existence of this solution, in section 10 we recourse to space semi-discretization
Galerkin method [4], and in section 11 we show that approximations built in
such a way converge to such displacement vector and temperature, which satisfy
variation equations of the problem of dissipative acoustics.

2. Fundamental equations of thermohydrodynamics
of Newtonian fluid

Below we will consider mathematical models which describe motion of a
viscous �uid, which in each moment of time t ∈ [0, T ], 0 < T < +∞, occupies
connected bounded domain Ω of points x = (x1, . . . , xd) of Euclidian space
Rd (in applications d = 1, 2 or 3). We denote as Γ the domain boundary
Ω, Γ = ∂Ω, and assume that it is Lipschitz-continuous. The latter hypothesis
guarantees that almost everywhere on Γ we can build a unit vector of outward
normal

n = (n1, . . . , nd), ni := cos (n, xi).
It is well known that physical features of �uid are de�ned by coe�cients

of bulk viscosity η and shear viscosity µ = const > 0, and its state can be
characterized by means of velocity vector υ = {υi(x, t)}d

i=1 of its particles,
density of its mass

ρ = ρ(x, t) ≥ 0
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and scalar �eld of hydrostatic pressure p = p(x, t). If the above-mentioned
characteristics of the �uid are de�ned, then with the help of Cauchy relations
we can �nd the components of strain tensor

eij(υ) :=
1
2

(
∂υi

∂xj
+

∂υj

∂xi

)
, i, j = 1, . . . , d, (1)

and components of stress tensor
σij(υ, p) := −pδij + τij(υ), i, j = 1, . . . , d, (2)

where τij(υ) - components of viscous stress tensor,
τij(υ) := 2µ eij(υ) + (η − 2

3µ)δij∇.υ, i, j = 1, . . . , d, (3)
δij -Kronecker`s symbol,

δij :=
{

1, i = j,
0, i 6= j.

Modeling of �uid �ows reduces to initial-boundary value problems for the
partial di�erential equation system, which are based on the laws of mass con-
servation, momentum, energy, etc. [10, 11]. So, for example, the law of mass
conservation of continuous medium states that given the absence of sources
for mass increase, the density ρ = ρ(x, t) and the vector of �uid velocity
υ = {υi(x, t)}d

i=1 satisfy the so-called equation of mass continuity
Dtρ + ρ∇.υ = 0 in Ω× (0, T ]. (4)

At the same time, laws of momentum conservation can be presented as a system
of Navier-Stokes equations

ρDtυi − ∂

∂xm
σim(υ, p) = ρfi, i = 1, . . . , d, in Ω× (0, T ], (5)

where vector f = {fi(x, t)}d
i=1 describes volume forces which act on the con-

sidered �uid.
Finally, the law of energy conservation leads to equation of continuity of

entropy s = s(x, t) formulated as
ρθDts +∇.q(θ)− τ(υ) : e(υ) = ρg in Ω× (0, T ], (6)

where g = g(x, t) is intensity of distributed in the �uid volume sources of heat,
q = {qi(x, t)}d

i=1 is vector of heat �ow, which is connected in most important
cases to the temperature θ = θ(x, t) and coe�cient of heat conductivity χ > 0
of �uid through phenomenological Fourier law

q(θ) = −χ∇θ in Ω× (0, T ]. (7)
Here and further on we shall use the summation convention from 1 to d with
repeated indexes, eliminating the sign of summation itself; e.g. scalar product
in space Rd is written as

a.b ≡ aibi :=
d∑

i=1

aibi ∀a = {ai}d
i=1 , b = {bi}d

i=1 ∈ Rd,



56 VITALIY HORLATCH, IRA KLYMENKO, GEORGIY SHYNKARENKO

and

σ : e ≡ σmieim :=
d∑

i,m=1

σmieim ∀σ = {σij}d
i,j=1 , e = {eij}d

i,j=1 ∈ Rd×d.

Finally, in the equations (4)-(7) we utilize widely-used symbols for full and
partial derivatives of a scalar function by time variable and its gradient by
spatial variable.

Dtw := w′ + υ.∇w, w′ :=
∂

∂t
w(x, t), ∇w :=

{
∂w

∂xm

}d

m=1

.

Let us complement the system (1)-(7) with appropriate initial and boundary
conditions. If on the outer surface of �uid Γσ ⊂ Γ is a�ected by the applied
stress vector σ̂ = {σ̂i(x, t)}d

i=1, then the law of momentum conservation leads
to the following boundary condition for stress:

σij(υ, p)nj = σ̂i i = 1, . . . , d, on Γσ × [0, T ]. (8)
Similarly, if a part of the boundary Γq ⊂ Γ is a�ected by heat �ow, the

normal component of which is determined by the function q̂ = q̂(x, t), then
according to the law of energy conservation, the boundary condition will be

n.q(θ) = q̂ on Γq × [0, T ]. (9)
Finally, if, for example, particles of the remaining �uid surface Γυ := Γ\Γσ

move in compliance with the known rule at the speed υ̂ = {υ̂i(x, t)}, then the
boundary condition on this part of the surface should be

υ = υ̂ on Γυ × [0, T ], Γυ := Γ\Γσ. (10)
Similarly, if it is known that the part of the surface Γθ := Γ\Γq is maintained
at the de�ned temperature, θ̂ = θ̂(x, t), then the boundary condition assigned
to it is

θ = θ̂ on Γθ × [0, T ], Γθ := Γ\Γq. (11)
We have to mention that there might be boundary conditions for di�erent
classes of applications, as a rule, formulated as linear combinations of condition
components (8), (9) and (10), (11) correspondigly.

Finally, considering the speci�cs of the structure of system relations and
equations (1)-(7), namely, the absence of pressure derivatives by time variable
in it, we come to a conclusion that during the study of viscous �uid motion it
is su�cient to reduce it to studying the initial conditions and values of mass
density, velocity vector and temperature

ρ|t=0 = ρ0, υ|t=0 = υ0, θ|t=0 = θ0 in Ω. (12)
The obtained nonlinear problem of thermohydrodynamics (1)-(12) contains

less equations (d+2) than, the unknowns (d+4), and must be complemented by
additional equations based on phenomenological deductions. For this purpose
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we shall use the hypotheses of acoustic approximation, which will allow us not
only to �nd a closed equation system, but also to linearize it.

3. Linear equation system of dissipative acoustics in terms
of acoustic displacement and temperature

Below we assume that, for one reason or another, there are connections
between the unknowns {ρ, p, s, θ}, which are expressed as

p = p(ρ, θ), s = s(ρ, θ).

It is known that pressure is related to density and temperature by the fol-
lowing thermodynamic connections [10]:

∂p

∂ρ

∣∣∣∣
θ

=
c2

γ
,

∂p

∂θ

∣∣∣∣
ρ

=
c2ρα

γ
,

where ñ is velocity of sound, α coe�cient of thermal expansion, γ = cpc
−1
v , cp

and cv speci�c heat of �uid at constant pressure and volume respectively. Then
to accuracy of an additive constant

p = p0 + c2γ−1[ρ + ραθ].

In addition we can linearize the obtained rule in the following way:
p(x, t) ∼= p0 + c2γ−1[ρ(x, t) + ρ0αθ(x, t)], (13)

where ρ0 is mass density distribution of �uid in the state undisturbed by acous-
tic factors. Here we implicitly assume that the mass density of �uid admits the
following decomposition




ρ(x, t) = ρ0 + ρ∗(x, t) ∀x ∈ Ω ∀t ∈ [0, T ],

ρ∗|t=0 = 0 in Ω,

||ρ∗|| ¿ ||ρ0||.
(14)

Now we shall convey the velocity of �uid motion as a sum formulated as{
υ(x, t) = υ0(x) + υ∗(x, t) ∀x ∈ Ω ∀t ∈ [0, T ],

υ∗|t=0 = 0 in Ω, ||υ∗|| ¿ ||υ0||
(15)

And turn to the continuity equation from (4). Bearing in mind the hypotheses
(14) and (15), we shall linearize it in the following way

ρ′ + υ.∇ρ + ρ∇.υ ∼= ρ′∗ + ρ0∇.υ∗ + υ0.∇ρ∗ ∼=
∼= ρ′∗ + ρ0∇.υ∗ = 0 in Ω× (0, T ]],

And later integrate the obtained approximation into a time interval (0, t), 0 <
t ≤ T. As a result, we �nd out that

ρ∗(x, t) = −ρ0∇.
∫ t
0 υ∗(x, τ)dτ =

= −ρ0∇.u(x, t) ∀x ∈ Ω ∀t ∈ [0, T ],
(16)

where u = u(x, t) � vector of acoustic displacement of �uid particles

u(x, t) := u0(x) +
∫ t

0
υ∗(x, τ)dτ in Ω× (0, T ].
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Taking into account (13) and (16), we come to a �nal expression for the linear
approximation of acoustic pressure in �uid

p(x, t) ∼= p0 + c2γ−1[ρ∗(x, t) + ρ0αθ(x, t)] ∼=
∼= p0 + c2γ−1ρ0[−∇.u(x, t) + αθ(x, t)] ≡
≡ p0 + π(u, θ) ∀x ∈ Ω ∀t ∈ [0, T ].

(17)

Introducing the vector of acoustic displacements u = u(x, t) also leads to change
of notation and structure of stress tensor of �uid, such as

σij(υ, p) = −pδij + τij(υ) ∼=
∼= −p0δij + π(u, θ)δij + τij(u′) =

= −p0δij + σ̄ij(u, θ) ∀x ∈ Ω ∀t ∈ [0, T ].

In other words, taking into consideration the relation (17), pressure is excluded
when determining the stress tensor, instead we include the dependence of its
components from the temperature of �uid. Taking into account the hypotheses
of acoustics and linearization of convective constituents, the motion equations
(5) undergo some changes, such as

ρ[υ′i(t) + υm
∂υi

∂xm
]− ∂σim(υ, p)

∂xm
− ρfi

∼=

∼= ρ0u
′′
i (t) +

∂

∂xi
p0 − ∂σ̄im(u′)

∂xm
− ρ0fi = 0.

It follows that considering the hypotheses of acoustics and the linearization
of motion equations, performed above, lead to excluding pressure and density
from the unknown, and after this procedure the motion equations acquire the
form

ρ0u
′′
i (t)−

∂σ̄im(u′)
∂xm

= ρ0fi − ∂

∂xi
p0,

σ̄ij(u) := −π(u, θ)δij + τim(u′),

π(u, θ) := c2γ−1ρ0[−∇.u + αθ] ,

τij(u′) := 2µ eij(u′) + (η − 2
3µ)δij∇ · u′,

eij(u) :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
in Ω× (0, T ].

Since entropy is related to density and temperature through thermodynamic
links expressed as [10]

(
∂s

∂ρ
)θ = −c2α

ργ
, (

∂s

∂θ
)ρ =

cV

θ
,

then
∂s

∂t
= −c2α

ργ

∂ρ

∂t
+

cV

θ

∂θ

∂t
∼= −c2α

ρ0γ

∂ρ

∂t
+

cV

θ0

∂θ

∂t
∼=

∼= c2α

ρ0γ
ρ0∇.u′ +

cV

θ0

∂θ

∂t
=

c2α

γ
∇.u′ +

cV

θ0

∂θ

∂t
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and after substitution of this expression in the equation of conservation of
entropy in (6) and its linearization, we will come to the equation of thermal
conductivity of viscous �uid

ρθDts +∇ · q + τ(u′) : e(u′)− ρg ∼=
∼= ρ0θ0

[
c2α

γ
∇.u′ +

cV

θ0

∂θ

∂t

]
−∇ · [χ∇θ]− τ(u′) : e(u′)− ρ0g

or
ρ0cV

∂θ

∂t
−∇ · [χ∇θ] + c2γ−1ρ0θ0α∇.u′ = ρ0g in Ω× (0, T ].

4. Linearized initial-boundary value problem
of dissipative acoustics

Summarizing the results of section 3, we come to the following linearized
initial-boundary value problem of dissipative acoustics with a closed system of
fundamental equations:

Find displacement u = {ui(x, t)}d
i=1 and temperature θ = θ(x, t)

which satisfy the linearized system of equations of dissipative
acoustics



ρ0cV θ−1
0

∂θ

∂t
− θ−1

0 ∇.[χ∇θ] + c2γ−1ρ0α∇.u′ = ρ0θ
−1
0 g,

ρ0u
′′
i (t) +

∂

∂xi
π(u, θ)− ∂τim(u′)

∂xm
= ρ0fi − ∂

∂xi
p0,

π(u, θ) := c2γ−1ρ0[−∇.u + αθ] ,

τij(u′) := 2µ eij(u′) + (η − 2
3µ)δij∇.u′,

eij(u) :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
in Ω× (0, T ],

(18)

boundary conditions



σijnj = σ̂i, on Γσ × [0, T ], Γσ ⊂ Γ,

u = û, on Γυ × [0, T ], Γυ := Γ\Γσ,

q.n = q̂, on Γq × [0, T ], Γq ⊂ Γ,

θ = θ̂ on Γθ × [0, T ], Γθ := Γ\Γq

(19)

and initial conditions
u|t=0 = u0, u′|t=0 = υ0, θ|t=0 = θ0 in Ω.

(20)

5. Variational problem of dissipative acoustics
To build a variational formulation of the initial-boundary value problem (18)-

(20), we �rst (taking into account Dirichlet boundary conditions) introduce the
space of admissible displacement vectors

V := {v = {vi}d
i=1 ∈ [H1(Ω)]d : v = 0 on Γu}

and the space of admissible temperatures
G := {ζ ∈ H1(Ω) : ζ = 0 on Γθ}
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respectively.
Now we shall multiply the equation of heat conductivity of the problem

(18)-(20) by arbitrary function ζ ∈ G and integrate the obtained result over
the domain Ω using integration by parts

∫
Ω ρ0θ

−1
0 g(t)ζdx =

=
∫
Ω{ρ0cV θ−1

0 θ′(t)− θ−1
0 ∇ · [χ∇θ(t)] + c2γ−1ρ0α∇.u′(t)}ζdxρ0 =

=
∫
Ω{ρ0cV θ−1

0 θ′(t)ζ + θ−1
0 ∇ζ.[χ∇θ(t)] + c2γ−1ρ0α∇.u′(t)}dx+

+
∫
Γq

θ−1
0 ζqm(θ)nmdγ =

=
∫
Ω[ρ0cV θ−1

0 θ′(t)ζ + θ−1
0 ∇ζ.[χ∇θ(t)] + c2γ−1ρ0α∇.u′(t)]dx+

+
∫
Γq

θ−1
0 q̂(t)ζdγ ∀ζ ∈ G.

Let us introduce bilinear and linear forms




χ(θ, ζ) :=
∫
Ω θ−1

0 χ∇ζ.∇θdx

s(θ, ζ) :=
∫
Ω ρ0cV θ−1

0 θζdx ∀θ, ζ ∈ G,

b(v, ζ) :=
∫
Ω c2γ−1ρ0αζ(∇.v)dx ∀v ∈ V ∀ζ ∈ G

(21)

and
< z, ζ >:=

∫

Ω
ρ0θ

−1
0 gζdx−

∫

Γq

θ−1
0 q̂ζdγ ∀ζ ∈ G

and re-write the equation obtained above as

s(θ′(t), ζ) + χ(θ(t), ζ) + b(u′(t), ζ) =< z(t), ζ > ∀ζ ∈ G.

Similarly, we shall multiply the equation of motion of the problem (18)-(20) by
arbitrary vector v ∈ V and integrate the obtained result over the domain Ω

∫
Ω ρ0 f(t).vdx =

=
∫
Ω

{
ρ0u

′′
i (t) +

∂

∂xm
[π[u(t), θ(t)]δim − τim(u′(t))]

}
vidx =

=
∫
Ω ρv. u′′(t)dx +

∫
Ω c2γ−1ρ0[∇.u(t)](∇.v)dx−

− ∫
Ω c2γ−1ρ0αθ(t)∇.vdx+

+
∫
Ω τ(u′(t)) : e(v)dx− ∫

Γσ
v · σ̂(t)dγ ∀v ∈ V.

Taking the obtained equation into account, we introduce the forms




m(u, v) :=
∫
Ω ρ0u.vdx,

a(u, v) :=
∫
Ω τ(u) : e(v)dx ≡

≡ ∫
Ω[2µ e(u) : e(v) + (η − 2

3µ)(∇.u)(∇.v)]dx,

c(u, v) :=
∫
Ω c2γ−1ρ0(∇.u)(∇.v)dx, ∀u, v ∈ V,

< l, v >:= m(f − ρ−1
0 ∇p0, v) +

∫

Γσ

v.σ̂dγ ∀v ∈ V (22)
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and �nally write the variational formulation of the initial-boundary value prob-
lem of dissipative acoustics





Find pair {u(t), θ(t)} ∈ V ×G such that

m(u′′(t), v) + a(u′(t), v) + c(u(t), v)−
−b(v, θ(t)) =< l(t), v >,

s(θ′(t), ζ) + χ(θ(t), ζ) + b(u′(t), ζ) =

=< z(t), ζ > ∀t ∈ (0, T ],

m(u′(0)− υ0, v) = 0, a(u(0)− u0, v) = 0, ∀v ∈ V,

s(θ(0)− θ0, ζ) = 0 ∀ζ ∈ G.

(23)

Let us remark that bilinear form b( . , . ) : G× V → R, we determined in
(21), binds variational equations of the problem (23) into a system for deter-
mining thermal and mechanical �elds of acoustic wave. On the other hand, as
we shall see later, this bilinear form describes the mechanism of heat-to-work
conversion, and, since it is present in both variational equations, a contraria.

6. Properties of components of variational problem
of dissipative acoustics

To perform the analysis of properties of bilinear forms and linear functional
which constitute the structure of variational problem (23), we shall �rst intro-
duce the following notation for spaces of scalar and vector functions

H := L2(Ω), H := Hd, H(div; Ω) := {v ∈ H : ∇.v ∈ H}.
Taking into account the additive values of the problem data (22), it is easy to
notice that continuous symmetric bilinear forms

m(u, v) =
∫
Ω ρ0u.vdx ∀u, v ∈ H,

s(θ, ζ) =
∫
Ω ρ0cvθ

−1
0 θζdx ∀ θ, ζ ∈ H

(24)

are scalar products on spaces H and H and as consequence, form norms on
them

|v||H :=
√

m(v, v) ∀v ∈ H,

||ζ||H :=
√

s(ζ, ζ) ∀ ζ ∈ H,

Equivalent to the norms of spaces [L2(Ω)]d and L2(Ω) respectfully.
Similarly, taking into consideration Korn inequality, continuous symmetric

bilinear forms

a(u, v) =
∫
Ω[2µeij(u)eij(v) + (η − 2

3µ)(∇.u)(∇.v)]dx ∀u, v ∈ V,

χ(θ, ζ) =
∫
Ω θ−1

0 (χ∇θ).(∇ζ)dx ∀ θ, ζ ∈ G
(25)

are scalar products on spaces V and G respectively, and as consequence, form
norms on them
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||v||V :=
√

a(v, v) ∀v ∈ V (equivalent || · ||[H1(Ω)]d),

||ζ||G :=
√

χ(ζ, ζ) ∀ ζ ∈ G (equivalent || · ||H1(Ω) ).

The properties of bilinear forms of variational problem that we have mentioned
here are well known for problems of elastodynamics and heat conductivity
which, as a matter of fact, form the core structure of variational problem of
dissipative acoustics.

One of the speci�c properties of the problem of dissipative acoustic is illus-
trated by a continuous symmetric bilinear form

c(u, v) =
∫

Ω
c2ρ0γ

−1(∇.u)(∇.v)dx ∀u, v ∈ V,

which is non-negative on the space of admissible displacements V and creates
seminorm in space H(div; Ω). We shall denote the latter as follows:

|v|V :=
√

c(v, v) ∀v ∈ V.

And �nally, the bilinear form

b(v, ζ) :=
∫

Ω
c2γ−1ρ0αζ(∇.v)dx ∀v ∈ V ∀ζ ∈ G,

which determines the interaction mechanism of thermal and mechanical �elds
in the process of spreading acoustic waves, is continuous on the space V × G.
Linear functionals also possess this property

< z, ζ >=
∫

Ω
ρ0θ

−1
0 gζdx−

∫

Γq

θ−1
0 q̂ζdγ ∀ζ ∈ G, (26)

< l, v >= m(f − ρ−1
0 ∇p0, v) +

∫

Γσ

v.σ̂dγ ∀v ∈ V (27)

in case that external sources of mechanics and thermal energy of the problem
possess the following properties of regularity

g ∈ H, q̂ ∈ L2(Γq), p0 ∈ H1(Ω),

f ∈ H, σ̂ ∈ [L2(Γσ)]d.

7. Energy equalities of dissipative acoustics
We shall accept for the problem equations (23) for admissible functions v =

u′(t) and ζ = θ(t) and add the �rst pair of variational equations. As a result
of elimination of summands with the value of bilinear form b(u′(t), θ(t)) (which
indicates energy conversion without losses!) and using norms from p.6, we shall
obtain energy equations of this problem

1
2

d

dt
[||u′(t)||2H + |u(t)|2V + ||θ(t)||2H ] + ||u′(t)||2V + ||θ(t)||2G =

=< l(t), u′(t) > + < z(t), θ(t) > ∀t ∈ (0, T ]

Or after integrating over arbitrary time interval [0, t], 0 ≤ t ≤ T,
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1
2
[||u′(t)||2H + |u(t)|2V + ||θ(t)||2H ] +

∫ t
0 [||u′(t)||2V + ||θ(τ)||2G]dτ =

=
1
2
[||υ(0)||2H + |u(0)|2V + ||θ(0)||2H ]+

+
∫ t
0 [< l(τ), u′(τ) > + < z(τ), θ(τ) >]dτ ∀t ∈ [0, T ].

(28)

We shall write the last equation as
KS [u′(t)] + PS [u(t)] + PC [θ(t)] +

∫ t
0{DS [u(τ)] + DC [θ(τ)]}dτ =

= KS [v0] + PS [u0] + PC [θ0] + QS [u′(t)] + QC [θ(t)] ∀t ∈ [0, T ],

where
KS [u′(t)] :=

1
2
||u′(t)||2H , PS [u(t)] :=

1
2
|u(t)|2V ,

DS [u′(t)] := ||u′(t)||2V
are instantaneous values of kinetic and potential energy, and its dissipation
caused by kinetic motion of �uid, in the function

PC [θ(t)] := ||θ(t)||2H , DC [θ(t)] := ||θ(t)||2G
they are instantaneous values of energy and its losses, caused by the existence
of heat �ow pattern of �uid,

QS [u′(t)] :=
∫ t

0
< l(τ), u′(τ) > dτ, QC [θ(t)] :=

∫ t

0
< µ(τ), θ(τ) > dτ.

8. Data regularity of a problem of dissipative acoustics
Let us consider the conditions of data regularity for the variation problem

(22), as functions of space and time variables, which can be determined on
the basis of equality analysis (28). In particular, to allow the total energy of
acoustic �eld of �uid

E[u(t), θ(t)] :=
1
2
[||u′(t)||2H + |u(t)|2V + ||θ(t)||2H ]

take �nite values in each moment of time t ∈ (0, T ], it is necessary that the
following conditions are held

u′ ∈ L∞(0, T ; H), u ∈ L∞(0, T ; H(div; Ω)), θ ∈ L∞(0, T ; H).
Similarly, to allow the the losses of acoustic �eld of �uid

D[u(t), θ(t)] :=
∫ t

0
[||u′(t)||2V + ||θ(τ)||2G]dτ

take �nite values in each moment of time (0, t] ⊂ (0, T ], it is necessary that the
following conditions are held

u′ ∈ L2(0, T ; V ), θ ∈ L2(0, T ;G).
Thus, appropriate solutions of the variational problem of dissipative acoustics
should satisfy the following conditions
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



u′ ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),

u ∈ L∞(0, T ; H(div; Ω)),

θ ∈ L∞(0, T ; H) ∩ θ ∈ L2(0, T ;G).

Now based on the requirement
∣∣∣∣
∫ t

0
[< l(τ), u′(τ) > + < z(τ), θ(τ) >]dτ

∣∣∣∣ < +∞ ∀t ∈ (0, T ]

we �nd su�cient requirements of regularity for energy sources, such as,

l ∈ L2(0, T ; V ′), z ∈ L2(0, T ; G′)

Or in more detail, taking into consideration the structures (26) and (27) of
these functionals

{
f ∈ L2(0, T ; H), σ̂ ∈ L2(0, T ; [L2(Γσ)]d),

g ∈ L2(0, T ; H), q̂ ∈ L2(0, T ; L2(Γq)).

The latter sum

E[u(0), θ(0)] :=
1
2
[||u′(0)||2H + |u(0)|2V + ||θ(0)||2H ]

of energy equality (28) shows that the total energy of the acoustic �eld at the
initial moment of time t = 0 will have �nite values, if the initial data of the
problem of dissipative acoustics are selected according to the rules

υ0 ∈ H, u0 ∈ V, θ0 ∈ H.

9. Uniqueness and stability of solution of the variational
problem of dissipative acoustics

Now we are ready to prove the next theorem

Theorem 1. Assume that the variational problem of dissipative acoustics (23),
whose data satisfy the conditions of regularity

υ0 ∈ H, u0 ∈ V, θ0 ∈ H (29)
and {

f ∈ L2(0, T ; H), σ̂ ∈ L2(0, T ; [L2(Γσ)]d),

g ∈ L2(0, T ; H), q̂ ∈ L2(0, T ; L2(Γq)),
(30)

has the solution ψ(t) = {u(t), θ(t)} .
Then the pair ψ(t) = {u(t), θ(t)} will be the unique solution to the problem

(23) and
{

L∞(0, T ; H(div; Ω)), u′ ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),

θ ∈ L∞(0, T ;H) ∩ L2(0, T ;G);
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Moreover, the solution ψ(t) = {u(t), θ(t)} is continuously dependent on the
problem data (23) and under these conditions the following a priori estimate is
correct

1
2
[||u′(t)||2H + |u(t)|2V + ||θ(t)||2H ] +

∫ t

0
[||u′(t)||2V + ||θ(τ)||2G]dτ ≤

≤ C

{
[||υ0||2H + |u0|2V + ||θ0||2H ] +

∫ t

0
[||l(τ)||2V ′ + ||(τ)||2G′ ]dτ

}
,

∀t ∈ [0, T ].

(31)

with constant C > 0, the value of which is independent of quantities under
consideration.

Proof. Bearing in mind the conditions (30)

l ∈ L2(0, T ;V ′), z ∈ L2(0, T ; G′),

we conclude that the following estimates are correct

|< l(τ), u′(τ) >| ≤ ||l(τ)||V ′ ||u′(τ)||V ≤ 1
2
‖u′(τ)‖2

V +
1
2
‖l(τ)‖2

V ′ ,

|< z(τ), θ(τ) >| ≤ 1
2
‖θ(τ)‖2

G +
1
2
‖z(τ)‖2

G′ , ∀t ∈ [0, T ].
(32)

From the initial condition of the problem (23)

m(u′(0)− υ0, v) = 0, ∀v ∈ H

After substituting v = u′(0) and v = υ0 we obtain that

||u′(0)||2H = m(u′(0), υ0) = m(υ0, u
′(0)) = m(υ0, υ0) = ||υ0||2H . (33)

Applying the same principle

|u(0)||V = ||u0||V , ||θ(0)||H = ||θ0||H . (34)
Next, taking into account the results from p.6, we �nd C = const > 0, such
that

|v|V ≤ C||v||V ∀v ∈ V

and, in particular,

|u(0)|V ≤ C||u(0)||V = C||u0||V . (35)
Summarizing (32)-(34) and (35) in energy equality (28), we come to an estimate
(31).

Based on the same estimate, by contradiction, we demonstrate the unique-
ness of the problem solution (23). ¤
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Corollary 1. Let us assume that the hypotheses of theorem 1 are satis�ed in
relation to the variation problem of dissipative acoustics (23).

Then the natural norm for its solution ψ(t) = {u(t), θ(t)} is

||ψ(t) ||2 := ||u′(t)||2H + |u(t)|2V + ||θ(t)||2H+

+
∫ t

0
[||u′(τ)||2V + ||θ(τ)||2G]dτ ∀t ∈ [0, T ].

10. Galerkin semi-discretization of variational problem
of dissipative acoustics

Let us assume that {Vh} òà {Gh} are sequences of �nite-dimensional spaces,
such that





Vh ⊂ V, Gh ⊂ G ∀h > 0,

dimVh = N = N(h) →∞,
dimGh = M = M(h) →∞, if h → 0,⋃
h>0

Vh dense in V,
⋃

h>0

Gh dense in G.

On this basis we determine the sequence of semi-discrete Galerkin approxima-
tions {ψh}h>0 = {(uh, θh)}h>0 expressed as solutions of the following varia-
tional problems:

given h > 0; find pair ψh(t) = (uh(t), θh(t)) ∈ Vh ×Gh such that




m(u′′h(t), v) + a(u′h(t), v) + c(uh(t), v)−
−b(θh(t), v) =< l(t), v >,

s(θ′h(t), ζ) + k(θh(t), ζ) + b(ζ, u′h(t)) =< z(t), ζ > ∀t ∈ (0, T ],

m(u′h(0)− υ0, v) = 0, a(uh(0)− u0, v) = 0 ∀v ∈ Vh,

s (θh(0)− θ0, ζ) = 0 ∀ζ ∈ Gh.

(36)

To concretize the structure of problems we have just formulated and the
required approximations (uh, θh) ∈ L2(0, T ; Vh×Gh), let us select certain bases
{φk(x)}N

k =1 and {ϕk(x)}M
k =1 of spaces Vh and Gh respectively. First of all, this

selection univalently determines the form of each sequence member of semi-
discrete approximations as a linear combination

uh(x, t) =
N∑

k =1

uk(t)φk(x) ,

θh(x, t) =
M∑

k =1

ϑk(t)ϕk(x) ∀(x, t) ∈ Ω× [0, T ]

with unknown coe�cients U(t) = {uk(t)}N
k=1 and Θ(t) = {ϑm(t)}M

m=1, and sec-
ondly, after application of Galerkin procedure, allows obtaining Cauchy problem
for �nding the above-mentioned coe�cients
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



MU ′′(t) + AU ′(t) + CU(t)−B Θ(t) = L(t),

S Θ′(t) + KΘ(t) + BT U ′(t) = Z(t) ∀t ∈ (0, T ],

MU ′(0) = Y 0, AU(0) = U0,

S Θ(0) = Θ0.

(37)

Here the components of matrices and vectors of the right side of equation are
calculated according to the rules

C = {c(φi, φk)}N
i,k=1 , B = {b(ϕi, φk)}M,N

i,k=1 , K = {k(ϕi, ϕk)}M
i,k=1 ,

L(t) = {< l(t), φi >}N
i=1 , Z(t) = {< z(t), ϕi >}M

i=1 ∀T ∈ (0, t],

and

Y0 = {m(υ0, φk)}N
k=1 , U0 = {a(u0, φk)}N

k=1 , Θ0 = {s(θ0, ϕi >}M
i=1.

Since the rest of the matrices

M = {m(φi, φk)}N
i,k=1 , A = {a(φi, φk)}N

i,k=1 , S = {s(ϕi, ϕk)}M
i,k=1

are the Gram matrices in systems of linearly independent functions {φk(x)}N
k =1

and {ϕk(x)}M
k =1 (in relation to scalar products described in p. 6, see (24)

and (25)), it follow that they are positively de�ned. This fact guarantees
the possibility of unique solution of the system of ordinary di�erential equa-
tions of Cauchy problem (37) and also systems of linear algebraic equations
of its initial conditions in relation to vectors U(0), U ′(0) and Θ(0). From
here it follows that for each constant h > 0 the Cauchy problem (37) has a
unique solution{U(t),Θ(t)}, which allows �nding univalently the semi-discrete
Galerkin approximation (uh, θh) ∈ L2(0, T ; Vh ×Gh) as (36).

Theorem 2. Let us assume that the data of variational problem of dissipative
acoustics (23) is characterized by the conditions of regularity

υ0 ∈ H, u0 ∈ V, θ0 ∈ H

and {
f ∈ L2(0, T ; H), σ̂ ∈ L2(0, T ; [L2(Γσ)]d),

g ∈ L2(0, T ; H), q̂ ∈ L2(0, T ; L2(Γq)).

Then for each value of discretization parameter h > 0 the following statements
will be true:

(i) the semi discretized problem has a unique solution (36) ψh = {uh, θh}
and {

uh ∈ L∞[0, T ;H(div; Ω)], u′h ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),

θh ∈ L∞(0, T ;H) ∩ L2(0, T ;G);

(ii) semi-discrete approximation ψh = {uh, θh} is continuously dependent on
the problem data (23), more, the following a priori estimate is correct
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1
2
[||u′h(t)||2H + |uh(t)|2V + ||θh(t)||2H ] +

t∫
0

[||u′h(t)||2V + ||θh(τ)||2G]dτ ≤

≤ C

{
[||υ0||2H + |u0|2V + ||θ0||2H ] +

t∫
0

[||l(τ)||2V ′ + ||z(τ)||2G′ ]dτ

}

∀t ∈ [0, T ] ∀h > 0.

with constant C > 0, the value of which is independent of quantities under
consideration.

11. Existence of solution variation problem
of dissipative acoustics

Theorem 3. Let us assume that the data of problem of dissipative acoustics
(23) are characterized by regularity conditions (29) and (30). Then the varia-
tional problem (23) has a unique solution ψ = {u, θ} and

{
uh ∈ L∞[0, T ;H(div; Ω)], u′h ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),

θh ∈ L∞(0, T ;H) ∩ L2(0, T ;G);
moreover

1
2
[||u′(t)||2H + |u(t)|2V + ||θ(t)||2H ] +

t∫

0

[||u′(t)||2V + ||θ(τ)||2G]dτ ≤

≤ C



[||υ0||2H + |u0|2V + ||θ0||2H ] +

t∫

0

[||l(τ)||2V ′ + ||z(τ)||2G′ ]dτ



 ,

∀t ∈ [0, T ].

with constant C > 0, the value of which is independent of quantities under
consideration.

Proof. Bearing in mind the theorem 1 we need to estimate the existence of
solution (23).

As it follows from the theorem 10.1, the sequence of semi-discrete Galerkin
approximations ψh = {uh, θh} (and also {u′h}) form at h → 0 bounded sets in
the space L∞(0, T ;V )× [L∞(0, T ; H)∩L2(0, T ; G)] (respectivelyL∞(0, T ; H)∩
L2(0, T ; V )).

Therefore, among them we can select convergent subsequence ψ∆ = {u∆, θ∆}
and {u′∆}such that





ψ∆ = {u∆, θ∆} →
∆→0

ψ = {u, θ} in L2(0, T ; V ×G) weakly,

u′∆ →
∆→0

u′ in L2(0, T ;V ) weakly.

After that it remains for us to show that the limit ψ = {u, θ} obtained in
this way from space L2(0, T ; V × G) is the solution of the problem (23); more
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precise, it is the matter of direct veri�cation to prove that the pair ψ = {u, θ}
satis�es the equation of this problem.

For this purpose we select the spaces Vh ⊂ V , Gh ⊂ G and W := {g ∈
C1([0, T ]) | g(T ) = 0}. Let us assume that as before {φk(x)}N

k =1 and
{ϕk(x)}M

k =1 are bases of the spaces Vh and Gh respectively and

vh(t) =
n∑

i=1

qi(t)φi ∈ Vh ∀qi ∈ W, gh(t) =
k∑

i=1

ηi(T )ϕi ∈ Gh ∀ηi ∈ W.

Due to the problem (36) we have




m(u′′∆(t), vh(t)) + a(u′∆(t), vh(t)) + c(u∆(t), vh(t))−
−b(θ∆(t), vh(t)) =< l(t), vh(t) >,

s(θ′∆(t), gh(t)) + k(θ∆(t), gh(t)) + b(gh(t), u′∆(t)) =

=< µ(t), gh(t) > ∀t ∈ (0, T ].

After time integration over the interval (0, T ) when applying integration by
parts and initial conditions from (36), we obtain





T∫
0

{−m(u′∆, v′h) + a(u′∆, vh) + c(u∆, vh)− b(θ∆, vh)− < l, vh) >}dτ =

= −m(u′∆(0), vh(0)) = −m(v0, vh(0)),
T∫
0

−s(θ∆, g′h) + k(θ∆, gh) + b(gh, u′∆)− < µ, gh >}dτ =

= −s(θ∆(0), gh(0)) = −s(θ0, gh(0)).

In the derived equations we proceed to the limit with ∆ → 0, and then again
perform integration by parts, we obtain





T∫
0

{m(u′′, vh) + a(u′, vh) + c(u, vh)− b(θ, vh)− < l, vh) >}dτ =

= m(u′(0)− v0, vh(0)) ∀vh ∈ C1([0, T ]; Vh)
T∫
0

s(θ′, gh) + k(θ, gh) + b(gh, u′)− < µ, gh >}dτ =

= s(θ(0)− θ0, gh(0)) ∀gh ∈ C1([0, T ]; Gh).

Since Vh is dense in space V , and Gh is dense in space G, the �nal equations is
true for each v ∈ C1([0, T ];V ) and g ∈ C1([0, T ]; G) .





m(u′′, v) + a(u′, v) + c(u, v)− b(θ, v) =< l, v >,

s(θ′, g) + k(θ, g) + b(g, u′) =< µ, g >,

m(u′(0)− v0, v) = 0 ∀v ∈ V, s(θ(0)− θ0, g) = 0 ∀g ∈ G.

Finally, from the initial conditions and considering (36)
a(u0, v) = a(u∆(0), v) → a(u(0), v) ∀v ∈ V .
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It follows that the pair ψ = {u, θ} is the solution of the variational problem
(23). Moreover, for this solution the energy equation (28) and estimate (31)
stay true. The uniqueness of solution of variational problem (23) results from
(31) and proof by contradiction. 2

12. Conclusions
On the basis of the conservation laws, we have formulated fundamental equa-

tions, phenomenological relations, initial and boundary conditions that describe
the motion of Newtonian viscous heat-conducting �uid in terms of mass density,
vector of velocity, pressure, entropy and temperature. By applying for this non-
closed model of hydrodynamics the hypotheses of acoustic disturbances of �uid
by linearization, we have found the initial boundary value problem and corre-
sponding variational problem only in terms of vector of acoustic displacements
and temperature, which describes the process of spreading acoustic waves with
consideration of connectivity of mechanical and thermal �elds. We have deter-
mined the regularity class of input data of variational problem, which guarantee
uniqueness and continuous dependence of the required solution in the energy
norm of the problem. In addition, the existence of solution of the considered
problem has been presented as a limit of sequence of semi-discrete (by spatial
variables) Galerkin approximations.

The obtained results form a fully-functional system for successful modeling
and analysis of numeric schemes for solving problems of dissipative acoustics.
In particular, one of such schemes can be obtained by direct application of the
one-step recurrent scheme for time integration of semi-discretized variational
problem (36) using classic approximation spaces of the �nite element method
[8]. The results of modeling and analysis of convergence of such schemes will
be presented in the nearest future.
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BALANCING PRINCIPLE FOR ITERATED TIKHONOV
METHOD OF SEVERELY ILL-POSED PROBLEMS

Ganna Myleiko, Sergei Solodky

Ðåçþìå. Â äàíié ñòàòòi ðîçãëÿäà¹òüñÿ ïðîáëåìà íàáëèæåíîãî ðîçâ'ÿçó-
âàííÿ æîðñòêî íåêîðåêòíèõ çàäà÷ çi çáóðåíèìè âõiäíèìè äàíèìè. Äî
ðåãóëþâàííÿ òàêèõ çàäà÷ áóëî çàñòîñîâàíî iòåðîâàíèé ìåòîä Òiõîíîâà
ç ïðàâèëîì çóïèíêè çãiäíî ïðèíöèïó ðiâíîâàãè. Äëÿ çàïðîïîíîâàíîãî
ïiäõîäó áóëà çíàéäåíà ïîðÿäêîâà îöiíêà ïîõèáêè íà êëàñi çàäà÷, ùî äîñ-
ëiäæóþòüñÿ.
Abstract. Considered in this paper are the problem of approximate solving
severely ill-posed problems with perturbed input data. In oder to regularize
these problems the iterated Tikhonov method with balancing principle as stop
rule was applied. For this suggesting approach an order of accuracy on the
class of problems under investigation was found.

1. Introduction
In this paper we consider the problem of approximate solving severely ill-

posed problems represented in the form of operator equation of the �rst kind
Ax = y, (1)

where A : X → Y is linear compact injective operator between Hilbert spaces X
and Y . Let us denote inner products in these spaces by (·, ·) and corresponding
norms by ‖ · ‖. The symbol ‖ · ‖ stands also for standart operator norm.
It will become clear from the context which exactly space or norm is under
consideration. Suppose also that an available perturbation yδ ∈ Y : ‖y − yδ‖ ≤
δ, δ > 0, is known instead of the right-hand side y and a perturbed operator
Ah : ‖A − Ah‖ ≤ h, h > 0, is known instead of A, where Ah : X → Y is also
linear compact injective one.

Usually, equation (1) is referred to as a severely ill-posed problem if its
solution x0 = A−1y has a �nite "smoothness" in some sense, but A is an
in�nitely smoothing operator.

A distinguishing characteristic of such kind of problems is the fact that x0

belongs to some subspace V continuously embedded in X, the singular values
of the canonical embedding operator JV from V into X tend to zero with
polynomical rate, while the singular values {σl}∞l=1 of the operator A tend to
zero exponentially.

Following [2], [7] suppose that x0 belongs to the set
MK

p,ρ(A) := {x : x = (ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv, ‖v‖ ≤ ρ}, (2)

†Key words. Severely ill-posed problem, balancing principle, iterated Tikhonov method.
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when some unknown 0 < p ≤ p1, K = 1, 2, ..., and known ρ > 0, where the
operator function (ln ... ln︸ ︷︷ ︸

K-times
(A∗A)−1)−p well de�ned by the spectral decomposi-

tion
A∗A =

∞∑

l=1

σ2
l (Ψl, ·)Ψl

of the operator A∗A, i.e.

(ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv =
∞∑

l=1

(ln ... ln︸ ︷︷ ︸
K-times

(σ−2
l ))−p(Ψl, v)Ψl.

Further, without loss of generality we assume that

‖A‖ ≤ MK , MK = m
1/2
K ,mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ...,K
,

i.e.
σl ≤ mK , l = 1, 2, ... .

Example 1. To illustrate severely ill-posed problems let us consider a problem
from satellite gravity gradiometry. With the surfaces of the Earth and the
satellite orbit assumed to be sphericals with radius r1 < r2, correspondently,
Ωri =

{
u ∈ R3, |u| = ri

}
, i = 1, 2, then one of the problems arising in this

theory ( see, e.g.,[4], [11]) could be formulated as an equation (1) with the
operator

Ax(u) :=
1

4πr1

∫

Ωr1

d2

dr2
2

(
r2
2 − r2

1

|u− v|3
)

x(v)dΩr1(v), u ∈ Ωr2 . (3)

In satellite gradiometry the exact solution of equation (1) with operator (3)
is usually considered to be an element of the spherical Sobolev space

Hs := {f ∈ L2(Ωr1) : ‖f‖2
s =

∞∑

l=0

2l+1∑

k=1

(
l +

1
2

)2s
|〈Y (1)

l,k , f〉|2 < ∞ }

for some positive index s, where

Y
(1)
l,k (ω) =

1
r1

Ym,j(
ω

r1
), ω ∈ Ωr1 ,

〈Y (1)
l,k , x〉 =

∫

Ωr1

Y
(1)
l,k (v)x(v)dΩr1(v)

and {Ym,j ,m = 0, 1, ..., j = 1, 2, ..., 2m + 1} is a set of spherical harmonics L2-
orthonormalized with respect to the unit sphere in R3.
As for the singular values σl of the operator (3) the following relation (see,
e.g., [12])

ln σ−2
l ³ l +

1
2
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is valid, then there are some constants c2 > c1 > 0 such that for any f ∈ Hs

two-sided estimate
c1‖f‖s ≤ ‖ lns(A∗A)−1f‖ ≤ c2‖f‖s

is valid. It, in particular, means that any element of Hs belongs to the set (2)
with K = 1 and p = s.
Example 2. Let us consider a two-dimensional model of the scattering by
a perfectly re�ecting periodic structure. According to Bao [3], Hettlich and
Kirsch [5], we can formulate the problem as follows. Let f ∈ C2(R) be 2π-
periodic function with f(x) > 0 for all x ∈ R. We set

Ωf = {(x, y) : y > f(x), x ∈ R}.
Then by

∂Ωf = {(x, y) : y = f(x), x ∈ R}
we denote a periodic interface which should be determined from scattering data.
For this end, we introduce an incident �eld uI(x, y; k) given by

uI(x, y; k) = exp{ik(x sin θ − y cos θ)}, (4)
which is a time-harmonic electromagnetic plane wave. Here i =

√−1 and the
constant k ∈ R is the refraction index of the material occupying Ωf , and is
given by k = ωc−1

0
√

εµ, where ω is the angular frequency, c0 is the speed of
light, µ > 0 is the magnetic permeability and ε is the dielectric coe�cient.
Moreover, in (4), θ is regarded as the angle of incidence.

We assume that
0 < |θ| < π

2
and

0 < k <
1
2π

.

Then the resulting scattering �eld uS(x, y; k) satis�es the Helmholtz equation
with the perfect re�ection boundary condition

∆uS + k2uS = 0 in Ωf , (5)
uS + uI = 0 on ∂Ωf , (6)

uS satis�es so-called outgoing wave condition:
uS =

∑

n∈Z
unei(αnx+βny), if y > ‖f‖C[0;2π]. (7)

In this example the function uS under consideration is regarded as complex-
valued. Here, we set

αn = n + k sin θ, βn =
√

k2 − (n + k sin θ)2, 0 ≤ arg βn < π. (8)
Moreover, we impose the (k sin θ)-quasi-periodicity condition over uS

uS(x + 2π, y; k) = exp(2πik sin θ)uS(x, y; k) (9)
for all (x, y) ∈ R2 (see, e.g., [3]).

Now we can state our inverse problem.
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Determine y = f(x), x ∈ R, from measurement uS(x, y; k),
x ∈ (0; 2π), where uS satis�es (5)-(7) and (9).

By the (k sin θ)-quasi-periodicity, setting
u = u(x, y; k) = uI(x, y; k) + uS(x, y; k).

We can rewrite (5)-(7) and (9) in terms of the total �eld u:
∆u + k2u = 0 in Ωf , (10)

u = 0 on ∂Ωf , (11)
u(x + 2π, y; k) = exp(2πik sin θ)u(x, y; k), (12)

u− uI satis�es the outgoing wave condition. (13)
Since k is �xed such that (8) is true, we simply write u(x, y) in place of

u(x, y; k). Then our inverse problem is equivalent to determine y = f(x), x ∈
R, from measurement

u(x, 0), x ∈ (0; 2π),
where u satis�es (10)-(13).

For �xed positive constants M0, M, k and a0, a such that
0 < M ≤ a0 ≤ a and 0 < k < 1, we set

F = {f ∈ C3+k(R) : ‖f‖C3+k[0;2π] ≤ M0, f is 2π-periodic,

djf

dxj
(0) =

djf

dxj
(2π), j = 0, 1, 2, 3,

f(0) = f(2π) = −a0, −a ≤ f(x) ≤ −M,

0 ≤ x ≤ 2π}
as an admissible set of unknown surfaces.

Denote

‖f‖C3+k[0;2π] =
3∑

j=0

∥∥∥∥
djf

dxj

∥∥∥∥
C[0;2π]

+ sup
0<x,x′≤2π,x6=x′

|(d3f
dx3 )(x)− (d3f

dx3 )(x′)|
|x− x′|k .

Let us set
Ωf = {(x, y) : y > f(x), x ∈ R} for f ∈ F .

For fj ∈ F , j = 1, 2, let us consider
∆uj + k2uj = 0 in Ωfj ,

uj = 0 on ∂Ωfj ,

uj is (k sin θ)-quasi-periodicity, i.e.
uj(x + 2π, y) = exp(2πik sin θ)uj(x, y).

We further assume that uj − uI satis�es the outgoing wave condition.
Theorem (2.1) [5] shows that in stated above conditions there exists a con-

stant C = C(k, θ,F) > 0 such that

‖f1 − f2‖C[0;2π] ≤
C

| ln | ln 1
‖(u1−u2)(·,0)‖H1(0;2π)

||
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provided that for all f1, f2 ∈ F . Hence, solution of equation (5) belongs to the
set (2) with K = 2 and p = 1.

As far as the history of studing severely ill-posed problems, we should no-
tice, that these studies could be traced back to work [8], where the estimate
of accuracy for the Tikhonov regularization were found for equations (1) with
operators of both �nite and in�nite smoothness. Moreover, some regularization
methods for severely ill-posed problems were considered in [6], where, in par-
ticular, a general class regularization methods (according to Bakushinskiy; see,
e.g., [1]) were suggested for solving (1) in the case of perturbed operators and
the right-hand sides; for choosing a regularization parameter was employed a
modi�cation from [10]. Further, severely ill-posed problems were considered, in
particular, in works [7], [2], [12], [13]. In [12] the approch for solving ill-posed
problems (1) with solutions from (2) for K = 1 was proposed. It suggests
a combination of usual Tikhonov's regularization with Morozov's discrepancy
principle. The indicated combination allows to achieve the order-optimal ac-
curacy (in the logarithmic scale) O(ln−1 1

δ ) of recovering solution from the set
M1

p,ρ(A) for any p > p0 > 0. In [13] for solving the same problem Tikhonov's
method was employed again; however, for the stop rule was considered the bal-
ancing principle. This approach also allows to attain the order-optimal accuracy
O(ln−1 1

δ ) of recovering solutions from pointed set for all 0 < p ≤ 1. Notice,
that studies initiated in [12] were extended in [14] to the more wide class of
ill-posed problems (1) with solutions (2) for any K = 1, 2, ... and p > p0 > 0.
Herewith the order-optimal accuracy of recovering solutions O((ln ... ln︸ ︷︷ ︸

K-times

1
δ )−p)

was obtained.
Unlike the works described above, in the present paper for regularization of

severely ill-posed problems (1) with solutions (2) for K ≥ 1, and perturbed
operators and the right-hand sides iterated Tikhonov's method will be applied,
and a regularization parameter will be chosen in accordance with the balancing
principle. Subsequently we will demonstrate that the suggested approach for
solving (1)-(2), which consists in combination of iterative Tikhonov's method
and balancing principle, provides accuracy O((ln ... ln︸ ︷︷ ︸

K-times

1
h+δ )−p).

We recall that iterated Tikhonov's method consists in a choosing a natural m,
initial approximation xh,δ

0,α, and consistently computation of elements xh,δ
i,α , i =

1, 2, ..., m, by the rule

xh,δ
i,α = α(A∗hAh + αI)−1xh,δ

i−1,α + α(A∗hAh + αI)−1A∗hyδ, (14)

where m ≥ p1 and as the approximate solution we take xh,δ
m,α. If xh,δ

0,α = 0 then
the element xh,δ

m,α can be rewritten in the form of

xh,δ
m,α =

m∑

i=1

αi−1(A∗hAh + αI)−iA∗hyδ. (15)
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Obviously, any numerical realization of the Tikhonov method requires us to
curry out all computations with a �nite-dimensional approximation Ah,n in-
stead of Ah. Thus we assume �nite-dimensional approximation Ah,n with
rank(Ah,n) = n to be chosen such that

‖Ah −Ah,n‖ ≤ ε, where ε =
{

δρ−1 , 0 < h ≤ δ,
h , h > δ

. (16)

Further, along with (15) we will also consider auxiliary elements:

xm,α =
m∑

i=1

αi−1(A∗A + αI)−iA∗hy, (17)

xh
m,α,n =

m∑

i=1

αi−1(A∗h,nAh,n + αI)−iA∗h,ny, (18)

xh,δ
m,α,n =

m∑

i=1

αi−1(A∗h,nAh,n + αI)−iA∗h,nyδ. (19)

Recall that generating function of the iterated Tikhonov method has the form
(see [15, p.21])

gm,α(λ) :=
m∑

i=1

αi−1(α + λ)−i =
1
λ

(1− αm

(α + λ)m
), λ 6= 0,

and satis�es inequality (see [15, p.22])

sup
0<λ<∞

√
λgm,α(λ) ≤

√
m

α
.

2. Auxiliary statements
We shall later need the following auxiliary results and facts.
Thus, for any linear operators A,B ∈ L(X, Y ) and natural m the decompo-

sition (see [15, p. 92])

Am −Bm =
m−1∑

j=0

Aj(A−B)Bm−j−1 (20)

holds true.

Lemma 1. (see [15, p. 34]) If g is bounded, Borel measurable function with
respect to the [0;MK ],
A ∈ L(X, Y ), ‖A‖ ≤ MK then

A∗g(AA∗) = g(A∗A)A∗,

Ag(A∗A) = g(AA∗)A.
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In addition, it is well-known that for any bounded linear operator B

B(αI + B∗B)−1 = (αI + BB∗)−1B,

‖(αI + B∗B)−1‖ ≤ α−1, ‖(αI + B∗B)−1B∗‖ ≤ 1
2
√

α
, (21)

‖B(αI + B∗B)−1B∗‖ ≤ 1
hold.

Before proceeding further we establish a nomber of auxiliary assortations
which will be need later for analysis of approximating properties of suggesting
approch.
Lemma 2. Let

‖A‖ ≤ MK , MK = m
1/2
K , mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ..., K
.

Then the following estimate

‖x0 − xm,α‖ ≤ ρ(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p

holds true, where xm,α determined by (17).
Proof. First, we note that

‖x0 − xm,α‖ = ‖[(ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv−

m∑

i=1

αi−1(A∗A + αI)−iA∗A(ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−pv]‖ ≤

≤ ρ‖[I −
m∑

i=1

αi−1(A∗A + αI)−iA∗A](ln ... ln︸ ︷︷ ︸
K-times

(A∗A)−1)−p‖ ≤

≤ ρ sup
0<λ≤mK

|[I −
m∑

i=1

αi−1 λ

(λ + α)i
](ln ... ln︸ ︷︷ ︸

K-times

1
λ

)−p| ≤

≤ ρ sup
0<λ≤mK

|( α

α + λ
)m(ln ... ln︸ ︷︷ ︸

K-times

1
λ

)−p|.

To estimate the expression standing under sign of supremum we consider two
events:
1) λ ≤ α. As function (ln ... ln︸ ︷︷ ︸

K-times

1
λ)−p monotonously decreases for λ, then

(
α

α + λ
)m(ln ... ln︸ ︷︷ ︸

K-times

1
λ

)−p < (ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p.

2) λ ≥ α. We consider the function

f(λ) =
1

λm
(ln ... ln︸ ︷︷ ︸
K-times

1
λ

)−p, λ ∈ (0;mK ].
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It is easy to show that

f ′(λ) = λ−m−1(ln ... ln︸ ︷︷ ︸
K-times

1
λ

)−p−1( ln ... ln︸ ︷︷ ︸
(K−1)-times

1
λ

)−1...(ln
1
λ

)−1×

×[p−mln ... ln︸ ︷︷ ︸
K-times

1
λ

ln ... ln︸ ︷︷ ︸
(K−1)-times

1
λ
· ... · ln 1

λ
].

As f ′(λ) < 0 for p < m consequently f(λ) monotonously decreases for p <
m, m > 0. Thus,

f(λ) ≤ f(α) for λ ≥ α and(
α

α + λ

)m

(ln ... ln︸ ︷︷ ︸
1
λ

K-times
)−p =

(
α

α + λ

)m

· λm · 1
λm

(ln ... ln︸ ︷︷ ︸
1
λ

K-times
)−p ≤

≤ λm

(α + λ)m
(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p ≤ (ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p.

Herewith, in general case we have

‖x0 − xm,α‖ ≤ ρ(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p,

hence, the proof is completed. ¤
Lemma 3. Let

‖A‖ ≤ MK , MK = m
1/2
K , mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ..., K
.

Then the estimate

‖xm,α − xh
m,α,n‖ ≤

ρ(m +
√

m)(h + ε)√
α

holds true, where xm,α and xh
m,α,n determened by (17), (18) correspondently.

Proof. Clearly, that
‖x0‖ = ‖(ln ... ln︸ ︷︷ ︸

K-times
(A∗A)−1)−pv‖ ≤

≤ ρ sup
0<λ≤mK

|(ln ... ln︸ ︷︷ ︸
K-times

1
λ

)−p| ≤ ρ.

‖A−Ah,n‖ ≤ ‖A−Ah‖+ ‖Ah −Ah,n‖ ≤ h + ε.

Further, we estimate the norm
‖xm,α − xh

m,α,n‖ = ‖gm,α(A∗A)A∗y − gm,α(A∗h,nAh,n)A∗h,ny‖ =

= ‖gm,α(A∗A)A∗Ax0 − gm,α(A∗h,nAh,n)A∗h,nAx0‖ ≤
≤ ρ‖gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nA‖.

We consider the expression standing under norm's sign:
gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nA =

= gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nAh,n+
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+gm,α(A∗h,nAh,n)A∗h,nAh,n − gm,α(A∗h,nAh,n)A∗h,nA = I1 + I2,

where
I1 := gm,α(A∗A)A∗A− gm,α(A∗h,nAh,n)A∗h,nAh,n,

I2 := gm,α(A∗h,nAh,n)A∗h,nAh,n − gm,α(A∗h,nAh,n)A∗h,nA.

Now we estimate each of summands I1, I2.
Thus,

I1 = (I − αm(αI + A∗A)−m − (I − αm(αI + A∗h,nAh,n)−m) =

= αm[(αI + A∗h,nAh,n)−m − (αI + A∗A)−m].
We apply the formula (20) to expression standing in braces:

I1 = αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j · [(αI + A∗h,nAh,n)−1 − (αI + A∗A)−1]×

×(αI + A∗A)−m+j+1 = αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j−1(A∗A−A∗h,nAh,n)×

×(αI + A∗A)−m+j = αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j−1(A∗ −A∗h,n)A×

×(αI + A∗A)−m+j + αm
m−1∑

j=0

(αI + A∗h,nAh,n)−j−1A∗h,n(A−Ah,n)×

×(αI + A∗A)−m+j .

Whence by Lemma 1 and estimates (21) we obtain

‖I1‖ ≤
m−1∑

j=0

[‖(αI + A∗h,nAh,n)−1‖j−1‖(αI + AA∗)−m+jA‖+

+‖(αI + A∗h,nAh,n)−j−1A∗h,n‖ · ‖(αI + A∗A)−1‖m−j ]×

×αm‖A−Ah,n‖ =
m−1∑

j=0

[α−j−1‖(αI + A∗A)−m+j−1‖×

×‖(αI + A∗A)−1A‖+ ‖(αI + A∗h,nAh,n)−1‖j×
×‖(αI + A∗h,nAh,n)−1A∗h,n‖α−m+j ]αm‖A−Ah,n‖ ≤

≤
m−1∑

j=0

[α−j−1 · α−m+j+1 · 1
2
√

α
+ α−j 1

2
√

α
· α−m+j ]αm×

×‖A−Ah,n‖ =
m−1∑

j=0

1√
α
‖A−Ah,n‖ ≤ m√

α
(h + ε). (22)

Then, due to (21) we �nd
‖I2‖ = ‖gm,α(A∗h,nAh,n)A∗h,n(Ah,n −A)‖ ≤
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≤ sup
0<λ≤mK

|
√

λgm,α(λ)| · ‖Ah,n −A‖ ≤
√

m√
α

(h + ε). (23)

Summarizing relations (22) and (23) we �nally obtain

‖xm,α,n − xh
m,α,n‖ ≤ ρ

(
m√
α

(h + ε) +
√

m√
α

(h + ε)
)

=

ρ(m +
√

m)(h + ε)√
α

.

Thus, Lemma is proved. ¤
Theorem 1. Let

‖A‖ ≤ MK , MK = m
1/2
K , mk =

{
e−1, k = 1,

e
− 1

mk−1 , k = 2, ..., K

and x0 = A−1y ∈ MK
p,ρ(A).

Then the estimate

‖x0 − xh,δ
m,α,n‖ ≤ ρ((ln ... ln︸ ︷︷ ︸

K-times

1
α

)−p +
ρ(m +

√
m)(h + ε)√
α

+
δ
√

m√
α

(24)

holds true, where xh,δ
m,α,n is approximate solution determined by (19).

Proof. Using triangle's rule we obtain
‖x0 − xh,δ

m,α,n‖ ≤ ‖x0 − xm,α‖+ ‖xm,α − xh
m,α,n‖+ ‖xh

m,α,n − xh,δ
m,α,n‖.

We consider last summand:
‖xh

m,α,n − xh,δ
m,α,n‖ = ‖gm,α(A∗h,nAh,n)A∗h,ny−

−gm,α(A∗h,nAh,n)A∗h,nyδ‖ ≤ ‖gm,α(A∗h,nAh,n)A∗h,n‖×
×‖y − yδ‖ ≤ sup

0<λ≤mK

(
√

λgm,α(λ)).

Thus, by inequality (19) we �nd

‖xh
m,α,n − xh,δ

m,α,n‖ ≤
δ
√

m√
α

. (25)

And �nally summarizing Lemma 2, Lemma 3 and relation (25) we obtain the
assertion of Theorem. ¤

3. The balancing principle
The balancing principle consists in choosing a value of regularization param-

eter α such that to balance two functions which give accuracy estimation. In
our case, these functions are represented by (see (24))

Φ(α) := ρ(ln ... ln︸ ︷︷ ︸
K-times

1
α

)−p,

Ψ(α) :=
ρ(m +

√
m)(h + ε) + δ

√
m√

α
.
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Taking into account, that (see (16))

ε =

{
δρ−1 , 0 < h ≤ δ,

h, h > δ

we can represent function Ψ(α) as

Ψ(α) =
ρc1h + c2δ√

α
,

where

c1 =

{
m +

√
m , 0 < h ≤ δ,

2(m +
√

m) , h > δ
, c2 =

{
m + 2

√
m , 0 < h ≤ δ,√

m ,h > δ
.

Thus, we can rewrite (24) in the form
‖x0 − xh,δ

m,α,n‖ ≤ Φ(α) + Ψ(α). (26)
Since φ(t) = (ln ... ln︸ ︷︷ ︸

K-times

1
t )
−p is monotonously increasing function then for in-

creasing α the function Φ(α) increases. By other side, the function Ψ(α) is
monotonously decreasing. According to behavior of functions Φ and Ψ (namely,
their monotonicity and concavity) to choose a value of regularization parameter
α = α̂ minimizing right-hand side of (26) we will balancing values Φ(α) and
Ψ(α), i.e.

Φ(α̂) = Ψ(α̂)
And, hence

‖x0 − xh,δ
m,α,n‖ ≤ 2Φ(α̂).

But, since function φ is unknown (namely, parameter p is unknown), then
such a priori choice of the best value α̂ is impossible. Therefore in considering
situation we need to make use of some a posteriori choice of α. For further
studing we choice the balancing principle as such rule.

Let describe this principle according to our problem. Consider two sets
∆N = {αi = (q2)iα0, i = 1, 2, ..., N}, q > 1,

α0 = n(h + δ)2, N : αN ³ 1,

and
M+(∆N ) = {αi ∈ ∆N : ‖xh,δ

m,αi,n − xh,δ
m,αj ,n‖ ≤

≤ 4Ψ(αj), j = 1, 2, ..., i}. (27)

Within the framework of balancing principle we take
α = α+ := max{α ∈ M+(∆N )}. (28)

as value of regularization parameter Moreover, consider auxiliary set
M(∆N ) := {αi ∈ ∆N : Φ(αi) ≤ Ψ(αi)}

and auxiliary value
α∗ := max{α ∈ M(∆N )}.

Without loss of generally we assume that
M(∆N ) 6= ∅ and ∆N \M(∆N ) 6= ∅.



BALANCING PRINCIPLE FOR ITERATED TIKHONOV METHOD ... 83

And �nally we can estimate closeness of exact and approximate solutions for
value of regularization parameter α = α+.

4. The main results

Theorem 2. Assume that the regularization parameter is choosing according
to (28). Then for any x0 ∈ MK

p,ρ(A), 0 < p ≤ p1, K = 1, 2, ..., the following
estimate

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ(ln ... ln︸ ︷︷ ︸

K-times

1
α̂

)−p

is valid.

Proof. First, we show that α∗ ≤ α+. Due to (26), behavior of functions
Φ(α), Ψ(α) and de�nition of the set M(∆N ), for any αj < α∗ we have

‖xh,δ
m,α∗,n − xh,δ

m,αj ,n‖ ≤ ‖x0 − xh,δ
m,α∗,n‖+ ‖x0 − xh,δ

m,αj ,n‖ ≤

≤ Φ(α∗) + Ψ(α∗) + Φ(αj) + Ψ(αj) ≤
≤ 2Φ(α∗) + Ψ(α∗) + Ψ(αj) ≤
≤ 3Ψ(α∗) + Ψ(αj) ≤ 4Ψ(αj).

Thus, α∗ ∈ M+(∆N ). And, hence the inequality α∗ ≤ α+ holds true. Further,
according to (26) for α = α∗ and also de�nition of sets M+(∆N ) and M(∆N )
we have

‖x0 − xh,δ
m,α+,n‖ ≤ ‖x0 − xh,δ

m,α∗,n‖+ ‖xh,δ
m,α∗,n − xh,δ

m,α+,n‖ ≤ 6Ψ(α∗). (29)

It is easy to see that from de�nition of function Ψ it follows

Ψ(q2α∗) =
ρc1h + c2δ√

q2α∗
=

1
q

ρc1h + c2δ√
α∗

=
1
q
Ψ(α∗). (30)

By other side, obviously α∗ ≤ α̂ ≤ q2α∗. According to (29) and (30) we obtain

‖x0 − xh,δ
m,α+,n‖ ≤ 6qΨ(q2α∗) ≤ 6qΨ(α̂) =

= 6qΦ(α̂) = 6qρ(ln ... ln︸ ︷︷ ︸
K-times

1
α̂

)−p.

Proof of Theorem 2 is completed. ¤

Theorem 3. Let x0 ∈ M1
p,ρ(A), 0 < p ≤ p1, and the condition of Theorem 2

is satis�es. Then for any δ, h > 0 the estimate

‖x0 − xh,δ
m,α+,n‖ ≤ cp

(
ln

ρ

ρc1h + c2δ

)−p

holds true, where cp = 6qρ
(

2p+1
2

)p
.
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Proof. According to Φ(α̂) = Ψ(α̂) we �nd

ρ ln−p 1
α̂

=
ρc1h + c2δ√

α̂
.

Then
α̂ =

(
ρc1h + c2δ

ρ

)2

ln2p 1
α̂

.

As for any x > 0 the relation lnx < x is valid, then

α̂ ≤
(

ρc1h + c2δ

ρ

)2 (
1
α̂

)2p

,

α̂ ≤
(

ρc1h + c2δ

ρ

) 2
2p+1

.

Hence, due to Theorem 2 we have

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ

(
ln

(
ρ

ρc1h + c2δ

) 2
2p+1

)−p

=

= 6qρ

(
2p + 1

2

)p (
ln

ρ

ρc1h + c2δ

)−p

.

Denoting cp = 6qρ
(

2p+1
2

)p
, we obtain the assertion of Theorem. ¤

Remark 2. In the case p1 = 1 and h = 0 the result of Theorem 3 was obtained
earlier in [13]. Thus, Theorem 3 generalizes result of [13] for any p1 > 0 and
h > 0.
Theorem 4. Let x0 ∈ MK

p,ρ(A), 0 < p ≤ p1, K = 2, 3, ... and the condition
of Theorem 2 is ful�led. Then, for su�ciently small h, δ > 0 the estimate

‖x0 − xh,δ
m,α+,n‖ ≤ cp


ln ... ln︸ ︷︷ ︸

K-times

ρ

ρc1h + c2δ



−p

holds true, where cp = 2p6qρ.
Proof. Φ(α̂) = Ψ(α̂), then

ρ


ln ... ln︸ ︷︷ ︸

K-times

1
α̂



−p

=
ρc1h + c2δ√

α̂
,

α̂ =
(

ρc1h + c2δ

ρ

)2

ln ... ln︸ ︷︷ ︸

K-times

1
α̂




2p

.

As for any x > exp(exp(...(exp︸ ︷︷ ︸
K-times

(1)))) the inequality ln ... ln︸ ︷︷ ︸
K-times

x < x is valid, then

α̂ ≤
(

ρc1h + c2δ

ρ

) 2
2p+1

,
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by that we have found the upper estimate for value of regularization parameter
which theoretically minimizing accuracy.

Thus, by Theorem 2 we obtain

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ


ln ... ln︸ ︷︷ ︸

K-times

1
α̂



−p

≤

≤ 6qρ


ln ... ln︸ ︷︷ ︸

K-times

(
ρ

ρc1h + c2δ

) 2
2p+1



−p

.

Further, we will �nd upper-bound estimate for

ln ... ln︸ ︷︷ ︸

K-times

(
ρ

ρc1h + c2δ

) 2
2p+1



−p

.

First, let K = 2, i.e. we will �nd upper-bound estimate for
[
ln ln

(
ρ

ρc1h + c2δ

) 2
2p+1

]−p

.

Obviously, that for any �xed p, 0 < p < ∞, there exist such h0, δ0 > 0 that
for all 0 < h ≤ h0 and 0 < δ ≤ δ0 the inequality

(
2p + 1

2

)2

≤ ln
ρ

c1ρh + c2δ

is ful�led. Whence, from monotonicity of ln it follows

ln
(

2p + 1
2

)2

≤ ln ln
ρ

c1ρh + c2δ
,

ln
(

2p + 1
2

)
≤ 1

2
ln ln

ρ

c1ρh + c2δ
.

ln ln
(

ρ

ρc1h + c2δ

) 2
2p+1

= ln ln
ρ

ρc1h + c2δ
− ln

2p + 1
2

≥

≥ 1
2

ln ln
ρ

ρc1h + c2δ
.

Hence, [
ln ln

(
ρ

ρc1h + c2δ

) 2
2p+1

]−p

≤ 2p

[
ln ln

ρ

ρc1h + c2δ

]−p

.

Further, in case of arbitrary K > 2 we will show, that for su�ciently small
h, δ > 0 the inequality

ln ... ln︸ ︷︷ ︸
K-times

(
ρ

ρc1h + c2δ

) 2
2p+1

≥ 1
2
ln ... ln︸ ︷︷ ︸
K-times

(
ρ

ρc1h + c2δ

)
(31)
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is ful�led. For that reason we will carry out the proof by induction. Thus, for
K = 2 the inequality (31) was proof earlier. Let assume now, that inequality
(31) is ful�led for K − 1, K ≥ 3, i.e.

ln ... ln︸ ︷︷ ︸
(K−1)-times

(
ρ

ρc1h + c2δ

) 2
2p+1

≥ 1
2

ln ... ln︸ ︷︷ ︸
(K−1)-times

(
ρ

ρc1h + c2δ

)
.

Then the relation

ln ... ln︸ ︷︷ ︸
K-times

(
ρ

ρc1h + c2δ

) 2
2p+1

≥ ln


1

2
ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ




holds true.
Further,

ln


1

2
ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ


− 1

2
ln ... ln︸ ︷︷ ︸
K-times

ρ

ρc1h + c2δ
=

= ln




1
2 ln ... ln︸ ︷︷ ︸
(K−1)-times

ρ
ρc1h+c2δ


 ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ
ρc1h+c2δ




1/2




=

= ln


1

2


 ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ




1/2

 > 0.

Hence,

ln


1

2
ln ... ln︸ ︷︷ ︸

(K−1)-times

ρ

ρc1h + c2δ


 ≥ 1

2
ln ... ln︸ ︷︷ ︸
K-times

ρ

ρc1h + c2δ
.

Thus, inequality (31) holds true, then

ln ... ln︸ ︷︷ ︸

K-times

(
ρ

ρc1h + c2δ

) 2
2p+1



−p

≤

1

2
ln ... ln︸ ︷︷ ︸
K-times

ρ

ρc1h + c2δ



−p

=

= 2p


ln ... ln︸ ︷︷ ︸

K-times

ρ

ρc1h + c2δ



−p

.

And it means, that due to Theorem 2

‖x0 − xh,δ
m,α+,n‖ ≤ 6qρ2p


ln ... ln︸ ︷︷ ︸

K-times

ρ

ρc1h + c2δ



−p

.

Denoting cp = 2p6qρ we complete the proof of Theorem. ¤
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Remark 3. In [14] for solving severely ill-posed problems (1)-(2) with perturbed
right-hand sides yδ and exactly given operators A a combination of standard
Tikhonov regularization with Morozov's discrepancy principle was considered.
This approach allows to achieve the accuracy O((ln ... ln︸ ︷︷ ︸

K-times

1
δ )−p) among the set

MK
p,ρ(A),K ∈ N, of solutions. Moreover, in [14] the lower bound p0 of possible

values for parameter p (p > p0 > 0) was used. By other side, in Theorem 4 was
shown that the strategy (14), (27), (28) of solving severely ill-posed problems
guarantees the same order of accuracy on the same set MK

p,ρ(A) of solutions.
But in this case the upper bound of possible values for p (0 < p ≤ p1) is used.

Remark 4. In [14] for solving problems (1) with perturbed right-hand sides
only and with desired solutions from the set (2) for arbitrary K ∈ N was shown

e(MK
p,ρ(A), δ) = O((ln ... ln︸ ︷︷ ︸

K-times

1
δ
)−p),

where

e(MK
p,ρ(A), δ) := inf

S:Y→X
sup

x0∈MK
p,ρ(A)

sup
yδ∈Y :‖y−yδ‖≤δ

‖x0 − Syδ‖.

Hence, e(MK
p,ρ(A), δ) determines the least possible accuracy of solving (1) on the

set (2) among all approximate methods S : Y → X constructed on perturbed
data yδ. It means (see Theorem (4.1) [14]) that the value O((ln ... ln︸ ︷︷ ︸

K-times

1
δ )−p) gives

the order-optimal accuracy.
On the other hand, it follows from Theorems 3, 4 when h = 0 the received ac-

curacy of approximate solving (1) has the representation O((ln ... ln︸ ︷︷ ︸
K-times

1
δ )−p). This,

in its turn, means that in the case of exactly given operator A the suggested
approach also provides the order-optimal accuracy of solving severely ill-posed
problems.
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STREAMLINE DIFFUSION SCHEMES FOR SOLVING
A NONLINEAR HYPERBOLIC BOUNDARY

VALUE PROBLEM

Davood Rostamy, Fatemeh Zabihi

Ðåçþìå. Â ðîáîòi âèâ÷à¹òüñÿ ìåòîä ñêií÷åííèõ åëåìåíòiâ äëÿ ðîçâ'ÿçó-
âàííÿ íåëiíiéíî¨ ãiïåðáîëi÷íî¨ êðàéîâî¨ çàäà÷i. Ç'ÿñîâàíî ïèòàííÿ iñíó-
âàííÿ i ¹äèíîñòi ðîçâ'ÿçêó, à òàêîæ îöiíåíî àïðiîðíó òà àïîñòåðiîðíó
ïîõèáêè. Îòðèìàíî îöiíêó ñòiéêîñòi i îïòèìàëüíi ïîðÿäêè çáiæíîñòi,
ïîêàçàíî àïðiîðíó îöiíêó O(hk+1/2), äå h � êðîê ñiòêè i k � ñòåïiíü êóñêî-
âî-ïîëiíîìiàëüíèõ ôóíêöié íà ñêií÷åííèõ åëåìåíòàõ, â îáëàñòÿõ, äå òî÷-
íèé ðîçâ'ÿçîê ¹ ãëàäêèé àáî íåãëàäêèé. Äëÿ ïðîïîíîâàíîãî ìåòîäó íàâå-
äåíî ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ.
Abstract. In this paper we study the streamline di�usion �nite element
method for treating a nonlinear hyperbolic boundary value problem. The
existence and uniqueness are discussed. Also, a priori and a posteriori errors
are estimated for this problem. We derive the stability estimate and optimal
convergence rates, showing an a priori error estimate of order O(hk+1/2) in
domains where the exact solution is smooth or non-smooth; here h is the mesh
width and k is the degree of the piecewise polynomial functions spanning the
�nite element subspaces. Also, some numerical illustrations are given for the
presented method.
AMS Subject Classi�cation: 65M12, 65M15, 65M60, 82D10, 35L80

1. Introduction
In this paper we consider the following wave equation:

utt − uxx = λF (x, t, u), (x, t) ∈ Ω, (1)

αu(t, t)− β
∂u

∂n1
(t, t) = αu(1 + t, 1− t) + β

∂u

∂n2
(1 + t, 1− t), 0 ≤ t ≤ 1, (2)

u(x, 0) = 0, 0 ≤ x ≤ 2. (3)
Where Ω is as follows:

Ω = {(x, t) : 0 ≤ t ≤ 1, t ≤ x ≤ 2− t}
and the parameters λ, α, β ∈ R such that α2 + β2 6= 0. The two vectors n1 and
n2 are the exterior unit normals and ∂u

∂n1
, ∂u

∂n2
are the normal derivatives. Also,

F (x, t, u) ≥ 0 and ∂F (x,t,u)
∂u are arbitrary continuous in Ω. The above boundary

value problem for mass-spring system has an analog the continuum case which
was �rst formulated [21, 34] as above (see also ([23, 26, 27, 28])). Our problem is
a generalization of the problems studied by Kalmenov [21], and [26, 27, 28, 38].
The purpose of this paper is to present extension of the streamline di�usion

†Key words. Streamline di�usion method, hyperbolic problems, wave equations, error es-
timate, �nite element.
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(Sd) method to a nonlinear mass-spring system. The mathematical study of the
mass spring system with this triangle domain has been considered by several
authors in various settings (see [11, 22, 24, 37, 39]). One of the applications of
mass spring systems to arch structure railways and long bridge-like structures
reduces the dynamic and static loads due to train. Also, we can see this system
to simulate facial soft tissue of great interest to many medical forms and make
visible to applications([18, 20]).

Streamline di�usion ideas carry out slightly better than the di�erent �nite
element methods for smooth solutions and non-smooth solutions of the �rst
order hyperbolic problems ( [32, 34, 35]) which both is higher order accurate
and has good stability properties (see [2, 3, 5, 13, 14, 15, 16, 17, 19, 25, 31]).
Due to the fact that the added di�usion removes oscillations near boundary
layers([4, 6, 7, 8, 9, 12]). Hughes and Brooks [25] introduced this idea in the
case of stationary problems. The mathematical analysis of this method for
linear problems, together with extensions to time-dependent problems using
space-time elements, was started in Johnson and Navert [31] and was continued
in [29, 30, 33, 36]. In this paper we shall go into the details for the nonlinear
hyperbolic problem and a new version of Sd method for solving the problem is
given. The remaining structure of this article is organized as follows:
The uniqueness of the problem is discussed in section 2. In Section 3, we
present and analyze the Sd method. In Sect. 4, by using the Sd method, we
investigate stability and obtain an a priori error estimations for this system.
A posteriori error estimations are given in sections 5, 6 and 7. Finally, in
Sect. 8 the paper would be completed by the inclusion of numerical results
to provide experimental support for the theoretical results and show how the
method performs in practice.

2. Existence and Uniqueness of the solution
In the following propositions, it is shown that there is a unique solution

for (1)-(3) in linear and nonlinear form for F (x, t, v) in Sobolev space ([1]) of
W 1

2 (Ω) ∩W 1
2 (∂Ω) ∩ C(Ω). In [28] we observe that the linear problem is con-

sidered and in [42] existence theorems for some nonlinear hyperbolic equations
are given, but in this section the uniqueness of nonlinear form is studied.

Proposition 1. For k = 0, 1, 2, ... given λ, α, β ∈ R and F ∈ Hk(Ω), problem
of (1)-(3) has a unique solution in the Hilbert space u ∈ Hk+2(Ω).

Proof. We extend the proof of theorem's Iraniparst (see [28]) and we use some
propositions and lemmas in [42] (see 2.3 and 4.3). We in�uence the change of
variables X = x− t and Y = x + t into (1)-(3). Hence, we have

VXY = γF̂ (X, Y, V (X,Y )), (X, Y ) ∈ Ω′, (4)

Ω′ = {(X, Y ) : 0 ≤ Y ≤ 2, 0 ≤ X ≤ Y }
αV (0, Y ) + βVX(0, Y ) = αV (Y, 2) + βVY (Y, 2), 0 ≤ Y ≤ 2

V (X, X) = 0, 0 ≤ X ≤ 2,
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where F̂ (X, Y, V (X,Y )) = F (x+y
2 , −x+y

2 , u(x+y
2 , −x+y

2 )) and γ = −λ
4 . Integrat-

ing Eq. (4) and using the above boundary conditions we have

V (ξ, η) =γ(
∫ ∫

Ω′
G(ξ, η; X, Y )F̂ (X,Y, V (X, Y )) dX dY

−
∫ 2

0
r(ξ, η, X)(F̂ (0, X, V (0, X))− F̂ (2, X, V (X, 2))dX),

such that η, ξ ∈ Ω′ and

r(ξ, η, X) =





0 if 0 ≤ X ≤ ξ

β/(2α) if ξ ≤ X ≤ η

0 if η ≤ X ≤ 2.

In [21, 34, 35, 28] the Green's function, G(ξ, η;X,Y ) described. Also, in [42,
35, 28] we observe that the critical eigenvalues are extended based on spectral
theory (see section 2 [42]). ¤

Proposition 2. If F (x, t, v) =
∫
Ω k(x − t)v(x, t)dΩ = k ∗ v and we have the

above assumptions in proposition of 1 then problem (1)-(3) has a unique solu-
tion.
Proof. By using the above proposition, [26, 27, 28, 42] and the Hilbert transla-
tions the proof is completed. ¤

3. The Streamline Diffusion Method
For simplify in (1)-(3) we assume λ = 1. We introduce variables v = ∂u/∂t

and v̇ = ∂v/∂t. Hence, we rewrite (1)-(3) to




Lw ≡ ẇ(x, t) + Aw(x, t) = f(u) in Ω
w(x, 0) = 0, 0 ≤ x ≤ 2
Bw'(t, t) = Cw�(1 + t, 1− t), 0 ≤ t ≤ 1.

(5)

Here, we assume that w(x, t) = (u(x, t), v(x, t))T , ẇ(x, t) = (u̇(x, t), v̇(x, t))T ,

w' = (u, ∂u
∂n1

)T , w� = (u, ∂u
∂n2

)T , A =
(

0 −1
− ∂2

∂x2 0

)
, B =

(
α −β

)
, C =

(
α β

)
and f(u) = (0, F (x, t, u))T .

In this section, we consider the Sd-method for solving (5). In this method,
instead of using the standard Galerkin method, is usual in Finite Element
Method, for the one variable (spatial or time) we used the Galerkin method
simultaneously in space and time. That is, we use �nite element and interpo-
lation functions depend on time and space.

Space-time Sd-method can be used to improve stabilization, however used
without care, this would lead to a very large linear system to be solved. One
of the reasons for it is that in this technique the use of continuous (in time)
test and trial functions in all levels of time. One way to avoid this di�cultly,
and decrease the size of the corresponding linear system, is to work in slabs
of space-time, with the help of interpolation functions that will be continuous
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in the spatial variables but will be discontinuous in the time variables at the
common frontier of every two slabs.

Sd-method for (5) is based on using �nite element over the space-time domain
Ω. To de�ne this method, let 0 = t0 < t1 < · · · < tN = 1 be a subdivision of the
time interval [0, 1] into intervals In = (tn, tn+1), with time steps kn = tn+1− tn,
n = 0, 1, · · · , N − 1 and introduce the corresponding space-time slabs (see
Fig. 1.), i. e.,

Fig. 1. The slabs on Ω

Sn =
{

(x, t) : tn+1 ≤ x ≤ 2− tn+1, t ≤ x ≤ tn+1,

2− tn+1 ≤ x ≤ 2− t, tn < t < tn+1

}
,

for n = 0, 1, ..., N − 2 and
SN−1 = {(x, t) : t ≤ x ≤ 2− t, tN−1 < t < tN}.

Further, for each n letWn,α,β be a �nite element subspace of H1(Sn)×H1(Sn),
based on triangulation of the slab Sn with elements of size h and let

Ẇn,α,β
=

{
w ∈Wn,α,β|Bw'(t, t) = Cw�(t + 1, 1− t), 0 ≤ t ≤ 1

}
.

Simplifying, we get boundary condition in Ẇn,α,β equal zero. We can formulate
Sd-method on the slab Sn for (5), as follows:
For n = 0, · · · , N − 1, �nd wn ∈ Ẇn such that

(ẇn,α,β + Awn,α,β, g + δ(ġ + Ag))n + 〈wn
+, g+〉n + 〈wn,α,β

+ , g+〉Γn = (6)

= (f(un), g + δ(ġ + Ag))n + 〈wn,α,β
− , g+〉n.

We have g + δ(ġ +Ag), as a test function such that δ = C̄h with C̄ is a suitable
chosen (su�ciently small, see [33]) positive constant. Further, we de�ne the
following notations for (6) and everywhere in the paper:

(u,v)n =
∫

Sn

uT .vdxdt,

(u,u)n = ‖u‖2
n,
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〈u,v〉n =
∫ 2−tn

tn

uT (x, tn).v(x, tn)dx,

〈u,u〉n = |u|2n,

v+(x, t) = lim
s→0+

v(x, t + s),

v−(x, t) = lim
s→0−

v(x, t + s),

〈u+,v+〉Γ =
∫

Γ
u+

T .v+dσ,

〈u+,v+〉Γn =
∫

Γn

u+
T .v+ds,

also ‖.‖=‖.‖L2(Ω), ‖.‖∞,Ω = ‖.‖L∞(Ω), ‖.‖s = ‖.‖s,Ω = ‖.‖Hs(Ω), Γ = ∂Ω and
Γ =

⋃N−1
n=0 Γn. The terms including 〈 , 〉Γ,Γn in the above formula is a

jump conditions which imposes a weakly enforced continuity condition across
the slab interfaces, at tn and is the mechanism by which information is propa-
gated from one slab to another. For more concisely, after summing over n and
f($) ' f(g)+($−g).∂f(g)

∂u (such that $ =
(

u0
)
), we get the function space∏N−1

n=0 Ẇn,α,β , therefore we may rewrite (6) as follow:
�nd w ∈ ∏N−1

n=0 Ẇn,α,β, such that
B(w, g) = L(g), (7)

for g ∈ ∏N−1
n=0 Ẇn,α,β. The bilinear form B(., .) and the linear form L(.) are

de�ned by

B(w, g) =
N−1∑

n=0

{(ẇn,α,β +Awn,α,β−$n.
∂f

∂u
(g), g+δ(ġ+Ag))n+〈wn,α,β

+ , g+〉Γn}

+
N−1∑

n=1

〈[wn,α,β], g+〉n + 〈wn,α,β
+ , g+〉0,

L(g) =
N−1∑

n=0

(f(g)− g.
∂f

∂u
(g), g + δ(ġ + Ag))n

for w = (w1,w2)T and $ = (w1, 0)T . Also, we assume that [wi] = wi,+ −
wi,−, for i = 1, 2, [w] = ([w1], [w2])T . Let Tn

h be a triangulation of the
slab Sn into triangles K, for h > 0, and introduce

Wn,α,β
h =

{
w ∈ Ẇn,α,β

: w|K ∈ [Pk(K)]× [Pk(K)] ⊆ H1(Sn)×H1(Sn),

K ∈ Tn,α,β
h

}

where Pk(K) denotes the set of polynomials in K of degree less than or equal
k and

Wh =
N−1∏

n=0

Wn,α,β
h .
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Thus (7) can be formulated as follows:
Find wh =

(
uh

vh

)
∈Wh such that

B(wh, g) = L(g), (8)
for g ∈Wh. Moreover, we know that the exact solution of (7) satis�es

B(w, g) = L(g),

for g ∈ Ẇn,α,β, and by subtraction we have the following error equation
B(e, g) = 0, (9)

where e = w−wh and w ∈Wh.

4. Stability for the Sd-Method
Below, we derive the stability estimate for Sd-method (7). These estimate

will be of crucial importance in proving the �nite element analysis. We apply
properties of the bilinear B(., .) and obtain stability estimate. For our problem,
we have the following stability Proposition:

Proposition 3. For any w =
(

u
v

)
∈ ∏N−1

n=0 Wn,α,β with assumptions uv ≤ 0

and ∂u
∂x

∂v
∂x ≥ 0 we have:

B(w,w) ≥ ‖|w‖|2 =
1
2
{| w− |2N − | w+ |20 +δ ‖ ẇ+ Aw ‖2

Ω}+ | w+ |2Γ . (10)

Proof. Using the de�nition of the bilinear form B and setting g = w it follows:
B(w,w) = (ẇ,w)Ω + (Aw,w)Ω + δ ‖ ẇ+ Aw ‖2

Ω + | w+ |2Γ +

+
N−1∑

n=1

〈[w],w+〉n + 〈w+,w+〉0.

Integrating by parts yields

(ẇ,w)Ω +
N−1∑

n=1

〈[w],w+〉n + 〈w+,w+〉0 =

=
1
2
{| w− |2N + | w+ |20 +

N−1∑

n=1

| [w] |2n}.

Therefore, by using the assumptions of the proposition the proof is complete.
¤

We use the standard argument for �nite element and introduce the linear
nodal interpolate Ihw ∈ Wh of the exact solution w and we set ζ = w− Ihw,
ξ = wh − Ihw. Thus, we have:

e := w−wh = (w− Ihw)− (−Ihw+wh) = ζ − ξ.

Recalling the Galerkin orthogonality relation (9):
B(e,w) = 0. (11)
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Now, we can prove the basic global error estimate by using proposition 3.

Proposition 4. If wh ∈Wh satis�es in (8) and w is exact solution converted
mass-spring (5), and also

‖ A ‖∞,Ω≤ C,

then, there is a constant C such that
‖|w−wh‖| ≤ Chk+1/2‖w‖k+1.

Proof. Using the basic stability estimate (10) with w = e and (11), with w = ξ,
we get that

‖|e‖|2 ≤ B(e, e) = B(e, ζ)−B(e, ξ) = B(e, ζ) =

= (ė + Ae, ζ + δ(ζ̇ + Aζ))Ω +
N−1∑

n=0

〈[e], ζ+〉n + 〈e+, ζ+〉Γ.

Moreover, we use the inequality 2ab ≤ εa2 + ε−1b2 for a, b real numbers and
ε > 0. Therefore, we have:

B(e, ζ) ≤ δ

8
‖ ė + Ae ‖2

Ω +
2
δ
‖ ζ ‖2

Ω +
δ

8
‖ ė + Ae ‖2

Ω +2δ ‖ ζ̇ + Aζ ‖2
Ω

+
1
4

N−1∑

n=1

| [e] |2n +
N−1∑

n=1

| ζ+ |2n +
1
4
| e+ |20 + | ζ+ |20 +

1
4
‖ e+ ‖2

Γ + ‖ ζ+ ‖2
Γ .

According to the above proposition and (10), we can write

B(e, ζ) ≤ 1
4
‖|e‖|2+

+

{
2
δ
‖ ζ ‖2

Ω +2δ ‖ ζ̇ + Aζ ‖2
Ω +

N−1∑

n=1

| ζ+ |2n + | ζ+ |20 + ‖ ζ+ ‖2
Γ

}
.

On the other hand, we have the inequality
‖ ζ̇ + Aζ ‖Ω≤‖ ζ̇ ‖Ω + ‖ A ‖∞,Ω‖ ζ ‖Ω . (12)

With using inverse estimate inequality, we have
‖ ζ̇ ‖Ω≤ Ch−1 ‖ ζ ‖Ω . (13)

Therefore, with (12), (13) and assumption δ = C̄h, we obtain:

|||e|||2 ≤ C

{
‖ ζ+ ‖2

Γ +h−1 ‖ ζ ‖2
Ω +

N−1∑

n=0

| ζ+ |2n +h ‖ ζ ‖2
1,Ω

}
.

Finally, by standard interpolation theory it follows that (see e.g. Ciarlet [12])
[
h ‖ ζ+ ‖2

Γ + ‖ ζ ‖2
Ω +h

N−1∑

n=0

| ζ+ |2n +h2 ‖ ζ ‖2
1,Ω

]1/2

≤ Chk+1 ‖ w ‖k+1,Ω,

which proves the desired estimates. ¤
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We observe in the remarked references that the corresponding optimal con-
vergence rate for the popular numerical methods in the literatures such as con-
servative �nite di�erence method, semi-implicit �nite di�erence method, semi-
discrete �nite element method, the time-splitting spectral method or Galerkin
method are of order O(hk).

5. An a posteriori error estimate
In this section, we shall consider the following simpli�ed version of Sd-method

for (6) and (8) with δ = 0:
Find wh ∈Wh, such that for n = 0, 1, ..., N − 1:

(ẇh + Awh, g)n + 〈[wh], g+〉n = (f, g)n, ∀g ∈Wh, (14)
where [wh] = wn

h,+ −wn
h,− and w0

h,− = 0.
In order to obtain a representation of the error, we consider the following aux-
iliary problem, referred to as the linearized dual problem:
Find Φ such that




L∗Φ ≡ −Φt + AT Φ = ψ−1e, in Ω,
Φ(t, t) = 0, t ∈ [0, 1],
Φ(1 + t, 1− t) = 0, t ∈ [0, 1],
Φ(x, 1) = 0, x ∈ [0, 2]

(15)

and L∗ denotes the adjoint of the operator L de�ned in (15) and ψ is a positive
weight function. Note that this problem is computed "backward", but there
is a corresponding change in sign. Further, we shall introduce the following
notation:

‖ e ‖
Lψ

2 (Ω)
= (e, ψe)1/2

Ω . (16)

Multiplying (15) by e and integrating by parts, and summing over n, we obtain
the following error representation formula:

‖ e ‖2

Lψ−1

2 (Ω)
= (e, ψ−1e)Ω = (e, L∗Φ) (17)

=
N−1∑

n=0

(e,−Φt + AT Φ)n =
N−1∑

n=0

(e,−Φt)n +
N−1∑

n=0

(e,AT Φ)n.

On the other hand, we have for n = 0, 1, ..., N − 2:

(e,−Φt)n =
∫

Sn

(−eT .Φt)dxdt =
∫ tn+1

tn

∫ x

tn

(−eT .Φt)dtdx (18)

+
∫ 2−tn+1

tn+1

∫ tn+1

tn

(−eT .Φt)dtdx

+
∫ 2−tn

2−tn+1

∫ 2−x

tn

(−eT .Φt)dtdx

= (et, Φ)n +
∫ 2−tn

tn

eT (x, tn).Φ(x, tn)dx−
∫ 2−tn+1

tn+1

eT (x, tn+1).Φ(x, tn+1)dx,
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and for n = N − 1:

(e,−Φt)N−1 = (et,Φ)N−1 +
∫ 2−tN−1

tN−1

eT (x, tN−1).Φ(x, tN−1)dx. (19)

Hence, if we assume e =
(

e1

e2

)
and Φ =

(
Φ1

Φ2

)
then, we obtain for n =

0, 1, ..., N − 1:
(e,AT Φ)n =

∫

Sn

eT .AT Φdxdt

=
∫

Sn

eT .

(
0 − ∂2

∂x2

−1 0

)(
Φ1

Φ2

)
dxdt =

∫

Sn

(e1, e2).
( −∂2Φ2

∂x2

−Φ1

)
dxdt.

Therefore by parts integrating and same as (18), we have:
∫

Sn

(−e1
∂2Φ2

∂x2
− e2Φ1) dx dt =

∫

Sn

(−Φ2
∂2e1

∂x2
− e2Φ1)dxdt = (Ae, Φ)n. (20)

By using (18) and (19) in the following de�nition, we have:

J =
N−2∑

n=0

(∫ 2−tn

tn

eT (x, tn).Φ(x, tn)dx−
∫ 2−tn+1

tn+1

eT (x, tn+1).Φ(x, tn+1)dx

)
+

+
∫ 2−tN−1

tN−1

eT (x, tN−1).Φ(x, tN−1)dx =

= (〈e−,Φ−〉1 − 〈e+,Φ+〉0) + (〈e−, Φ−〉2 − 〈e+, Φ+〉1) + ...

+(〈e−, Φ−〉N−1 − 〈e+, Φ+〉N−2) + (〈e−, Φ−〉N − 〈e+, Φ+〉N−1).
We rearrange the above summation by putting Φ− = Φ− − Φ+ + Φ+, then we
can write:

J = 〈e−, Φ−〉N + 〈e+,Φ+〉0 +
N−1∑

n=0

〈[e], Φ+〉n +
N−1∑

n=0

〈e−, [Φ]〉n.

According to (15), Φ(., tN = 1) = 0 and since e0− = [w0] = 0, we get

J =
N−1∑

n=0

〈[wh], Φ+〉n. (21)

Therefore by replacing (18)-(21) in (17), we have:

‖ e ‖2

Lψ−1

2 (Ω)
=

N−1∑

n=0

(et, Φ) +
N−1∑

n=0

(Ae, Φ)n −
N−1∑

n=0

〈[wh], Φ+〉n

=
N−1∑

n=0

((w−wh)t + A(w−wh),Φ)n −
N−1∑

n=0

〈[wh],Φ+〉n

=
N−1∑

n=0

(f −wh,t −Awh, Φ)n −
N−1∑

n=0

〈[wh], Φ+〉n.
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Hence, with recalling (5) and using the Galerkin orthogonality, we obtain

‖ e ‖2

Lψ−1

2 (Ω)
=

N−1∑

n=0

(f −wh,t −Awh, Φ̂− Φ)n−

−
N−1∑

n=0

〈[wh], (Φ̂− Φ)+〉n ≡ I + II.

(22)

Where Φ̂ ∈ Wh is an interpolation of Φ. The idea is now to estimate Φ̂ − Φ
in terms of ψ−1e using a strong stability estimates for solution Φ of the dual
problem.

6. Interpolation estimates
In the following we consider two L2-projections for Φ̂ ∈Wh in (9):

Pn : L2([0, 2]) 7−→Wn
h,

πn : L2(Sn) 7−→ Π0,n = {w ∈ L2(Sn) : w(x, .) is constant on In, x ∈ [0, 2]} ,

such that ∫ 2

0
(PnΦ)T .wdx =

∫ 2

0
ΦT .wdx, ∀w ∈Wn

h,

πnw |Sn=
1
kn

∫

In

w(., t)dt, ∀w ∈ Π0,n.

Then, we can de�ne Φ̂ |Sn∈Wn
h by letting

Φ̂ |Sn= PnπnΦ = πnPnΦ ∈Wn
h,

where Φ = Φ |Sn and we can observe that Pn and πn are commuted. Moreover,
if we introduce P and π de�ned by

(PΦ) |Sn= Pn(Φ |Sn),

and
(πΦ) |Sn= πn(Φ |Sn),

then we can put :
Φ̂ = PπΦ = πPΦ ∈Wh.

Now, we de�ne the following residuals:
R0 = f −wh,t −Awh,

R1 =
wn

h,+ −wn
h,−

kn
, on Sn,

R2 =
(Pn − I)wn

h,−
kn

, on Sn,

where I is the identity operator.
In the end of this section, we shall give a lemma for some interpolation

estimates by the projection operators P , leaving the overall of I and II to next
section.
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Lemma 1. There is a constant C such that for residual R ∈ L2(Ω),
|(R, Φ− PΦ)Ω| ≤ C ‖ h2(I − P )R ‖

Lψ−1

2 (Ω)
‖ Φxx ‖Lψ

2 (Ω)
. (23)

Proof. See [41] and [40]. ¤

7. The completion of the proof of a posteriori
error estimates

In this section we state and prove a posteriori error estimate by estimating of
the terms I and II in the error representation formula (22). To this approach
we introduce the stability factors(see [10]) associated with discretization in time
and space, de�ned by

Y t
e =

‖ Φt ‖Lψ
2 (Ω)

‖ e ‖
Lψ−1

2 (Ω)

, (24)

and

Y x
e =

‖ Φxx ‖Lψ
2 (Ω)

‖ e ‖
Lψ−1

2 (Ω)

(25)

respectively. We now apply the result of the previous sections; using Cauchy-
Schwartz inequality in (22) coupled with the interpolation estimate (23) and
the strong stability factors (24) and (25), to derive the L2(L2) a posteriori error
estimates for the scheme (14).
Proposition 5. The error e = w−wh, where w is the solution of the continuous
problems (5) and wh that of (14), satis�es the following stability estimate:

‖ e ‖
Lψ−1

2 (Ω)
≤ CY x

e ‖ h2(I − P )R0 ‖
Lψ−1

2 (Ω)
+CY t

e ‖ knR1 ‖
Lψ−1

2 (Ω)
+

+Y x
e ‖ h2R2 ‖

Lψ−1

2 (Ω)
+Y t

e ‖ knR2 ‖
Lψ−1

2 (Ω)
.

Proof. Using the notation introduce above, we may write (22) as

‖ e ‖2

Lψ−1

2 (Ω)
=

N−1∑

n=0

(R0, Φ̂− Φ)n +
N−1∑

n=0

〈kn
[wh]
kn

, (Φ̂− Φ)+〉n = I + II.

Below we shall estimate the terms I and II separately. Splitting the inter-
polation error by writing Φ̂ − Φ = Φ̂ − PΦ + PΦ − Φ and Φ̂n = πnPΦ, we
have:

I =
N−1∑

n=0

(R0, Φ̂n − PΦ + PΦ− Φ)n =
N−1∑

n=0

(R0, Φ̂n − PΦ)n+

+
N−1∑

n=0

(R0, PΦ− Φ)n ≤ C ‖ h2(I − P )R0 ‖
Lψ−1

2 (Ω)
‖ Φxx ‖Lψ

2 (Ω)
.

It remains to estimate the term II, to this end, we consider the following
notation:

Φn
+(x) = Φ(x, t)−

∫ t

tn

∂

∂τ
Φ(x, τ)dτ,
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hence, with integrating over In, we have:

knΦn
+(x) =

∫

In

Φ(x, t)dt−
∫

In

∫ t

tn

Φτ (x, τ)dτdt (26)

where Φτ = ∂Φ
∂τ and Φn = Φ(., tn).

II =
N−1∑

n=0

〈kn
[wh]
kn

, (Φ̂− Φ)+〉n =
N−1∑

n=0

〈kn
[wh]
kn

, (Φ̂n − PΦ + PΦ− Φ)+〉n

=
N−1∑

n=0

〈kn
[wh]
kn

, (Φ̂n − PΦ)+〉n +
N−1∑

n=0

〈kn
[wh]
kn

, (PΦ− Φ)+〉n := II1 + II2.

To estimate II1, we use (26) to get

II1 =
N−1∑

n=0

〈knR1, (Φ̂n)+ − PΦ+〉n =
N−1∑

n=0

〈R1, knΦ̂n − PknΦ+〉n

=
N−1∑

n=0

〈R1, knΦ̂n −
∫

In

PΦ(., t)dt +
∫

In

∫ t

tn

PΦτ (., τ)dτdt〉n

=
N−1∑

n=0

∫

In

∫ t

tn

〈R1, PΦτ (., τ)〉ndτdt

by using (16), (17) and H�older inequality, we have:
II1 ≤‖ knR1 ‖

Lψ−1

2 (Ω)
‖ PΦt ‖Lψ

2 (Ω)
≤‖ knR1 ‖

Lψ−1

2 (Ω)
‖ Φt ‖Lψ

2 (Ω)
.

As for the II2-terms we can write

II2 =
N−1∑

n=0

〈kn
[wh]
kn

, (PΦ− Φ)+〉n =
N−1∑

n=0

〈w
n
h,+ −wn

h,−
kn

, (Pn − I)knΦ+〉n

=
N−1∑

n=0

〈Pnwn
h,− −wn

h,−
kn

, (Pn − I)(
∫

In

Φ(., t)dt−
∫

In

∫ t

tn

Φτ (., τ)dτdt)〉n

≤
N−1∑

n=0

∫

In

〈(Pn − I)wn
h,−

kn
, (Pn − I)Φ(., t)〉ndt

+
N−1∑

n=0

∫

In

∫ t

tn

〈(Pn − I)wn
h,−

kn
, (Pn − I)Φτ (., t)dτdt〉n

by using (16), (17) and H�older inequality, we have:
II2 ≤‖ knR2 ‖

Lψ−1

2 (Ω)
‖ Φxx ‖Lψ

2 (Ω)
+ ‖ knR2 ‖

Lψ−1

2 (Ω)
‖ Φt ‖Lψ

2 (Ω)
.

The a posteriori error estimate now follows immediately after collecting the
terms and using the de�nition of the stability factors (24) and (25). ¤
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8. Numerical results
At present, three numerical examples for testing Sd method are given. We

carry out (7), by an AMD Opteron computer with 15 Gigabytes RAM memory
with 2.2 GHz CPU. For each slab Sn, let xn

i be a mesh, portioned into inter-
vals Jn

i = (xn
i−1, x

n
i ), with hn

i = xn
i − xn

i−1. We de�ne the time mesh function
k = k(t) by k(t) = kn for t ∈ (tn, tn+1). For h > 0 let Tn

h be a triangulation
of the slab Sn into triangle K (cf. Figure 1.), satisfying as usual the minimum
angle condition (see, e.g. [33]), and indexed by the parameter h represent-
ing the maximum diameter of the triangle K ∈ Tn

h . The triangulation of Sn

may be chosen independently of that of Sn−1, but for the sake of simplicity it
must satisfy quasi-uniformity conditions for �nite element meshes [12]. To give
numerical results obtained using the Sd method, we shall use �nite element
approximation on a space time slab with the trial function which are piece-
wise polynomials in space and linear in time; that is, for (x, t) ∈ Sn, we let
wn

h(x, t) = (un
h(x, t), vn

h(x, t))T ∈Wn
h where

un
h =

M∑

i=1

φi(x)(θ1(t)ũn
i + θ2(t)un+1

i ) and

vn
h =

∂un
h

∂t
=

M∑

i=1

φi(x)(θ′1(t)ṽn
i + θ′2(t)v

n+1
i )

such that {φi(xj) = δij}, i, j = 0, · · · ,M are the spatial shape functions at
node i and {θ1 = tn+1−t

k , θ2 = t−tn
k } are the time linear interpolation functions.

Moreover, we assume the nodal values of u for node i ant (tn)+ and (tn+1)+ are
denoted by ũn

i (= ṽn
i ) and un+1

i (= vn+1
i ), respectively. Therefore, we consider

the above algorithm for the following test problems.

Tabl. 1. Error = ‖w − wn
h‖∞ by Sd method at di�erent δ.

(x, t) δ = 0.15 δ = 0.10 δ = 0.05 δ = 0.01 δ = 0.005
(−1, 0.1) 0.231e-6 0.212e-9 0.431e-8 0.751e-10 0.321e-9
(0.0, 0.5) 0.231e-5 0.761e-7 0.454e-7 0.983e-9 0.522e-10
(1, 0.9) 0.514e-7 0.634e-10 0.713e-10 0.761e-9 0.510e-9

Test problem 1. Streamline di�usion method is computed by given δ, β = 0,
M = 20, h = 0.1, k = 0.005, u(x, t) = sin ξ(x+t) and v(x, t) = sin ζ(x+t) such
that we de�ne ξ(x) = ξ(x + 2), ζ(x) = ζ(x + 2) + π and ξ =

{
π/2 x = 0
x x 6= 0

Therefore, we have the exact solution of (1) and in Table 1., we verify point-
wise of the error = ‖w − wn

h‖∞ = max{|u(x, t)− un
h(x, t)|, |v(x, t)− vn

h(x, t)|}.
In this example we test how well the stability theory developed in Proposition
5 matches with computation by the stability factors that is (24) and (25).
Therefore, this proposition guarantees computational stability for small time
step.
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Test problem 2. Streamline di�usion method is shown by given β = 0 and
F (x, t, u) = (u− 1)2 in Figure 2 (in the �rst row). The results are given after
10 time step that is n = 1, 2, ..., 10 and kn = 0.1. In this example, we haven't
the exact solution but Proposition 5 guarantees computational stability.
Test problem 3. Streamline di�usion method is shown by given α = 0 and
F (x, t, u) = (u−1)2 in Figure 2 (in the second row). The results are given after
10 time step that is n = 1, 2, ..., 10 and kn = 0.1. In this example, we haven't
the exact solution but Proposition 5 guarantees computational stability.

Fig. 2. The approximation solution of u for example 2 (in the �rst
row) and example 3 (in the second row) when δ = 0.1 and the stability
factors Y t

e , Y x
e ≤ 10−3

9. Conclusion
To this end, a special nonlinear second order hyperbolic initial-boundary

value problem is investigated. We use streamline di�usion method for this case
of this wave equation and obtain a priori and a posteriori error estimates. A
posteriori error estimate is a very powerful mathematical tool in this problem
by Sd method. We try to obtain optimal bounds and the eigenvalues and
eigenfunctions remains a challenge that deserves special attention and will be
consideration elsewhere.
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TWO-STEP METHOD FOR SOLVING
NONLINEAR EQUATIONS WITH

NONDIFFERENTIABLE OPERATOR

Stepan Shakhno, Halina Yarmola

Ðåçþìå. Çàïðîïîíîâàíî äâîêðîêîâèé ìåòîä äëÿ ðîçâ'ÿçóâàííÿ íåëiíié-
íèõ ðiâíÿíü ç íåäèôåðåíöiéîâíèì îïåðàòîðîì, ïîáóäîâàíèé íà áàçi äâîõ
ìåòîäiâ ç ïîðÿäêîì çáiæíîñòi 1+

√
2. Âèâ÷åíî ëîêàëüíó òà íàïiâëîêàëüíó

çáiæíiñòü çàïðîïîíîâàíîãî ìåòîäó òà âñòàíîâëåíî ïîðÿäîê çáiæíîñòi.
Ïðîâåäåíî ÷èñëîâå äîñëiäæåííÿ íà òåñòîâèõ çàäà÷àõ òà çðîáëåíî ïîðiâ-
íÿííÿ îòðèìàíèõ ðåçóëüòàòiâ.
Abstract. In this paper we propose a two-step method for solving nonlin-
ear equations with a nondi�erentiable operator. Its method is based on two
methods of order of convergence 1 +

√
2. We study a local and a semilocal

convergence of the proposed method and set an order of convergence. We ap-
ply our results to the numerical solution of a nonlinear equation and systems
of nonlinear equations.

1. Introduction
We consider the equation

H(x) ≡ F (x) + G(x) = 0, (1)
where F and G are nonlinear operators, de�ned on a convex subset D of a
Banach space X with values in a Banach space Y . F is a Fr�echet-di�erentiable
operator, G is a continuous operator.

There are kinds of methods to �nd a solution of (1). In [1] Argyros studied
the two-point iterative process

xn+1 = xn −A−1
n (F (xn) + G(xn)), n = 0, 1, . . . , (2)

where An = A(xn−1, xn) is a bounded linear operator. There was provided a
local and a semilocal convergence analysis for the method (2) and some cases
where An = F ′(xn), An = F ′(xn) + G(xn−1;xn) were considered. Here G(x; y)
is a �rst order divided di�erence of the operator G at the points x and y. The
convergence analysis for the case where An = F ′(xn) was given by Zabrejko and
Nguen [11]. In the paper [3] the convergence analysis results for modi�cation
of the method (2) for some cases of An were presented. There are studies
in which there are considered di�erence methods, i.e., the secant method, the
parametric secant method [5, 6] and the method based on the method of linear
interpolation and the secant method [7]. In [4] Chen studied a Broyden-like
method for solving (1). In [9] we researched a semilocal convergence of the

†Key words. Nondi�erentiable operator, convergence order, local and semilocal
convergence.
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method (2) for An = F ′(xn) + G(2xn − xn−1; xn−1). The Newton's method
cannot be applied, as di�erentiability of operator H is required.

In this work we propose a two-step method which is based on the methods
with the order of convergence 1 +

√
2 [8, 10],

xn+1 = xn −
[
F ′

(xn + yn

2

)
+ G(xn; yn)

]−1
(F (xn) + G(xn)),

yn+1 = xn+1 −
[
F ′

(xn + yn

2

)
+ G(xn; yn)

]−1
(F (xn+1) + G(xn+1)),

n = 0, 1, . . . .

(3)

Although the numbers of evaluations of the function values increases by one at
each step for the proposed method (3), the convergence order is higher than for
the one-step methods.

2. Convergence analysis
De�nition 1. Let F be a nonlinear operator de�ned on a subset D of a linear
space X with values in a linear space Y and let x, y be two points of D. A
linear operator from X into Y , denoted as G(x; y), which satis�es the condition

G(x; y)(x− y) = G(x)−G(y).

is called a divided di�erence of G at the points x and y.
Theorem 1. Let F and G be nonlinear operators, de�ned on an open convex
subset D of a Banach space X with values in a Banach space Y . F is a twice
Fr�echet-di�erentiable operator, G is a continuous operator. Let us suppose that
equation (1) has a solution x∗ ∈ D, G has a �rst order divided di�erence in
D and there exist [A(x, y)]−1 =

[
F ′

(x + y

2

)
+ G(x; y)

]−1
for all x 6= y and

‖[A(x, y)]−1‖ ≤ B. Let in D the following conditions ful�ll
‖F ′(x)− F ′(y)‖ ≤ 2p1‖x− y‖, (4)

‖F ′′(x)− F ′′(y)‖ ≤ p2‖x− y‖α, α ∈ (0, 1], (5)
‖G(x; y)−G(u; v)‖ ≤ q1(‖x− u‖+ ‖y − v‖). (6)

Suppose that U = {x : ‖x − x∗‖ < r∗} ⊂ D, where r∗ is the smallest positive
zero of equations

q(r) = 1,

3B(p1 + q1)rq(r) = 1,
(7)

q(r) = B
[
(p1 + q1)r +

p2

4(α + 1)(α + 2)
r1+α

]
.

Then the sequences {xn}n≥0, {yn}n≥0 generated by the iterative process (3)
are well de�ned for all x0, y0 ∈ U , remain in U and converge to the solution
x∗. Moreover, the following inequalities hold for all n ≥ 0

‖xn+1 − x∗‖ ≤B
[
(p1 + q1)‖yn − x∗‖+

+
p2

4(α + 1)(α + 2)
‖xn − x∗‖1+α

]
‖xn − x∗‖,

(8)
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‖yn+1 − x∗‖ ≤B(p1 + q1)
[
‖yn − x∗‖+

+ ‖xn − x∗‖+ ‖xn+1 − x∗‖
]
‖xn+1 − x∗‖.

(9)

Proof. Since the following equality holds for all x, h ∈ D [10]

F (x + h) = F (x) + F ′(x)h +

1∫

0

(1− t)F ′′(x + th)hhdt,

then
F (xn)− F (x∗)− F ′

(xn + x∗

2

)
(xn − x∗) =

= F (xn)− F
(xn + x∗

2

)
− F ′

(xn + x∗

2

)xn − x∗

2
−

−
[
F (x∗)− F

(xn + x∗

2

)
− F ′

(xn + x∗

2

)x∗ − xn

2

]
=

=
1∫
0

(1− t)F ′′
(xn + x∗

2
+ t

xn − x∗

2

)xn − x∗

2
xn − x∗

2
dt−

−
1∫
0

(1− t)F ′′
(xn + x∗

2
+ t

x∗ − xn

2

)xn − x∗

2
xn − x∗

2
dt.

(10)

Using the condition (5) and the equality (10), we obtain
∥∥∥F (xn)− F (x∗)− F ′

(xn + x∗

2

)
(xn − x∗)

∥∥∥ ≤

≤ p2‖xn − x∗‖2+α

4

1∫

0

(1− t)tαdt =
p2‖xn − x∗‖2+α

4(α + 1)(α + 2)
.

(11)

Let us choose x0 ∈ U and show that the sequences given in (3) are well
de�ned. We denote An = F ′

(xn + yn

2

)
+ G(xn; yn). If xn, yn ∈ U , then from

the de�nition of the �rst order divided di�erence and (4), (6), (11), we obtain
‖xn+1 − x∗‖ = ‖xn − x∗ −A−1

n (F (xn) + G(xn)− F (x∗)−G(x∗))‖ ≤

≤ ‖A−1
n ‖

∥∥∥F (xn)− F (x∗)− F ′
(xn + x∗

2

)
(xn − x∗)

∥∥∥+

+‖A−1
n ‖

∥∥∥F ′
(xn + x∗

2

)
− F ′

(xn + yn

2

)∥∥∥‖xn − x∗‖+
+‖A−1

n ‖‖G(xn; x∗)−G(xn; yn)‖‖xn − x∗‖ ≤

≤ B
[
(p1 + q1)‖yn − x∗‖+

p2

4(α + 1)(α + 2)
‖xn − x∗‖1+α

]
‖xn − x∗‖

and
‖yn+1 − x∗‖ = ‖xn+1 − x∗ −A−1

n (F (xn+1) + G(xn+1)− F (x∗)−G(x∗))‖ ≤

≤ ‖A−1
n ‖

∥∥∥
1∫
0

{
F ′(x∗ + t(xn+1 − x∗))− F ′

(xn + yn

2

)}
dt

∥∥∥‖xn+1 − x∗‖+
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+‖A−1
n ‖‖G(xn+1; x∗)−G(xn; yn)‖‖xn+1 − x∗‖ ≤

≤ B(p1 + q1)[‖yn − x∗‖+ ‖xn − x∗‖+ ‖xn+1 − x∗‖]‖xn+1 − x∗‖.
We prove that inequalities (8) and (9) are ful�lled. Taking n = 0 above, we
obtain
‖x1 − x∗‖ < B

[
(p1 + q1)r∗ +

p2

4(α + 1)(α + 2)
r1+α
∗

]
‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r∗

and
‖y1 − x∗‖ <3B2(p1 + q1)

[
(p1 + q1)r∗ +

p2

4(α + 1)(α + 2)
r1+α
∗

]
r∗‖x0 − x∗‖ ≤

≤‖x0 − x∗‖ < r∗.

Therefore, x1, y1 ∈ U . If ‖xn − x∗‖ < r∗ and ‖yn − x∗‖ < r∗ then from (7) �
(9), it follows

‖xn+1 − x∗‖ <B
[
(p1 + q1)r∗ +

p2

4(α + 1)(α + 2)
r1+α
∗

]
‖xn − x∗‖ ≤

≤‖xn − x∗‖ < . . . < r∗,

‖yn+1 − x∗‖ <3B2(p1 + q1)
[
(p1 + q1)r∗+

+
p2

4(α + 1)(α + 2)
r1+α
∗

]
r∗‖xn − x∗‖ ≤

≤‖xn − x∗‖ < . . . < r∗.

So, iterative process (3) is well de�ned, the sequences {xn}n≥0, {yn}n≥0 belong
to U . From the last inequalities and estimates (8) and (9) we can see that
{xn}n≥0 and {yn}n≥0 converge to x∗. ¤

Corollary 2. Let us suppose that the hypotheses of Theorem 1 hold. Then the
iterative process (3) converges to a solution x∗ of the equation (1) with the order
of convergence 1 +

√
1 + α.

Proof. We denote

an = ‖xn − x∗‖, bn = ‖yn − x∗‖, C1 = B(p1 + q1), C2 =
Bp2

4(α + 1)(α + 2)
.

By (8) and (9), we get
an+1 ≤ C1anbn + C2a

2+α
n ,

bn+1 ≤ C1(an+1 + an + bn)an+1 ≤ C1(2an + bn)an+1 ≤
≤ C1(2an + C1(2a0 + b0)an)an+1 = C1(2 + C1(2a0 + b0))anan+1,

Then for large n and an−1 < 1, from previous inequalities, we obtain
an+1 ≤ C1anbn + C2a

2
naα

n−1 ≤
≤ C2

1 (2 + C1(2a0 + b0))a2
nan−1 + C2a

2
naα

n−1 ≤
≤ [C2

1 (2 + C1(2a0 + b0)) + C2]a2
naα

n−1.

(12)
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From (12) we can write down an equation of the convergence order of the
iterative process (3): t2 − 2t − α = 0. The order of convergence is the unique
positive solution t∗ = 1 +

√
1 + α. If α = 1, we get that the iterative process

(3) converges to the solution of the equation (1) with the order 1 +
√

2. ¤
Theorem 2. Let F and G be nonlinear operators, de�ned on an open convex
subset D of a Banach space X with values in a Banach space Y . F is a Fr�echet-
di�erentiable operator, G is a continuous operator. We assume that U0 = {x :

‖x − x0‖ ≤ r0} is contained in D, the linear operator A0 = F ′
(x0 + y0

2

)
+

G(x0; y0), where x0, y0 ∈ D, is invertible and the Lipschitz conditions are
ful�lled

‖A−1
0 (F ′(x)− F ′(y))‖ ≤ 2p0‖x− y‖, (13)

‖A−1
0 (G(x; y)−G(u; v))‖ ≤ q0(‖x− u‖+ ‖y − v‖). (14)

Let's a, c (c > a), r0 be non-negative numbers such that
‖x0 − x−1‖ ≤ a, ‖A−1

0 (F (x0) + G(x0))‖ ≤ c, (15)
r0 ≥ c/(1− γ), (p0 + q0)(2r0 − a) < 1,

γ =
(p0 + q0)(r0 − a) + 0.5p0r0

1− (p0 + q0)(2r0 − a)
, 0 ≤ γ < 1.

Then the following inequalities hold for all n ≥ 0

‖xn − xn+1‖ ≤ tn − tn+1, ‖yn − xn+1‖ ≤ sn − tn+1, (16)
‖xn − x∗‖ ≤ tn − t∗, ‖yn − x∗‖ ≤ sn − t∗, (17)

where
t0 = r0, s0 = r0 − a, t1 = r0 − c,

tn+1 − tn+2 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)
1− (p0 + q0)[(t0 − tn+1) + (s0 − sn+1)]

(tn − tn+1), (18)

tn+1 − sn+1 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)

1− (p0 + q0)[(t0 − tn) + (s0 − sn)]
(tn − tn+1), (19)

{tn}n≥0, {sn}n≥0 are non-negative, decreasing sequences that converge to cer-
tain t∗ such that r0−c/(1−γ) ≤ t∗ < t0; sequences {xn}n≥0, {yn}n≥0 generated
by the iterative process (3) are well de�ned, remain in U0 that converge to a
solution x∗ of equation (1).
Proof. Firstly, we prove, by mathematical induction, that the following inequal-
ities hold for all k ≥ 0

tk+1 ≥ sk+1 ≥ tk+2 ≥ r0 − c

1− γ
≥ 0, (20)

tk+1 − tk+2 ≤ γ(tk − tk+1), tk+1 − sk+1 ≤ γ(tk − tk+1). (21)
From (18), (19) for k = 0 we obtain

t1 − t2 =
(p0 + q0)(s0 − t1) + 0.5p0(t0 − t1)
1− (p0 + q0)[(t0 − t1) + (s0 − s1)]

(t0 − t1) ≤ γ(t0 − t1),

t1 − s1 = [(p0 + q0)(s0 − t1) + 0.5p0(t0 − t1)](t0 − t1) ≤ γ(t0 − t1),
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t2 ≥r0 − c− (p0 + q0)s0 + 0.5p0t0
1− (p0 + q0)[t0 + s0]

c =

=r0 − (1 + γ)c = r0 − (1− γ2)c
1− γ

≥ r0 − c

1− γ
≥ 0,

t1 ≥ t2, s1 ≥ t2, t1 ≥ s1 ≥ t2 ≥ r0 − c

1− γ
≥ 0.

Let us suppose that inequalities (20) and (21) hold for k = 0, 1, . . . , n − 1.
Then for k = n we obtain

tn+1 − tn+2 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)
1− (p0 + q0)[(t0 − tn+1) + (s0 − sn+1)]

(tn − tn+1) ≤

≤ (p0 + q0)sn + 0.5p0tn
1− (p0 + q0)[t0 + s0]

(tn − tn+1) ≤ γ(tn − tn+1),

tn+1 − sn+1 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)

1− (p0 + q0)[(t0 − tn) + (s0 − sn)]
(tn − tn+1) ≤

≤ (p0 + q0)sn + 0.5p0tn
1− (p0 + q0)[t0 + s0]

(tn − tn+1) ≤ γ(tn − tn+1)

and
tn+1 ≥ sn+1 ≥ tn+2 ≥ tn+1 − γ(tn − tn+1) ≥

≥ r0 − 1− γn+2

1− γ
c ≥ r0 − c

1− γ
≥ 0.

So, we prove, that sequences {tn}n≥0 and {sn}n≥0 are non-negative, decreas-
ing sequences and converge to t∗ such that t∗ ≥ 0.

Let us prove, by mathematical induction, that the iterative process (3) is
well de�ned and inequalities (16) hold for all n ≥ 0.

Using (15) and t0 − t1 = c, we prove that (16) hold for n = 0.
Let denote An = F ′

(xn + yn

2

)
+ G(xn; yn). Using Lipschitz conditions (13)

and (14), we have
‖I −A−1

0 An+1‖ = ‖A−1
0 [A0 −An+1]‖ ≤

≤
∥∥∥A−1

0

[
F ′

(x0 + y0

2

)
− F ′

(xn+1 + yn+1

2

)]∥∥∥+

+‖A−1
0 [G(x0; y0)−G(xn+1; yn+1)]‖ ≤

≤ 2p0

(‖x0 − xn+1‖
2

+
‖y0 − yn+1‖

2

)
+ q0(‖x0 − xn+1‖+ ‖y0 − yn+1‖) ≤

≤ (p0 + q0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖) ≤
≤ (p0 + q0)(t0 − tn+1 + s0 − sn+1) ≤

≤ (p0 + q0)(t0 + s0) = (p0 + q0)(2r0 − a) < 1.

By Banach lema on invertible operator, it follows that An+1 is invertible and
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‖A−1
n+1A0‖ ≤

[
1− (p0 + q0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖)

]−1
.

Let us prove that iterative process (3) is well de�ned for k = n + 1. From
the de�nition of the �rst order divided di�erence and (13), (14), we obtain

‖A−1
0 (F (xn+1) + G(xn+1))‖ =

= ‖A−1
0 [F (xn+1) + G(xn+1)− F (xn)−G(xn)−An(xn+1 − xn)] ‖ ≤

≤
∥∥∥A−1

0

[ 1∫
0

{
F ′(xn+1 + t(xn − xn+1))− F ′

(xn + yn

2

)}
dt

]∥∥∥‖xn − xn+1‖+
+

∥∥A−1
0 [G(xn; yn)−G(xn; xn+1)]

∥∥ ‖xn − xn+1‖ ≤

≤ 2p0

[
‖xn − xn+1‖

1∫
0

∣∣∣t− 1
2

∣∣∣dt +
‖yn − xn+1‖

2

]
‖xn − xn+1‖+

+q0‖yn − xn+1‖‖xn − xn+1‖ =

= (p0 + q0)‖yn − xn+1‖‖xn − xn+1‖+ 0.5p0‖xn − xn+1‖2.

Hence, using (16), we have
‖xn+1 − xn+2‖ = ‖A−1

n+1(F (xn+1) + G(xn+1))‖ ≤
≤ ‖A−1

n+1A0‖‖A−1
0 (F (xn+1) + G(xn+1))‖‖xn − xn+1‖ ≤

≤ (p0 + q0)‖yn − xn+1‖+ 0.5p0‖xn − xn+1‖
1− (p0 + q0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖)‖xn − xn+1‖ ≤

≤ (p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)
1− (p0 + q0)[(t0 − tn+1) + (s0 − sn+1)]

(tn − tn+1) = tn+1 − tn+2,

‖xn+2 − yn+2‖ = ‖A−1
n+1(F (xn+2) + G(xn+2))‖ ≤

≤ ‖A−1
n+1A0‖‖A−1

0 (F (xn+2) + G(xn+2))‖‖xn − xn+1‖ ≤

≤ (p0 + q0)‖yn+1 − xn+2‖+ 0.5p0‖xn+1 − xn+2‖
1− (p0 + q0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖) ‖xn+1 − xn+2‖ ≤

≤ (p0 + q0)(sn+1 − tn+2) + 0.5p0(tn+1 − tn+2)
1− (p0 + q0)[(t0 − tn+1) + (s0 − sn+1)]

(tn+1 − tn+2) = sn+2 − tn+2.

So, iterative process (3) is well de�ned and (15) holds for all n ≥ 0. From this
it follows
‖xn−xk‖ ≤ tn−tk, ‖yn−xk‖ ≤ sn−tk, ‖yn−yk‖ ≤ sn−sk, 0 ≤ n ≤ k, (22)

i.e., {xn}n≥0 and {yn}n≥0 are fundamental sequences in a Banach space X.
From (22) for k →∞ it follows inequalities (17). Let's show that x∗ is solution
of equation (1). Indeed,

‖A−1
0 (F (xn+1) + G(xn+1))‖ ≤

≤ (p0 + q0)‖yn − xn+1‖‖xn − xn+1‖+ 0.5p0‖xn − xn+1‖2 → 0, n →∞.
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So, H(x∗) = 0. ¤
Remark 5. If we choose F (x) = 0, p1 = 0, p2 = 0 then the estimates (8) and
(9) reduce to similar ones in [8] for the case α = 1.
Remark 6. If the divided di�erence of the operator G satis�es the condi-
tion (6), i.e. the operator G(x; y) is Lipschitz continuous, then G is Fr�echet-
di�erentiable.

3. Numerical experiments
For the numerical investigation we choose the equation and the systems of

equations considered in [1, 4, 5, 6, 7].
Example 1.

ex−0.5 − 1.05 + 0.2x|x− 1| = 0,

x ∗ = 0.5.

Example 2.
3x2y − y2 − 1 + |x− 1| = 0,

x4 + xy3 − 1 + |y| = 0,

(x ∗;y∗) ≈ (0.894655; 0.327827).

Example 3.
x2 − y + 1 +

1
9
|x− 1| = 0,

y2 + x− 7 +
1
9
|y| = 0,

(x ∗;y∗) ≈ (1.15936; 2.36182).

Example 4.
z2(1− y)− xy + |y − z2| = 0,

z2(x3 − x)− y2 + |3y2 − z2 + 1| = 0,

6xy3 + y2z2 − xy2z + |x + z − y| = 0,

(x ∗;y∗; z ∗) = (−1; 2; 3).

Let X = Y = IRm, m = 1, 2, 3. In this case the �rst order divided di�erence
G(x; y) is a matrix of dimension m×m. Its elements are calculated as [8]

G(x; y)i,j =
Gi(x1, . . . , xj , yj+1, . . . , ym)−Gi(x1, . . . , xj−1, yj , . . . , ym)

xj − yj
,

i, j = 1,m.

In calculations we use the norm ‖x‖∞ = max
1≤i≤m

|xi|. In the following Tables
there are results obtained by methods (3) and (2) in particular, for such cases

xn+1 = xn − [F ′(xn)]−1(F (xn) + G(xn)), n = 0, 1, . . . , (23)
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xn+1 = xn − [F ′(xn) + G(xn−1; xn)]−1(F (xn) + G(xn)), n = 0, 1, . . . , (24)
xn+1 = xn − [H(xn−1; xn)]−1(F (xn) + G(xn)), n = 0, 1, . . . . (25)

Tabl. 1. Numbers of iterations for solving equations with ini-
tial points x0 = 1 · d, x−1 = y0 = 2 · d � for Example 1,
x0 = (1, 0)d, x−1 = y0 = (5, 5)d � for Example 2

d ε
Example 1 Example 2

(23) (24) (25) (3) (23) (24) (25) (3)
1 10−5 5 5 6 5 11 4 5 5

10−15 6 7 8 6 33 6 9 6
10 10−5 14 15 20 13 19 13 18 12

10−15 15 17 22 14 41 15 21 13
100 10−5 104 105 � 88 27 21 30 19

10−15 105 107 � 89 49 23 32 20

The calculations were conducted in MATLAB 7.1. Iterations were stopped
after conditions ‖xn+1 − xn‖∞ ≤ ε and ‖H(xn+1)‖∞ ≤ ε were satis�ed. Sign
"`-"' means, that in this case the solution was not possible to be found. We
examined the convergence of the considered method for such variants of choice
of the additional initial approximation y0: for Example 1 � x−1 = y0 = 2 · d,
for Examples 2, 3 y0 was chosen as x−1 in the works [1, 5, 6, 7] and xi

−1 = yi
0 =

xi
0 + 10−4, i = 1, 2, 3 � for Example 4.
The obtained results show that the methods (24) and (3) di�er a little for

the initial points that are close to the solution. But the method (3) converge
faster than (2) for the initial points with d = 100. In this case ‖x0 − x∗‖ takes
the largest value. The method (23) has the lowest speed of convergence.

Tabl. 2. Numbers of iterations for solving equations with ini-
tial points x0 = (1, 1)d, x−1 = y0 = (0.9, 1.1)d � for Example 3,
x0 = (−2, 3, 5)d, xi

−1 = yi
0 = xi

0 + 10−4 � for Example 4

d ε
Example 3 Example 4

(23) (24) (25) (3) (23) (24) (25) (3)
1 10−5 6 5 6 5 85 7 10 7

10−15 13 7 9 6 266 10 12 8
10 10−5 8 7 9 6 102 10 25 14

10−15 15 9 11 7 284 20 27 16
100 10−5 11 11 14 9 110 28 39 23

10−15 18 12 16 10 292 30 41 24

In Table 3 the numerical results are presented for the example 1 with ε =
10−10, where n is the iteration number, xn is the approximate value for x∗,
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Tabl. 3. Numerical results for the Example 1: x0 = 1, y0 = 2

n xn |xn − xn−1| |H(xn)|
0 1 0.5987212707001
1 0.8079964212227 0.1920035787772 0.3417237602029
2 0.5200746907444 0.28792173047835 0.02019694382837
3 0.5000182789519 0.02005641179247 1.827905217970 · 10−5

4 0.5000000000006 1.827895124595 · 10−5 6.967343368913 · 10−13

5 0.5 6.967759702547 · 10−13 4.163336342344 · 10−17

|xn − xn−1| is the norm of correction and |H(xn)| is the norm of deviation on
every step of the iterative process (3).

Now we verify whether the hypothesis of Theorem 2 are satis�ed. The re-
search are carried out for the example 1. Since m = 1 than ‖ · ‖∞ = | · |. In [9]
we showed that the following estimates hold for all x, y ∈ [0; 1]

|A−1
0 (F ′(x)− F ′(y))| ≤|A−1

0 ||(F ′(x)− F ′(y))| ≤ e0.5

|A0| |x− y|,

|A−1
0 (G(x, y)−G(u, v))| ≤|A−1

0 ||(G(x, y)−G(u, v))| ≤
≤ 1

5|A0|(|x− u|+ |y − v|).

Hence p0 =
e0.5

2|A0| and q0 =
1

5|A0| . Let us choose x0 = 0.43, y0 = 0.47. Then
we get

1
|A0| = 1.049985813745361, p0 = 0.8655669725276801,

q0 = 0.2099971627490723, c = 0.07201451611773883, a = 0.04.

Let us choose r0 = 0.1. Then, according to formulas (18) and (19), we get
t0 = 0.1000000000000000, s0 = 0.06000000000000000,
t1 = 0.0798548388226117, s1 = 0.02326130579394141,
t2 = 0.0226355142098747, s2 = 0.02261740817032270,
t3 = 0.02261727501017343, . . . , t∗ ≈ 0.02261727484294557,
0.01720355125317807 < t∗ < 0.1, γ = 0.1302221628134378 < 1.

The solution x∗ is obtained in 3 iterations with ε = 10−5.
Tabl. 4. Numerical results for the Example 1

n |xn−1 − xn| tn−1 − tn |yn−1 − xn| sn−1 − tn
1 7.0617898 · 10−2 7.2014516 · 10−2 3.0617898 · 10−2 3.2014516 · 10−2

2 6.1790108 · 10−4 5.3499697 · 10−3 1.8418431 · 10−5 6.2579158 · 10−4

3 3.4257955 · 10−9 1.8239200 · 10−5 6.1617378 · 10−13 1.3316015 · 10−7

Thus for the given values hypothesis of the Theorem 2 are satis�ed (See
Tabl. 4). According to this theorem, the iterative process (2) is well-de�ned,
remains in U0 and converges to the solution x∗ ∈ U0.
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ON THE RECOVERY OF CONTINUOUS FUNCTIONS
OF TWO VARIABLES FROM NOISY FOURIER

COEFFICIENTS

Kosnazar Sharipov

Ðåçþìå. Ðîçãëÿíóòî íåêîðåêòíó çàäà÷ó âiäíîâëåííÿ ãëàäêèõ ôóíêöié
äâîõ çìiííèõ ïî íàáëèæåíî çàäàíèì êîåôiöi¹íòàì Ôóðü¹. Öÿ çàäà÷à
ðîçãëÿíóòà äëÿ äâîõ ìîäåëüíèõ êëàñiâ ôóíêöié ñêií÷åííî¨ ãëàäêîñòi:
ôóíêöié ñîáîëåâñüêîãî òèïó ãëàäêîñòi òà ôóíêöié ç äîìiíóþ÷îþ çìiøàíîþ
÷àñòèííîþ ïîõiäíîþ.
Abstract. We consider the ill-posed problem of the recovery of smooth
functions of two variables from noisy Fourier coe�cients.This problem is con-
sidered for two model classes of function of �nite smoothness: functions of
Sobolev type of smoothness and functions with dominating mixed partial de-
rivative.

1. Introduction
Let L2 = L2(Qn) be the space of square integrable real-valued functions of n

variables on a cube Qn = [0, 1]n. Denote by C = C(Qn) the space of continuous
functions on Qn.

This paper is dedicated to the problem of summation of Fourier series of
continuous functions with inaccurately given coe�cients. Note that almost all
previously known results on this problem were obtained mainly for classes of
functions of one variable (n = 1).

Let us brie�y consider the history of the problem under investigation. As-
sume that the system of functions {ϕk(t)}∞k=1 is orthonormal in L2(Q1) with
respect to the standard scalar product 〈·, ·〉, and ∑∞

k=1 yk · ϕk(t) is a Fourier
series of the function y(t) ∈ C. Suppose that instead of Fourier coe�cients
their approximate values yδ,k are given : the condition

∞∑

k=1

(yk − yδ,k)2 ≤ δ2

is ful�lled.
It is well known (see, for example [6],[7]) that the problem of summation of

Fourier series of a continuous function y(t) with approximately given coe�cients
{yδ,k}∞k=1 on some orthonormal system {ϕk(t)}∞k=1 is ill-posed, since deviation
of a function y(t) ∈ C of the amount of its series

∑∞
k=1 yδ,k · ϕk(t) in the

metric of the space C can be arbitrary large.
Papers of the many authors, see, example [1]-[8] are dedicated to the solution

of this problem.
†Key words. Orthonormal system, stable summation, Fourier series, regularization method.
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For the �rst time to solve this problem A.N. Tikhonov proposed regulariza-
tion method [7], having the form

Tα,s(yδ)(t) =
∞∑

k=1

yδ,k

1 + α · k2s
· ϕk(t) (1)

where α is a regularization parameter, and s characterizes the smoothness of the
function to be recovered. Convergence and stability of the method (1) to small
perturbations of Fourier coe�cients on any orthonormal system {ϕk(t)}∞k=1 on
the class of continuous functions, satisfying the condition

∞∑

k=1

|〈y, ϕk〉|2 · ψk < ∞

were proved in [8]. In the condition {ψk}∞k=1 is a sequence of positive numbers,
the order of which is not less than k2+ε, ε > 0.

Later V.A. Il'in and E.G. Poznjak [3] in the case of the trigonometric system
and B.Aliev [1] in the case of any orthonormal uniform boundary systems for
the special classes of functions have obtained the estimate

∥∥y(t)− Tα,s(yδ)(t)
∥∥

C
≤ C ·

(√
α +

δ

α

)
. (2)

We note that one of the major topics within the theory of ill-posed problems is
the optimal choice of the regularization parameter α, or the discretization level
n, depending on the level of error δ. From (2) one can see that the optimal
choice for α is α0 = δ2/3 for which

∥∥y(t)− Tα,s(yδ)(t)
∥∥

C
≤ C · δ 1

3 .

Later,in [4] P.Mathe and S.V.Pereverzev have considered a general method
of summation which is de�ned as follows

T λ
n (yδ)(t) =

n∑

k=1

λk · yδ,k · ϕk(t) (3)

where for a triangular array λ = {λk = λn
k , k = 1, 2, ...n, n ∈ N} it is

assumed that there exists a constant C and some number θ > 0, such that the
condition

|1− λk| ≤ C ·
(

k

n

)θ

is satis�ed. In this case we say that the method of summation (3) is of degree
θ.

Error estimates of the method (3) in [4] were obtained for the class

Wµ
2 =

{
y ∈ L2(Q1) : ‖y‖2

µ =
n∑

k=1

k2µ · |〈y, ϕk〉|2 < ∞
}

in the cases of arbitrary orthonormal systems that satisfy various conditions.
In particular, in the case of systems of functions {ϕk(t)}∞k=1 satisfying condition

‖ϕk‖C ³ kβ, β ≥ 0 (4)
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the estimate was obtained

‖y − T λ
n (yδ)‖C ≤ C · δ

µ−β− 1
2

µ . (5)
In [5] the last result was generalized to the case of a class of continuous

functions Wψ
2 related to a given orthonormal system {ϕk(t)}∞k=1, satisfying the

condition (4) as follows

Wψ
2 =

{
y ∈ L2(Q1) : ‖y‖2

ψ =
∞∑

k=1

ψ2(k) · |〈y, ϕk〉|2 < ∞
}

.

where ψ(k) is some monotone increasing function. At the same,for the method
of summation (3) from [4] on a class of functions Wψ

2 the estimate
∥∥y − T λ

n (yδ)
∥∥

C
≤ C · δ ·

[
ψ−1

(
1
δ

)]β+1/2

.

was obtained.
The aim in this paper is to obtain results on this problem for some classes

of continuous functions of two variables (n = 2). Bellow we will consider two
model classes of functions of �nite smoothness: functions of Sobolev type class
and a class of functions with dominating mixed partial derivative.

2. Generalized class of functions with dominating
mixed partial derivative

Let {ϕk(t)}∞k=1 be an orthonormal system of functions in L2(Q1) for which
the condition (4) is ful�lled, and

∞∑

i=1

∞∑

j=1

yij · ϕi(t) · ϕj(τ), yij = 〈y, ϕiϕj〉,

is Fourier series of a function y(t, τ) ∈ C(Q2).
Suppose that instead of Fourier coe�cients {yij}∞i,j=1 their inaccurate values

are given, i.e. a sequence of numbers yδ := {yδ,i,j}∞i,j=1 is given, such that
yδ,i,j = yi,j + δ · ξi,j , i, j = 1, 2, ... (6)

where ξ = {ξi,j}∞i,j=1 is a noise. It is assumed that δ ∈ (0, 1) and

‖ξ‖l2 =
( ∞∑

i=1

∞∑

j=1

|ξi,j |2
) 1

2

.

Consider the two-dimensional analogue of the summation method (3) from
[4] and [5], which has the form

T λ
n (yδ)(t, τ) =

n∑

i=1

n∑

j=1

λi,j · yδ,i,j · ϕi(t)ϕj(τ) . (7)

The quality of the method T λ
n (yδ) depends on truncation level n and on the

properties of the set λ = {λi,j = λn
i,j : i, j = 1, 2, ... n ∈ N}. We will
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assume that there exists a constant C and some θ > 0, such that

|1− λi,j | ≤ C ·
(

ij

n2

)θ

. (8)

In this section we study regularization properties of the summation methods
(7) on the class

Lµ
2 =

{
y(t, τ) ∈ L2(Q2) : ‖y‖2

µ,2 =
∞∑

i=1

∞∑

j=1

(ij)2µ · |〈y, ϕiϕj〉|2 < ∞
}

.

It is easy to see that the functions from Lµ
2 are generalization of a class of

functions with dominating mixed partial derivative of degree 2µ.

Lemma 1. At µ > β + 1
2 we have the following estimates

∥∥∥∥∥∥

∞∑

i=n+1

n∑

j=1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤ C · n−µ+β+ 1
2 · ‖y‖µ,2,

∥∥∥∥∥∥

n∑

i=1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤ C · n−µ+β+ 1
2 · ‖y‖µ,2, (9)

∥∥∥∥∥∥

∞∑

i=n+1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤ C · n−µ+β+ 1
2 · ‖y‖µ,2. (10)

Proof. An application of the Cauchy-Schwarz inequality provides

∥∥∥∥∥∥

∞∑

i=n+1

n∑

j=1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

=

∥∥∥∥∥∥

∞∑

i=n+1

n∑

j=1

(i · j)µ · yi,j · ϕi(t) · ϕj(τ)
(i · j)µ

∥∥∥∥∥∥
C

≤

≤
∥∥∥∥∥∥

{ ∞∑

i=n+1

n∑

j=1

(i · j)2µ · |yi,j |2
} 1

2

·
{ ∞∑

i=n+1

n∑

j=1

|ϕi(t) · ϕj(τ)|2
(i · j)2µ

} 1
2

∥∥∥∥∥∥
C

≤

≤ C ·
∥∥∥∥
{ ∞∑

i=n+1

n∑

j=1

(i · j)2β

(i · j)2µ

} 1
2
∥∥∥∥

C

· ‖y‖µ,2 ≤

≤ C ·
( ∞∑

i=n+1

1
i2µ−2β

) 1
2

·
( n∑

j=1

1
j2µ−2β

) 1
2

‖y‖µ,2 ≤ C · n−µ+β+ 1
2 · ‖y‖µ,2 .
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The relations (9) and (10) can be proved in the same way. Respectively we
have∥∥∥∥∥∥

n∑

i=1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤

≤ C ·
( n∑

i=1

1
i2µ−2β

) 1
2

·
( ∞∑

j=n+1

1
j2µ−2β

) 1
2

‖y‖µ,2 ≤ C · n−µ+β+ 1
2 · ‖y‖µ,2

and∥∥∥∥∥∥

∞∑

i=n+1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤

≤ C ·
( n∑

i=1

1
i2µ−2β

) 1
2

·
( ∞∑

j=n+1

1
j2µ−2β

) 1
2

‖y‖µ,2 ≤

≤ C · n−2µ+2β+1 · ‖y‖µ,2.

¤The main result of this section is given in the following theorem.
Theorem 1. Let for an orthonormal system {ϕk(t)}k=1∞ the condition (5) is
ful�lled. Assume that we have a sequence of noisy values (6) and a priori it
is known that y ∈ Lµ

2 (Q2) at µ > β + 1/2 . Then for the summation method
T λ

n (yδ) of degree θ > µ at n ³ δ
− 2

2µ+2β+1 we have the following estimate

sup
‖y‖µ,2≤1

sup
‖ξ‖l2

≤1

∥∥∥∥y(t, τ)− T λ
n (yδ)(t, τ)

∥∥∥∥
C

≤ C · δ
µ−β− 1

2
µ+β+1

2 .

Proof. Taking into consideration (6) for T λ
n (yδ) we have∥∥∥∥y(t, τ)− T λ

n (yδ)(t, τ)
∥∥∥∥

C

=

=
∥∥∥∥
∞∑

i=1

∞∑

j=1

yi,j · ϕi(t) · ϕj(τ)−
n∑

i=1

n∑

j=1

λi,j · yδ,i,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤

≤
∥∥∥∥∥∥

∞∑

i=n+1

n∑

j=1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

+

∥∥∥∥∥∥

n∑

i=1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

+

+

∥∥∥∥∥∥

∞∑

i=n+1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

+

+
∥∥∥∥

n∑

i=1

n∑

j=1

(1− λi,j) · yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

+

+δ ·
∥∥∥∥

n∑

i=1

n∑

j=1

λi,j · ξi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

.

(11)
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First we estimate the fourth summand of the relation (11)
∥∥∥∥

n∑

i=1

n∑

j=1

(1− λi,j) · yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤

≤
∥∥∥∥
{ n∑

i=1

n∑

j=1

(1− λi,j)2 · |yi,j |2
} 1

2
{ n∑

i=1

n∑

j=1

|ϕi(t) · ϕ(τ)|2
} 1

2
∥∥∥∥

C

≤

∥∥∥∥
{ n∑

i=1

n∑

j=1

(ij)2µ · |yi,j |2 · (1− λi,j)2 · 1
(ij)2µ

} 1
2
∥∥∥∥

C

·
{ n∑

i=1

n∑

j=1

(ij)2β

} 1
2

≤

≤
∥∥∥∥
{ n∑

i=1

n∑

j=1

(ij)2µ · |yi,j |2 · max
1≤i,j≤n

[(
ij

n2

)2θ

· 1
(ij)2µ

]} 1
2
∥∥∥∥

C

× (12)

×
( n∑

i=1

i2β

)
·
( n∑

j=1

j2β

)
≤

≤ C · n−2µ · ‖y‖µ,2 · n2β+1 = C · n−2µ+2β+1 · ‖y‖µ,2 .

For the last summand of the relation (11) we have

δ ·
∥∥∥∥

n∑

i=1

n∑

j=1

λi,j · ξi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤

≤ δ ·
∥∥∥∥
{ n∑

i=1

n∑

j=1

|λi,j |2 · |ξi,j |2
} 1

2

·
{ n∑

i=1

n∑

j=1

|ϕi(t) · ϕ(τ)|2
} 1

2
∥∥∥∥

C

≤

≤ C · δ ·
∥∥∥∥
{ n∑

i=1

n∑

j=1

|ξi,j |2
} 1

2
∥∥∥∥

C

· n2β+1 ≤ C · δ · n2β+1 .

(13)

Summarizing the estimates (12), (13) and the results of the Lemma 1 for
‖y‖µ,2 ≤ 1 we have

∥∥y(t, τ)− T λ
n (yδ)(t, τ)

∥∥
C
≤ C · n2β+1(n−µ−β− 1

2 + δ) .

If we choose n such that n ³ δ
− 2

2µ+2β+1 , it follows
∥∥y(t, τ)− T λ

n (yδ)(t, τ)
∥∥

C
≤ C · δ

µ−β− 1
2

µ+β+1
2 .

The theorem is proved. ¤

3. Class of functions of Sobolev type of smoothness
In this section we study the approximating properties of the summation

method (7) on the class of functions of Sobolev type, which has the following
form

Wµ
2 (Q2) :=

{
y ∈ L2(Q2) :

∥∥y
∥∥2

W µ
2

=
∞∑

i=1

∞∑

j=1

(
i2µ + j2µ

) · |yi,j |2 < ∞
}

.
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To prove the main result of this section we need the following lemma.

Lemma 2. For y ∈ Wµ
2 at µ > 2β + 1 we have the following estimates

∥∥∥∥∥∥

∞∑

i=n+1

n∑

j=1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤ C · n−µ
2
+β+ 1

2 · ∥∥y
∥∥

W µ
2
,

∥∥∥∥∥∥

n∑

i=1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤ C · n−µ
2
+β+ 1

2 · ∥∥y
∥∥

W µ
2
, (14)

∥∥∥∥∥∥

∞∑

i=n+1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)

∥∥∥∥∥∥
C

≤ C · n−µ+2β+ 1
2 · ∥∥y

∥∥
W µ

2
. (15)

Proof. Applying Cauchy-Schwarz inequality for y ∈ Wµ
2 (Q2) at µ > 2β + 1

we have the following

∥∥∥∥
∞∑

i=n+1

n∑

j=1

yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

=

=
∥∥∥∥

∞∑

i=n+1

n∑

j=1

(
i2µ + j2µ

) 1
2 · yi,j · ϕi(t) · ϕj(τ)

(i2µ + j2µ)
1
2

∥∥∥∥
C

≤

≤
∥∥∥∥
{ ∞∑

i=n+1

n∑

j=1

(
i2µ + j2µ

) · |yi,j |2
} 1

2
{ ∞∑

i=n+1

n∑

j=1

|ϕi(t) · ϕj(τ)|(
i2µ + j2µ

)
} 1

2
∥∥∥∥

C

≤

≤ C · ∥∥y
∥∥

W µ
2
·
∥∥∥∥
{ ∞∑

i=n+1

n∑

j=1

i2βj2β

2iµjµ

} 1
2
∥∥∥∥

C

≤

≤ C ·∥∥y
∥∥

W µ
2
·
∥∥∥∥
( ∞∑

i=n+1

1
iµ−2β

) 1
2

·
( n∑

j=1

1
jµ−2β

) 1
2
∥∥∥∥

C

≤ C ·n−µ
2
+β+ 1

2 ·∥∥y
∥∥

W µ
2
.

Similarly, for proofs of (14) and (15) respectively we have

∥∥∥∥
n∑

i=1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤

≤ C · ∥∥y
∥∥

W µ
2
·
∥∥∥∥
( n∑

i=1

1
iµ−2β

) 1
2

·
( ∞∑

j=n+1

1
jµ−2β

) 1
2
∥∥∥∥

C

≤

≤ C · n−µ
2
+β+ 1

2 · ∥∥y
∥∥

W µ
2
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and
∥∥∥∥

∞∑

i=n+1

∞∑

j=n+1

yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤

≤ C · ∥∥y
∥∥

W µ
2
·
∥∥∥∥
( ∞∑

i=n+1

1
iµ−2β

) 1
2

·
( ∞∑

j=n+1

1
jµ−2β

) 1
2
∥∥∥∥

C

≤

≤ C · n−µ+2β+1 · ∥∥y
∥∥

W µ
2
.

The lemma is proved. ¤

Now we state the main result of the section.

Theorem 2. Let for an orthonormal system
{
ϕk(t)

}
k=1∞ the condition (5)

is ful�lled. Assume that we have a sequence of noisy values (6) and a priori it
is known that y ∈ Wµ

2 (Q2) for µ > 2β + 1 . Then for the summation method
T λ

n (yδ) of degree θ > µ
2 at n ³ δ

− 2
µ+2β+1 we have the estimate

sup
‖y‖µ,2≤1

sup
‖ξ‖l2

≤1

∥∥∥∥y(t, τ)− T λ
n (yδ)(t, τ)

∥∥∥∥
C

≤ C · δ µ−2β−1
µ+2β+1 .

Proof. To prove the theorem we need to estimate the summands of the relations
(11) for y ∈ Wµ

2 (Q2), µ > 2β+1. Using the fact that for T λ
n (yδ) the condition

(8) is ful�lled and θ > µ/2 we estimate the fourth summand of the relation (11)
∥∥∥∥

n∑

i=1

n∑

j=1

(1− λi,j) · yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤

≤
∥∥∥∥
{ n∑

i=1

n∑

j=1

(1− λi,j)2 · |yi,j |2
} 1

2
{ n∑

i=1

n∑

j=1

|ϕi(t) · ϕ(τ)|2
} 1

2
∥∥∥∥

C

≤

≤
∥∥∥∥
{ n∑

i=1

n∑

j=1

(i2µ + j2µ)|yi,j |2 |1− λi,j |2
(i2µ + j2µ)

} 1
2
∥∥∥∥

C

×

×
∥∥∥∥
{ n∑

i=1

n∑

j=1

|ϕi(t) · ϕ(τ)|2
} 1

2
∥∥∥∥

C

≤ (16)

≤ C ·
∥∥∥∥
{ n∑

i=1

n∑

j=1

(i2µ + j2µ)|yi,j |2 · max
1≤i,j≤n

[
1

(ij)µ
·
(

ij

n2

)2θ]} 1
2
∥∥∥∥

C

×

×
∥∥∥∥
( n∑

i=1

i2β

) 1
2
( n∑

j=1

j2β

) 1
2
∥∥∥∥

C

≤

≤ C · n−µ ·
∥∥∥∥
{ n∑

i=1

n∑

j=1

(i2µ + j2µ)|yi,j |2
} 1

2
∥∥∥∥

C

· n2β+1 ≤ C · n−µ+2β+1 · ∥∥y
∥∥

W µ
2
.
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Taking into consideration that from (8) it follows that |λi,j | < ∞ , then for the
last summand of the relation (11) we have

δ ·
∥∥∥∥

n∑

i=1

n∑

j=1

λi,j · ξi,j · yi,j · ϕi(t) · ϕj(τ)
∥∥∥∥

C

≤ C · ·δn2β+1. (17)

Summarizing the estimates (16), (17) and the estimates from the Lemma 3.1
for y ∈ Wµ

2 (Q2) we obtain
∥∥y(t, τ)− T λ

n (yδ)(t, τ)
∥∥

C
≤ C · n2β+1

(
n−

µ
2
−β− 1

2 + δ
)
.

When choosing n ³ δ
− 2

µ+2β+1 it follows that
∥∥y(t, τ)− T λ

n (yδ)(t, τ)
∥∥

C
≤ C · δ µ−2β−1

µ+2β+1 .

Thus, the theorem is proved. ¤
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ON ACCURACY OF SOLVING SEMIDISCRETE ILL-POSED
PROBLEMS IN SOBOLEV SPACES WITH ν-METHODS

Sergei Solodky, Evgeny Volynets

Ðåçþìå. Äëÿ ðîçâ'ÿçóâàííÿ íåêîðåêòíî¨ çàäà÷i ó ñîáîëiâñüêèõ øêàëàõ,
îòðèìàíî¨ â ðåçóëüòàòi çàñòîñóâàííÿ ìåòîäó êîëîêàöi¨ äî iíòåãðàëüíîãî
ðiâíÿííÿ Ôðåäãîëüìà ïåðøîãî ðîäó, âèêîðèñòàíî ïî¹äíàííÿ ν-ìåòîäiâ ç
ïðèíöèïîì áàëàíñó ÿê àïîñòåðiîðíèì ïðàâèëîì âèáîðó ïàðàìåòðà ðåãó-
ëÿðèçàöi¨.
Abstract. To solve ill-posed problem in Sobolev scales appearing as a re-
sult of application by a collocation method to Fredholm integral equation
of the �rst kind a combination of ν-methods with balancing principle as an
a-posteriori regularization parameter choice rule is used.

1. Introduction
Let us consider an equation

Af = g (1)
with integral operator A de�ned as

Af(x) :=
∫

Ω
k(x, t)f(t)dt, x ∈ Ω.

Here Ω ⊂ Rd is a bounded domain with a Lipschitz continuous boundary and
kernel k(x, t) : Ω × Ω → R is such that A is compact operator with in�nite
dimensional range acting from L2 = L2(Ω) into L2. Without loss of generality
we may assume that ‖A‖ ≤ 1.

To guarantee a stable solution some regularization method should be used.
In the paper we use ν-methods, but regularization process will be done not
for original problem (1) but for semi-discrete equation obtained from it by
collocation scheme. Let X = {x1, . . . , xn} ⊂ Ω be some set of pairwise distinct
points. Consider an equation

AXf = ḡ, (2)
where ḡ = {g1, . . . , gn}T , gj = g(xj), and AX is de�ned as

(AXf)j = Af(xj), 1 ≤ j ≤ n,

i.e. AX is the restriction of A to set X (AXf = Af |X). To obtain good
approximation to exact solution in the framework of ν-methods it is important
to choose regularization parameter in properly way. In this case regularization
parameter is the number of iteration step. As a rule we use balancing principle
(see [5], [7]).

†Key words. Inverse problems, ν-methods, Sobolev scales, collocation method, a-posteriori
parameter choice, error bound.
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In practice exact right-hand side of (1) is usually unavailable and only noisy
data vector ḡδ = {gδ

1, . . . , g
δ
n}T such that
|gj − gδ

j | ≤ δ, j = 1, n

is known. Let n-dimensional Euclidean space Rn provided with standard norm
‖·‖Rn and corresponding inner product 〈·, ·〉Rn . Then the whole data error can
be estimated as

‖ḡ − ḡδ‖Rn ≤ δ
√

n.

Our aim is stable recovery of unknown solution of (2) from noisy values ḡδ.

2. ν-methods in Sobolev scales
Following [2] we assume that A acts along scale of Sobolev spaces Hτ , τ ≥

d/2, with step α > 0 i.e. there are constants c
′′ ≥ c

′ ≥ 0 such that for �xed
α ∈ R

c
′‖f‖τ ≤ ‖Af‖τ+α ≤ c

′′‖f‖τ . (3)
Recall that Sobolev space Hτ = Hτ (Ω) is completion in norm of space of square-
summable function in Ω together with derivatives of order τ , and H0 = L2(Ω).

For the �rst time ill-posed problems in Hilbert scales was considered in [6].
But in the paper we consider the case of discretization by projection methods.
The �rst result in Hilbert scales for the case of discretization by collocation
method was obtained recently in [2] where a-priori rule is used for regularization
parameter choice. We consider aposteriory rule for choosing the parameter, i.e.
without information about smoothing of exact solution.

Let f∗ be an exact solution of original problem (1). Then f∗ also solves
semi-discrete problem (2) and can be represented in the form

f∗ = fδ + v0,

where fδ = A†X ḡ, A†X is the Moore-Penrose generalized inverse of AX , and v0

belongs to the null space of AX .
We will obtain approximation to solution fδ. Since AX acts from Hτ into

Rn than fδ ∈ Hτ for some τ > 0.
In [3] was shown that always exists some continuous increasing index function

φ(λ), λ ∈ [0, 1], such that φ(0) = 0 and
fδ = φ(A∗XAX)v, (4)

where v ∈ Hτ , ‖v‖τ ≤ ρ, ρ > 0, and A∗X : Rn → Hτ is the adjoint of AX . Later
we assume that (4) is ful�lls.

Recall that ν-methods is the process of successive computation of elements
f δ

k , k = 1, 2, . . . by the rule
f δ

k = pk(A∗XAX)A∗X ḡδ,

where {pk} is some series of the polynomials of order k− 1. Consider one more
polynomial:

rk(λ) := 1− λpk(λ).
It is easy to obtain that for fk = pk(A∗XAX)A∗X ḡ we have

fk − f δ
k = pk(A∗XAX)A∗X(ḡ − ḡδ),
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fδ − fk = rk(A∗XAX)f †,

sup
0≤λ≤1

√
λpk(λ) ≤ 2k, (5)

sup
0≤λ≤1

λpk(λ) ≤ 2, (6)

|λµrk(λ)| ≤ cµk−2µ, (7)
|rk(λ)| ≤ 1, (8)

where λ ∈ [0, 1], cµ > 0 is some constant, 0 < µ ≤ ν.

3. Auxiliary assertions
Lemma 1. If φ(t)

tν−1/2 is the decreasing function then estimations

‖fδ − fk‖τ ≤ κρφ(k−2), (9)

‖AXfδ −AXfk‖Rn ≤ cνρk−1φ(k−2), (10)
are hold, where c and cν are some constants.
Proof. In [1, Theorem 6.15] the estimate

‖fδ − fk‖ ≤ κ‖fδ − fγk,ν‖,

is obtained, where fγk,ν =
ν∑

i=1
γi−1

k (A∗XAX + γkI)−iA∗X ḡ is the approximate
solution obtained by iterated Tikhonov method of order ν (ν is integer), γk ∈
[(k+1)−2, k−2], and κ is a constant. On the other hand, it is easy to show that

‖fδ − fγk,ν‖τ ≤ ρφ(γk).

So, �rst statement of the Lemma is proved.
Further
‖AXfδ −AXfk‖Rn = ‖AX(fδ − fk)‖Rn = ‖AXrk(A∗XAX)fδ‖Rn =

= ‖AXrk(A∗XAX)φ(A∗XAX)v‖Rn ≤ ‖v‖τ sup
0≤λ≤1

√
λrk(λ)φ(λ).

To estimate expression in the right-hand side we consider two cases.
1. λ ≤ k−2. Due to (8) and increase of the function φ we have

√
λrk(λ)φ(λ) ≤ k−1φ(k−2).

2. k−2 ≤ λ. Due to decrease of the function φ(t)

tν−1/2 and (7) we obtain
√

λrk(λ)φ(λ) =
√

λrk(λ)λν−1/2 φ(λ)
λν−1/2

≤
√

λrk(λ)λν−1/2 φ(k−2)
k−2(ν−1/2)

≤

≤ λνrk(λ)
k−2ν

k−1φ(k−2) ≤ cνk
−1φ(k−2).

Hence,
‖AXfδ −AXfk‖Rn ≤ cνρk−1φ(k−2)

and Lemma is proved. ¤
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Remark 7. It is follows from decreasing of φ(t)

tν−1/2 that in the case of φ(γ) = γβ

the restriction is arisen β: 0 ≤ β ≤ ν − 1/2.
Lemma 2. Following estimations

‖fk − f δ
k‖τ ≤ 2kδ

√
n, (11)

‖AXfk −AXf δ
k‖Rn ≤ 2δ

√
n. (12)

are hold.
Proof. Due to (5) we obtain the following estimation

‖fk − f δ
k‖τ = ‖pk(A∗XAX)A∗X(ḡ − ḡδ)‖τ ≤

≤ ‖ḡ − ḡδ‖Rn sup
0≤λ≤1

√
λpk(λ) ≤ 2kδ

√
n

and the �rst statement of Lemma is proved.
Later due to (6) we have

‖AXfk −AXf δ
k‖Rn = ‖AXpk(A∗XAX)A∗X(ḡ − ḡδ)‖Rn ≤

≤ ‖ḡ − ḡδ‖Rn sup
0≤λ≤1

λpk(λ) ≤ 2δ
√

n.

Thus, Lemma is proved. ¤
De�ne data density of the set X in domain Ω as

h := sup
x∈Ω

min
xi∈X

‖x− xi‖Rd .

Below we need the sampling inequality obtained in [2, Theorem 4.8]. Namely,
for arbitrary function u ∈ Hθ = Hθ(Ω), θ > d/2 and su�ciently small h it is
true

‖u‖σ ≤ κ
(
hθ−σ‖u‖θ + h

d
2
−σ‖u|X‖Rn

)
, (13)

where σ ∈ [0, bθc), and κ is some constant, doesn't depending on u and h.

4. Error estimate
Theorem 1. Let (3) is true. Then for any discrete set X with su�ciently
small data density h there is constant c1 > 0 such that

‖fδ − f δ
k‖L2 ≤ c1(hτ

(
κρφ(k−2) + 2δk

√
n
)

+ (14)
+h

d
2
−α

(
cνρk−1φ(k−2) + 2δ

√
n
)
).

Proof. First of all we estimate ‖fδ − f δ
k‖τ . Due to (9) and (11) we have

‖fδ − f δ
k‖τ ≤ ‖fδ − fk‖τ + ‖fk − f δ

k‖τ ≤ κρφ(k−2) + 2kδ
√

n. (15)
Using the sampling inequality (13) with u = A(fδ−f δ

k ), σ = α and θ = τ +α
we obtain

‖A(fδ − f δ
k )‖α ≤ κ

(
hτ‖A(fδ − f δ

k )‖τ+α + h
d
2
−α‖A(fδ − f δ

k )|X‖Rn

)
.

Now we apply condition (3) to last inequality

c′‖fδ − f δ
k‖L2 ≤ κ

(
c′′hτ‖fδ − f δ

k‖τ + h
d
2
−α‖A(fδ − f δ

k )|X‖Rn

)
.
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Taking into account that Af |X = AXf , we obtain

‖fδ − f δ
k‖L2 ≤ c1

(
hτ‖fδ − f δ

k‖τ + h
d
2
−α‖AX(fδ − f δ

k )‖Rn

)
,

where c1 = κ
c′ max{1, c′′}.

Considering estimates (10), (12), (15) we have Theorem's statement. ¤

Let partition of the set X is uniform, i.e. h = χn−
1
d for some constant χ.

Then inequality (14) can be rewritten as
‖fδ − f δ

k‖L2 ≤ Φ(k) + Ψ(k),

where
Φ(k) := c2ρ

(
χ

d
2
−αn

α
d
− 1

2 k−1φ(k−2) + χτn−
τ
d φ(k−2)

)
,

Ψ(k) := c2

(
χ

d
2
−αn

α
d δ + χτn−

τ
d kδ

√
n
)

,

and c2 = c1 max{2,κ, cν}.
It is obvious that due to the monotonicity of φ the function Φ is increasing

and Ψ is decreasing. Herewith optimal value of the regularization parameter
γ = γopt balances functions Φ and Ψ, i.e. Φ(γopt) = Ψ(γopt) and

‖fδ − f δ
kopt

‖L2 ≤ 2Φ(kopt).

In the case of unknown function φ such apriory rule for choosing regulariza-
tion parameter is inapplicable so it is necessary to use one of the aposteriory
rules. As a rule we use balancing principle.

Take into consideration following sets
∆N =

{
1, . . . , N, N ³ (δ

√
n)−1

}
, (16)

and
M+(∆N ) =

{
k ∈ ∆N : ‖f δ

k − f δ
l ‖L2 ≤ 4Ψ(l), l = k, . . . , N

}
.

To obtain approximate solution we use as regularization parameter such element
k = k+ := min

{
k ∈ M+(∆N )

}
.

Let us consider one more set
M(∆N ) := {k ∈ ∆N : Φ(k) ≤ Ψ(k)}

and de�ne
k∗ := min {k ∈ M(∆N )} .

Without loss of generality we assume that M(∆N ) 6= ∅ and ∆N\M(∆N ) 6= ∅.
Theorem 2. Let the set ∆N is de�ned as (16). Then for regularization pa-
rameter k = k+ following estimate

‖fδ − f δ
k+
‖L2 ≤ 6qΦ(kopt), (17)

holds, where 2 ≥ q ≥ k+

k+−1 .
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Proof. From the beginning we show that k∗ ≤ k+. For any element l > k∗ we
have

‖f δ
k∗ − f δ

l ‖L2 ≤ ‖fδ − f δ
k∗‖L2 + ‖fδ − f δ

l ‖L2

≤ Φ(k∗) + Ψ(k∗) + Φ(l) + Ψ(l)

≤ 2Φ(k∗) + Ψ(k∗) + Ψ(l)

≤ 3Ψ(k∗) + Ψ(l) ≤ 4Ψ(l).

So, k∗ ∈ M+(∆N ) and by the de�nition k∗ ≥ k+.
De�ne the unknown norm using Ψ(k∗)

‖fδ − f δ
k+
‖L2 ≤ ‖fδ − f δ

k∗‖L2 + ‖f δ
k∗ − f δ

k+
‖L2

≤ 6Ψ(k∗).

Due to monotonicity of the function Ψ for 2 ≥ q ≥ k+

k+−1 > 1 we have

Ψ(k∗) = c2

(
χ

d
2
−αn

α
d δ + χτn−

τ
d k∗δ

√
n
)

≤ qc2

(
χ

d
2
−αn

α
d δ + χτn−

τ
d

k∗
q δ
√

n
)

= qΨ(k∗
q ).

It follows from the de�nitions of the elements k∗, kopt that k∗ ≥ kopt ≥ k∗−1.
Then

‖fδ − f δ
γ+
‖L2 ≤ 6Ψ(k∗) ≤ 6qΨ(k∗/q) ≤ 6qΨ(kopt) = 6qΦ(kopt)

and Theorem is proved. ¤

Corollary 3. For θ(k) = φ(k−2)k−1 the estimate

‖fδ − f δ
m,γ+

‖L2 ≤ 6qΦ
(

θ−1
(δ
√

n

ρ

))
,

is true. In particular for φ(γ) = γβ with 0 < β ≤ ν − 1/2

‖fδ − f δ
k‖L2 ≤ 6qc2

(
χ

d
2
−αδn

α
d + χτρ

1
2β+1 n−

τ
d (δ
√

n)
2β

2β+1

)
. (18)

Proof. By the de�nition of kopt it holds that Φ(kopt) = Ψ(kopt), i.e.

ρk−1φ(k−2)
(
χ

d
2
−αn

α
d
− 1

2 + χτn−
τ
d k

)
= δ

√
n

(
χ

d
2
−αn

α
d
−1/2 + χτn−

τ
d k

)
.

Then k−2
opt = θ−1

(
δ
√

n
ρ

)
.

Taking into account that for φ(γ) = γβ we have θ−1(γ) = γ
2

2β+1 , then from
(17) we obtain (18). ¤
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Remark 8. In view of the data error estimation
‖ḡ − ḡδ‖Rn ≤ δ

√
n

it is natural to assume that δ
√

n ¿ 1, or, what is the same, n ¿ δ−2. If n can
be chosen at will, then, as it has been shown in [2, Corollary 4.13], under the
condition α + τ > d/2, an optimal choice is n ' δ−

d
α+τ . However, it is very

often, that the amount of available noisy data is limited such that one should
deal with

n ¿ δ−
d

α+τ .

For such n using a-priori parameter choice γ̃ = δn−
α+τ−d

d suggested in [2,
Corollary 4.11] one has the following error bound

‖fδ − f δ
γ̃‖L2 ≤ C̃

(
n−

τ
d + δn

α
d +

√
δn

α−τ
2d

)

= O(n−
τ
d ).

At the same time, from Corollary 1 it follows that a-posteriori parameter
choice k = k+ allows a higher order error bound. Indeed, keeping in mind that

n−
τ
d À δn−

α
d , n−

τ
d À

√
δn−

α−τ
2d

from (18) we have
‖fδ − f δ

k+
‖L2 ¿ n−

τ
d .

Remark 9. Recall that we are looking for the solution f+ of a normally solvable
problem (2). It is well known (see, for example, [1, Section 3.3]) that in such
situation the error bound for direct reconstruction of f+ from noisy data is
determined by ε

λn
, where ε is a given data error level of the right-hand side

and λn is the smallest singular value of AX . In view of the condition (3) it is
natural to assume that in our case it holds λn ∼ n−

α
d . Then, keeping in mind

ε = δ
√

n we obtain
ε

λn
∼ δn

α
d
+ 1

2 . (19)

At the same time, from (18) it follows that for δ−1 ≤ n
1
2
+

(2β+1)(α+τ)
d

‖fδ − f δ
k+
‖L2 ≤ O(δn

α
d
+ 1

2 ). (20)

Comparing (19) and (20) one can conclude that, if the amount n of available
discrete data is su�ciently large such that n ¿ δ−2 but

δ
− 2d

2(2β+1)(α+τ)+d ¿ n,

or (see Remark 2)
δ
− 2d

2(2β+1)(α+τ)+d ¿ n ¿ δ−
d

α+τ

then the regularized solution f δ
k+

allows a better error bound (in the sense of
order) than the direct reconstruction.
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THE MIXED DIRICHLET-NEUMANN PROBLEM
FOR THE ELLIPTIC EQUATION OF THE SECOND

ORDER IN DOMAIN WITH THIN INCLUSION

Yuriy Sybil

Ðåçþìå. Ðîçãëÿíóòî çìiøàíó çàäà÷ó Äiðiõëå-Íåéìàíà äëÿ åëiïòè÷íîãî
ðiâíÿííÿ äðóãîãî ïîðÿäêó â îáìåæåíié òðèâèìiðíié Ëiïøèöåâié îáëàñòi ç
òîíêèì âêëþ÷åííÿì, ÿêå ìîäåëþ¹òüñÿ ðîçiìêíóòîþ ïîâåðõíåþ. Ãðàíè÷íà
óìîâà Äiðiõëå çàäàíà íà îäíié ñòîðîíi öi¹¨ ïîâåðõíi, à óìîâà Íåéìàíà �
íà iíøié. Ââåäåíî ôóíêöiîíàëüíi ïðîñòîðè â îáëàñòi iç âêëþ÷åííÿì òà
îïåðàòîðè ñëiäó íà ðîçiìêíóòié Ëiïøèöåâié ïîâåðõíi. Äîâåäåíî åêâiâà-
ëåíòíiñòü çàäà÷i ó äèôåðåíöiàëüíîìó ôîðìóëþâàííi òà âiäïîâiäíî¨ âàðià-
öiéíî¨ çàäà÷i. Äîñëiäæåíî ïèòàííÿ iñíóâàííÿ òà ¹äèíîñòi ðîçâ'ÿçêó ïîñ-
òàâëåíî¨ çàäà÷i ç íåîäíîðiäíèìè ãðàíè÷íèìè óìîâàìè ó âiäïîâiäíèõ
ôóíêöiîíàëüíèõ ïðîñòîðàõ.
Abstract. We consider Dirichlet-Neumann mixed boundary value problem
for elliptic equation of the second order in three dimensional domain with thin
inclusion which is presented by an open Lipschitz surface. The Dirichlet con-
dition is posed on one side of the surface and the Neumann condition on the
other side. Functional spaces in the domain with inclusion and correspond-
ing trace operators on an open Lipschitz surface are introduced. We prove
the equivalence of initial mixed boundary value problem and connected varia-
tional problem. As a result we obtain existence and uniqueness of solution of
the posed problem with nonhomogeneous boundary conditions in appropriate
functional spaces.

Introduction
Mixed boundary value problems for the second order elliptic equations in the

case when on one part of closed boundary are given conditions of Dirichlet type
and on another one conditions of Neumann type were considered in [2, 5, 9].
Boundary value problems in domains with thin inclusion as well as crack in solid
bodies have a grate interest in applications. It's pretty convenient to present
this thin object as an open double sided surface. Then for a mixed boundary
value problem in unregular domain we have the Dirichlet conditions on one side
of the open surface and the Neumann condition on the other one. Such kind of
problems were considered in [3, 7] where the posed problems were reduced to
systems of integral equations over the open boundary.

So far as domain with open surface is essentially unregular we have addi-
tional problems connected with de�nitions of corresponding trace maps and
appropriate functional spaces [1, 2].

†Key words. Mixed boundary value problem; elliptic operator; variational problem; open
surface.
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In present paper we use a variational formulation of the posed mixed bound-
ary value problem which gives us opportunity to obtain the existence and
uniqueness of solution.

1. Functional spaces and trace operators
Let Ω+ ⊂ R3 be a bounded connected Lipschitz domain. This means that

its boundary Σ is locally the graph of a Lipschitz function [1, 2]. Let us note
that Σ can be piecewise smooth and have edges and corners. Ω+ = Ω+ ∪ Σ.
We suppose that S is an open Lipschitz surface bounded by closed curve Γ,
S = S ∪ Γ and S ⊂ Ω+. We denote Ω = Ω+ \ S and consider S as a part of a
some closed bounded Lipschitz surface Σ0 = S ∪ S0, Σ0 ⊂ Ω+.

Since Σ and S are the Lipschitz surfaces almost everywhere we can de�ne
outward pointing vector of the normal ~nx, x ∈ Σ, and depend on the direction
of ~nx, x ∈ S, we consider S as a double sided surface with sides S+ and S−.

In Ω+ we consider the elliptic operator of the second order

Lu = −
3∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ a0u,

and connected bilinear form

a(u, v) =
∫

Ω
{

3∑

i,j=1

aij
∂v

∂xi

∂u

∂xj
+ a0uv}dx.

Here aij , a0 ∈ C1(Ω+) are real functions which satisfy the following condi-
tions for x ∈ Ω+:

3∑

i,j=1

aijtitj ≥ c1

3∑

i=1

t2i , ti ∈ R, i = 1, 3 , c1 > 0, a0(x) ≥ c2 > 0.

We use the Hilbert spaces H1(Ω+) and H1(Ω+, L) of real functions with
norms and inner products

‖u‖2
H1(Ω+) =

∫

Ω+

{|∇u|2 + u2
}

dx, (u, v)H1(Ω+) =
∫

Ω+

{(∇u,∇v) + uv} dx,

‖u‖2
H1(Ω+,L) = ‖u‖2

H1(Ω+) + ‖Lu‖2
L2(Ω+),

(u, v)H1(Ω+,L) = (u, v)H1(Ω+) + (Lu,Lv)L2(Ω+).

The following trace operators γ+
0,Σ : H1(Ω+) → H1/2(Σ) and

γ+
1,Σ : H1(Ω+, L) → H−1/2(Σ) are continuous and surjective [1, 4]. Here

γ+
1,Σu ∈ H−1/2(Σ) and coincides with ∂u

∂nx
for u ∈ C1(Ω+) where ∂

∂nx
=∑3

i,j=1 cos(~nx, ~xi)aij
∂

∂xj
is a conormal derivative, cos(~nx, xi) are the coordi-

nates of the almost everywhere de�ned outward pointing vector of the normal
~nx to Σ.

Let us denote by C∞
0 (Ω) the class of in�nitely di�erentiable functions with

compact support in Ω. We introduce the Hilbert spaces H1(Ω) and H1(Ω, L)
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of real functions with norms

‖u‖2
H1(Ω) =

∫

Ω

{|∇u|2 + u2
}

dx, (1)

‖u‖2
H1(Ω,L) = ‖u‖2

H1(Ω) + ‖Lu‖2
L2(Ω),

where derivatives ∂u
∂xi

∈ L2(Ω) are de�ned as
(

∂u

∂xi
, ϕ

)

L2(Ω)

= −
∫

Ω
u

∂ϕ

∂xi
dx = −

(
u,

∂ϕ

∂xi

)

L2(Ω)

for all ϕ ∈ C∞
0 (Ω).

We consider some trace maps in Ω. We denote γ±0,S and γ±1,S the restrictions
of trace maps γ±0,Σ0

and γ±1,Σ0
on S respectively [6]. Then we have

γ±0,S : H1(Ω) → H1/2(S) and γ±1,S : H1(Ω, L) → H−1/2(S).

H1
0 (Ω) =

{
u ∈ H1(Ω) : γ±0,Su = 0, γ+

0,Σu = 0
}

, H−1(Ω) = (H1
0 (Ω))′.

We also have that H1
0 (Ω) is a closure of C∞

0 (Ω) in the norm (1).
In what follows we use the next trace maps: [γ0,S ] = γ+

0,S − γ−0,S , [γ1,S ] =

γ+
1,S − γ−1,S . As it was shown in [6, 7] [γ0,S ] : H1(Ω) → H

1/2
00 (S) and [γ1,S ] :

H1(Ω, L) → H
−1/2
00 (S), where H

1/2
00 (S) = {g ∈ H1/2(S) : p0g ∈ H1/2(Σ0)}.

Here p0g is extension by zero of the function g on S0. The norm in H
1/2
00 (S)

is given as ‖g‖
H

1/2
00 (S)

= ‖p0g‖H1/2(Σ0). H
−1/2
00 (S) = (H1/2(S))′, H−1/2(S) =

(H1/2
00 (S))′.
Let us denote H1

S(Ω) = {u ∈ H1(Ω) : γ−0,Su = 0}. If u ∈ H1
S(Ω) then

γ+
0,Su ∈ H

1/2
00 (S) [8].

In [6] we obtained the �rst Green's formula for domain with an open surface
which in presented case for u ∈ H1(Ω, L) and v ∈ H1(Ω) has the following
form:
a(u, v) = (Lu, v)L2(Ω) + 〈γ+

1,Su, [γ0,S ]v〉+ 〈[γ1,S ]u, γ−0,S ]v〉+ 〈γ+
1,Σu, γ+

0,Σv〉. (2)

Here 〈·, ·〉 are relations of duality between H
1/2
00 (S) and H−1/2(S), H1/2(S) and

H
−1/2
00 (S), H1/2(Σ) and H−1/2(Σ) respectively.
We assume that Ω1 is a Lipschitz domain bounded by the closed surface Σ0.

Ω1 = Ω1 ∪Σ0, Ω2 = Ω+ \Ω1. We denote by ui the restriction of u ∈ H1(Ω) to
Ωi, i = 1, 2. It's obviously that ui ∈ H1(Ωi), i = 1, 2.

In ([8], Lemma 5) we obtained the next proposition.
Lemma 1. Let u ∈ H1(Ω). Then the norm (1) can be presented in the following
form:

‖u‖2
H1(Ω) = ‖u1‖2

H1(Ω1) + ‖u2‖2
H1(Ω2)

and this norm doesn't depend on the choice of S0.

Lemma 2. The operator γ0,S = (γ+
0,Σ, γ+

0,S) : H1
S(Ω) → H1/2(Σ) ×H

1/2
00 (S) is

continuous and surjective.
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Proof. Let g ∈ H1/2(Σ), g0 ∈ H
1/2
00 (S) are arbitrary functions. We denote by

g̃0 ∈ H1/2(Σ0) the extension g0 by zero on S0. Operator γ+
0,Σ0

: H1(Ω1) →
H1/2(Σ0) is continuous and surjective [1]. Thus we have function u1 ∈ H1(Ω1)
with trace meaning γ+

0,Σ0
u1 = g̃0 and

‖g̃0‖H1/2(Σ0) = ‖g0‖H
1/2
00 (S)

≤ c1‖u1‖H1(Ω1). (3)

Analogously there exists u2 ∈ H1(Ω2) that γ−0,Σ0
u2 = 0, γ+

0,Σu2 = g and

‖g‖H1/2(Σ) ≤ c2‖u2‖H1(Ω2). (4)

As a result we obtained the function u ∈ L2(Ω) with restrictions ui ∈ H1(Ωi)
to Ωi, i = 1, 2. Then [γ0,S0 ]u = γ+

0,S0
u1 − γ−0,S0

u2 = 0 and by ([8], Lemma 4)
we have u ∈ H1(Ω). Since γ−0,Su = 0 it follows that u ∈ H1

S(Ω).
In order to prove continuity of the trace map γ0,S we consider function u ∈

H1
S(Ω) with γ+

0,Σu = g ∈ H1/2(Σ) and γ+
0,Su = g0 ∈ H

1/2
00 (S).

Then from (3), (4) and Lemma 1 we obtain
‖g‖H1/2(Σ) + ‖g0‖H

1/2
00 (S)

≤ c1‖u1‖H1(Ω1) + c2‖u2‖H1(Ω2) ≤ c‖u‖H1(Ω).

Here c, c1, c2 are some positive constants. ¤

2. Mixed boundary value problem and
it's variational formulation

Let us state a Dirichlet-Neumann mixed boundary value problem in domain
Ω.
Problem M . Find a function u ∈ H1(Ω, L) that satis�es

Lu = h, γ−0,Su = g, γ+
1,Su = f, γ+

1,Σu = z.

Here h ∈ L2(Ω), g ∈ H1/2(S), f ∈ H−1/2(S), z ∈ H−1/2(Σ) are given functions.
A partial case of the problem M when g = 0 we denote as problem M0.
With problem M0 it's closely connected the following variational problem.
Problem V M0. Find a function u ∈ H1

S(Ω) that satis�es
a(u, v) = l(v) (5)

for every v ∈ H1
S(Ω).

Here
l(v) = (h, v)L2(Ω) + 〈f, γ+

0,Sv〉+ 〈z, γ+
0,Σv〉, (6)

h ∈ L2(Ω), f ∈ H−1/2(S), z ∈ H−1/2(Σ) are given functions.
Lemma 3. Bilinear form a(u, v) : H1

S(Ω) × H1
S(Ω) → R is continuous and

H1
S(Ω)-elliptic.

Proof. Since H1
S(Ω) is a subspace of H1(Ω) this lemma is a corollary of ([8],

Lemma 7). ¤

Theorem 1. Problems M0 and V M0 are equivalent.
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Proof. Let u ∈ H1
S(Ω) be a solution of problem M0. Then from the �rst Green's

formula (1) for any v ∈ H1
S(Ω) we have

a(u, v) = (h, v)L2(Ω) + 〈f, γ+
0,Sv〉+ 〈z, γ+

0,Σ〉.
Thus u is a solution of problem V M0.

Let now u ∈ H1
S(Ω) be a solution of problem V M0. Since H1

0 (Ω) is a subspace
of H1

S(Ω) for any v ∈ H1
0 (Ω) from (5) we obtain

a(u, v) = (h, v)L2(Ω).

But as it was shown in [6, 8] for any u ∈ H1(Ω) and v ∈ H1
0 (Ω) we have

a(u, v) = 〈Lu, v〉, where 〈·, ·〉 is relations of duality between H1
0 (Ω) and H−1(Ω).

Thus 〈Lu, v〉 = 〈h, v〉 or 〈Lu − h, v〉 = 0 for any v ∈ H1
0 (Ω). It means that

Lu = h. So far as f ∈ L2(Ω) we get u ∈ H1(Ω, L).
In Lemma 2 we showed that the trace operator γ0,S = (γ+

0,Σ, γ+
0,S) : H1

S(Ω) →
H1/2(Σ)×H

1/2
00 (S) is surjective. Using (2), (5) and Lu = h we have

〈γ+
1,Su− f, γ+

0,Sv〉+ 〈γ+
1,Σu− z, γ+

0,Σv〉 = 0

which is valid for an arbitrary v ∈ H1
S(Ω). Thus γ+

1,Su = f and γ+
1,Σu = z. It

gives us that u is a solution of problem M0. ¤

Theorem 2. Problem V M0 has a unique solution for arbitrary h ∈ L2(Ω),
f ∈ H−1/2(S), z ∈ H−1/2(Σ).

Proof. Lemma 3 gives us that the bilinear form a(u, v) : H1
S(Ω)×H1

S(Ω) → R
is continuous and H1

S(Ω)-elliptic. Let's show that the functional l : H1
S(Ω) → R

given by (6) is continuous. If v ∈ H1
S(Ω) then using Lemma 2 we have:

|l(v)| ≤ ‖h‖L2(Ω)‖v‖L2(Ω) + ‖f‖H−1/2(S)‖γ+
0,Sv‖

H
1/2
00 (S)

+

‖z‖H−1/2(Σ)‖γ+
0,Σv‖

H1/2(Σ)
≤ ‖h‖L2(Ω)‖v‖H1(Ω) + c1‖f‖H−1/2(S)‖v‖H1(Ω)+

c2‖z‖H−1/2(Σ)‖v‖H1(Ω) ≤ c‖v‖H1(Ω),

where c, c1, c2 some positive constants which do not depend on v. Then by the
Lax-Milgram Lemma we obtain what was to be proved. ¤

Corollary 4. Problem M0 has a unique solution for arbitrary h ∈ L2(Ω),
f ∈ H−1/2(S), z ∈ H−1/2(Σ).

Lemma 4. For every g ∈ H1/2(S) there exists function w ∈ H1(Ω, L) that
γ−0,Sw = g.

Proof. From [8] it follows that for every g ∈ H1/2(S) there exists u1 ∈ H1(Ω)
and Lu1 = 0, γ−0,Su1 = g. Analogously for any h2 ∈ L2(Ω) we have a function
u2 ∈ H1(Ω) that Lu2 = h2 and γ−0,Su2 = 0. Thus we obtain a class of function
w = u1 + u2 that w ∈ H1(Ω, L) and γ−0,Sw = g. ¤
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Now we consider problem M which di�ers from problem M0 only by non-
homogeneous boundary condition on S−. Lemma 4 gives us the function
w ∈ H1(Ω, L) which satis�es boundary condition γ−0,Sw = g. Let the func-
tion u1 be a solution of problem M0:

Lu1 = h1, γ−0,Su1 = 0, γ+
1,Su1 = f1, γ+

1,Σu1 = z1,

where h1 = h − Lw, f1 = f − γ+
1,Sw, z1 = z − γ+

1,Σw. Then the function
u = u1 + w is a solution of problem M . The preceding considerations imply
the following assertion.
Theorem 3. Problem M has a unique solution for arbitrary h ∈ L2(Ω), g ∈
H1/2(S), f ∈ H−1/2(S), z ∈ H−1/2(Σ).
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NONLOCAL PROBLEM FOR AN EVOLUTION
FIRST ORDER EQUATION IN BANACH SPACE

Vitaliy Vasylyk

Ðåçþìå. Ðîçãëÿíóòî äâîòî÷êîâó íåëîêàëüíó çàäà÷ó äëÿ äèôåðåíöiàëü-
íîãî åâîëþöiéíîãî ðiâíÿííÿ ïåðøîãî ïîðÿäêó ç îïåðàòîðíèì êîåôiöi¹íòîì
ó áàíàõîâîìó ïðîñòîði. Çàïðîïîíîâàíî i îá ðóíòîâàíî åêñïîíåíòöiàëüíî
çáiæíèé àëãîðèòì ó ïðèïóùåííi, ùî îïåðàòîðíèé êîåôiöi¹íò ¹ ñòðîãî
ïîçèòèâíèé i âèêîíóþòüñÿ äåÿêi óìîâè iñíóâàííÿ i ¹äèíîñòi. Àëãîðèòì
ïðèâîäèòü äî ñèñòåìè ëiíiéíèõ ðiâíÿíü, ÿêi ìîæíà ðîçâ'ÿçàòè ìåòîäîì
ïðîñòî¨ iòåðàöi¨. Àëãîðèòì çàáåçïå÷ó¹ åêñïîíåòöiàëüíó çáiæíiñòü çà ÷à-
ñîì, ùî â ïî¹äíàííi ç øâèäêèìè àëãîðèòìàìè çà ïðîñòîðîâèìè çìiííèìè
ìîæå áóòè åôåêòèâíèì äëÿ ðîçâ'ÿçóâàííÿ òàêèõ çàäà÷. Åôåêòèâíiñòü
ïðîïîíîâàíèõ àëãîðèòìiâ ïðîäåìîíñòðîâàíà íà ÷èñåëüíèõ åêñïåðèìåíòàõ.
Abstract. Two-points nonlocal problem for the �rst order di�erential evolu-
tion equation with an operator coe�cient in a Banach space X is considered.
An exponentially convergent algorithm is proposed and justi�ed under the as-
sumption that the operator coe�cient is strongly positive and some existence
and uniqueness conditions hold. This algorithm leads to a system of linear
equations that can be solved by �xed-point iteration. The algorithm provides
exponentially convergence in time that in combination with fast algorithms
on spatial variables can be e�cient for solving such problems. The e�ciency
of the proposed algorithms is demonstrated through numerical examples.
AMS Subject Classi�cation: 65J10, 65M12, 65M15, 46N20, 46N40,
47N20, 47N40

1. Introduction
The m-point initial (nonlocal) problem for a di�erential equation with the

nonlocal condition
u(t0) + g(t1; . . . ; tp; u) = u0

and a given function g on a given point set P = {0 = t0 < t1 < · · · < tp} is
one of the important topics in the study of di�erential equations. Interest in
such problems originates mainly from some physical problems with a control of
the solution at P . For example, when the function g(t1; . . . ; tp; u) is linear we
will have a periodic problem u(t0) = u(t1). Problems with nonlocal conditions
arise in the theory of physics of plasma [15], nuclear physics [10], mathemat-
ical chemistry [11], waveguides [8] etc. Two-point problem is also useful for
considering the �nale value problem [18].

Di�erential equations with operator coe�cients in a Hilbert or Banach space
can be considered as meta-models for systems of partial or ordinary di�erential
equations and are suitable for investigating using the tools of the functional

†Key words. First order di�erential evolution equations in Banach space, nonlocal problem,
unbounded operator coe�cient, operator exponential, exponentially convergent algorithms.
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analysis (see e.g. [4, 9]). Nonlocal problems can also be considered within this
framework [2, 3].

Discretization methods for di�erential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. [5, 7, 12, 13, 16, 17, 22,
23] and the references therein). Methods from [7, 12, 13, 17, 22, 23] possess an
exponential convergence rate, i.e. the error estimate in an appropriate norm is
of the type O(e−Nα

), α > 0 with respect to a discretization parameter N →∞.
For a given tolerance ε such discretization provides optimal or nearly optimal
computational complexity [7].

In the present paper we consider the problem

du(t)
dt

+ A1(t)u(t) = f1(t),

u(0) + αu(1) = ϕ,
(1)

where A1(t) is a densely de�ned closed (unbounded) operator with the domain
D(A1) independent of t in a Banach space X, ϕ is a given vector and f1(t)
is a given vector-valued function, α ∈ R. We suppose that the operator A1(t)
is strongly positive; i.e. there exists a positive constant MR independent of t
such that on the rays and outside a sector Σθ = {z ∈ C : 0 ≤ arg(z) ≤ θ, θ ∈
(0, π/2)} the following estimate for a resolvent holds:

‖(zI −A1(t))−1‖ ≤ MR

1 + |z| . (2)

This assumption implies that there exists a positive constant cκ such that ( see
[6], p.103)

‖Aκ
1(t)e−sA1(t)‖ ≤ cκs−κ, s > 0, κ ≥ 0. (3)

Our further assumption is that there exists a real positive ω such that
‖e−sA1(t)‖ ≤ e−ωs ∀s, t ∈ [0, 1] (4)

(see [14], Corollary 3.8, p.12, for corresponding assumptions on A1(t)). Let us
also assume that the following conditions are valid

‖[A1(t)−A1(s)]A
−γ
1 (t)‖ ≤ L1,γ |t− s| ∀t, s, 0 ≤ γ < 1, (5)

‖Aγ
1(t)A−γ

1 (s)− I‖ ≤ Lγ |t− s| ∀t, s ∈ [0, 1]. (6)
We suppose also that

f1(t) ∈ C(0, 1;X). (7)
The aim of this paper is to construct an exponentially convergent approx-

imation for a solution to problem (1). The paper is organized as follows. In
Section 2 we discuss the existence and uniqueness of the solution as well as
its representation through input data. A numerical algorithm is presented in
section 3. The main result of this section is theorem 1 about the convergence
rate of the proposed discretization. In the next section 4 we present a numerical
example which con�rm theoretical results from the previous sections.
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2. Existence and uniqueness of the solution
It is well known, that for α = 0 the problem (1) has a unique solution under

the assumptions (2)-(7) (se e.g. [14, 9]). This solution can be written down as
follows:

u(t) = U(t, 0)u(0) +
∫ t

0
U(t, s)f1(s)ds = U(t, 0)ϕ +

∫ t

0
U(t, s)f1(s)ds, (8)

where U(t, s) is an evolution operator that corresponds to (1) for α = 0.
Let us study conditions when there is a unique solution to the two-points

problem (1). We have from (8)

u(1) = U(1, 0)u(0) +
∫ 1

0
U(1, s)f1(s)ds.

Substituting this expression into the nonlocal condition we obtain

u(0) = [I + αU(1, 0)]−1

[
ϕ− α

∫ 1

0
U(1, s)f1(s)ds

]
,

and for u(t) we have

u(t) = U(t, 0) [I + αU(1, 0)]−1

[
ϕ− α

∫ 1

0
U(1, s)f1(s)ds

]
+

+
∫ t

0
U(t, s)f1(s)ds.

It is necessary to establish conditions on α for the existence of u(t). In fact,
we have to explore when exists [I + αU(1, 0)]−1 . So, we obtain using estimate
for U(t, s) (see e.g. [14, 9]).

∥∥∥[I + αU(1, 0)]−1
∥∥∥ ≤ [1− |α| ‖U(1, 0)‖]−1 ≤ [1− |α|M ]−1 ≤ C,

for small enough α (α < M−1).

3. Numerical algorithm
We use the approach developed in [7] and [21] to construct numerical method

for solving problem (1). First of all we change variable in (1) by t → 1+t
2 and

for v(t) = u
(

1+t
2

)
we have

dv(t)
dt

+ A(t)v(t) = f(t),

v(−1) + αv(1) = ϕ,
(9)

where A(t) = 1
2A1

(
1+t
2

)
, f(t) = 1

2f1

(
1+t
2

)
,

We choose a mesh ωn = {tk, k = 0, ..., n} of n + 1 various points on [−1, 1]
that are Chebyshev-Gauss-Lobatto nodes tk = cos

(
n−k

n π
)
and set τk = tk −

tk−1. Let
A(t) =Ak = A(tk), t ∈ (tk−1, tk], k = 1, n,

A0 = A(−1).
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Let us rewrite the problem (9) in the equivalent form
dv

dt
+ A(t)v = [A(t)−A(t)]v(t) + f(t), t ∈ (−1, 1)

v(−1) = ϕ− αv(1).
(10)

Note that now all operators on the left hand side of these equations are
constant on each subinterval and piece-wise constant on the whole interval
[−1, 1].

On each subinterval we can write down the equivalent to (10) integral equa-
tion

v(t) =e−Ak(t−tk−1)v(tk−1) +
∫ t

tk−1

e−Ak(t−s) [Ak −A(t)] v(s)ds+

+
∫ t

tk−1

e−Ak(t−s)f(s)ds, t ∈ [tk−1, tk], k = 2, n,

(11)

v(t) =e−A1(t+1) [ϕ− αv(1)] +
∫ t

−1
e−A1(t−s) [A1 −A(t)] v(s)ds+

+
∫ t

−1
e−A1(t−s)f(s)ds, t ∈ [−1, t1].

Let
Pn(t; v) = Pnv =

n∑

j=0

v(tj)Lj,n(t),

be the interpolation polynomial for v(t) on the mesh ωn, x = (x0, ..., xn), xi ∈ X
given vector and

Pn(t; y) = Pnx =
n∑

j=0

xjLj,n(t)

the polynomial that interpolates x where

Lj,n(s) =
T ′n(s)(1− s2)

d
ds [(1− s2)T ′n(s)]s=sj (s− sj)

, j = 0, ..., n

are the Lagrange fundamental polynomials. Substituting Pn(s; x) for v(s), xk

for v(tk) and then setting t = tk in (11) we obtain the following system of linear
equations with respect to the unknown xk :

x0 + αxn = ϕ,

xk = e−Akτkxk−1 +
n∑

j=0

αkjxj + φk, k = 1, n,
(12)

which represents our algorithm. Here we use the notations

αkj =
∫ tk

tk−1

e−Ak(tk−s)[Ak −A(s)]Lj,n(s)ds,

φk =
∫ tk

tk−1

e−Ak(tk−s)f(s)ds, k = 1, n, j = 0, n,
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and suppose that we have an algorithm to compute these coe�cients.
For the error z = (z1, ..., zn), with zk = v(tk)− xk we have the relations

z0 + αzn = 0,

zk = e−Akτkzk−1 +
n∑

j=0

αkjzj + ψk, k = 1, n,
(13)

where

ψk =
∫ tk

tk−1

e−Ak(tk−s)[Ak −A(s)][v(s)− Pn(s; v)]ds, k = 1, n,

In order to represent algorithm (12) in a block-matrix form we introduce the
matrix

S =




I 0 0 · · · 0 ασ0

−σ1 I 0 · · · 0 0
0 −σ2 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −σn I




, (14)

where σ0 = Aγ
0A−γ

n , σk = e−AkτkAγ
kA−γ

k−1, k = 1, n, the matrix B = {α̃k,j}n
k,j=0

with α̃k,j = Aγ
kαk,jA

−γ
j , k = 1, n, j = 0, n, and α̃0,j = 0, j = 0, n, the vectors

x̃ =




Aγ
0x0

Aγ
1x1

·
·

Aγ
nxn




, φ =




Aγ
0ϕ

Aγ
1φ1

·
·

Aγ
nφn




, z̃ =




Aγ
0z0

Aγ
1z1

·
·

Aγ
nzn




, ψ =




0
Aγ

1ψ1

·
·

Aγ
nψn




. (15)

It is easy to check that for the (left) inverse
S−1 = δ (R1 −R2) ,

where
δ = (I + ασ0σ1 . . . σn)−1 ,

R1 =




I 0 · · · 0 0
σ1 I · · · 0 0

σ2σ1 σ2 · · · 0 0
· · · · · · ·

σn · · ·σ1 σn · · ·σ2 · · · σn I




,

R2 = αs0




0 σn . . . σ2 σn . . . σ3 · · · σn I
0 0 σ1σn . . . σ3 · · · σ1σn σ1

· · · · · · · ·
0 0 0 · · · 0 σn−1 . . . σ1

0 0 0 · · · 0 0




.

Remark 10. Using results of [7] one can get a parallel and sparse approxi-
mations with an exponential convergence rate of the operator exponentials con-
tained in S−1 and as a consequence a parallel and sparse approximation of S−1.
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We multiply the equations in (12) and the equation in (13) by Aγ
k , k = 0, n

and obtain
Aγ

0x0 + αAγ
0xn = Aγ

0ϕ,

Aγ
kxk = e−AkτkAγ

kxk−1 +
n∑

j=0

α̃kjA
γ
j xj + Aγ

kφk, k = 1, n,
(16)

Aγ
0z0 + αAγ

0zn = 0,

Aγ
kzk = e−AkτkAγ

kzk−1 +
n∑

j=0

α̃kjA
γ
j zj + Aγ

kψk, k = 1, n,
(17)

Then systems (16), (17) can be written down in the matrix form using notations
(14), (15) as

Sx̃ = Bx̃ + φ,

Sz̃ = Bz̃ + ψ.
(18)

Next, for a vector v = (v1, v2, ..., vn)T and a block operator matrix A =
{aij}n

i,j=1 we introduce a vector norm
|‖v‖| ≡ |‖v‖|1 = max

1≤k≤n
‖vk‖,

and the consistent matrix norm

|‖A‖| ≡ |‖A‖|1 = max
1≤i≤n

n∑

j=1

‖ai,j‖.

Due to (6) we have
|‖Aγ

kA−γ
k−1‖| = |‖Aγ

kA−γ
k−1 − I + I|‖ ≤ 1 + Lγτk,

‖σ0‖ = ‖Aγ
0A−γ

n ‖ ≤ 1 + LγT.

In our case T = 2. So, we have the following, using these estimates
‖σk‖ = ‖e−AkτkAγ

kA−γ
k−1‖ ≤ e−ωτk‖Aγ

kA−γ
k−1‖ ≤ e−ωτk (1 + Lγτk) ,

‖δ‖ =
∥∥∥∥
(
I + ασ0σ1 . . . σn

)−1
∥∥∥∥ ≤

(
1− |α| ‖σ0‖ ‖σ1‖ ‖σ2‖ . . . ‖σn‖

)−1
≤

≤
(
1− |α| (1 + 2Lγ) e−ωτ1 (1 + Lγτ1) e−ωτ2 (1 + Lγτ2) . . . e−ωτn (1 + Lγτn)

)−1

≤
(

1− |α| (1 + 2Lγ) e−2ω

(
1 +

2Lγ

n

)n)−1

≤

≤
(
1− |α| (1 + 2Lγ) e−2ωe2Lγ

)−1
≤ c,

for α small enough.
In order to estimate the norm of matrix S we must estimate the norms of

matrices R1, R2. In [7] it was proved that for a matrix similar to R1 the estimate
|‖R1‖| ≤ cn holds true. Let us estimate the norm of matrix R2.
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|‖R2‖| ≤ (1 + 2c)
(
1 + e−ωτ (1 + cτ) + · · ·+ [e−ωτ (1 + cτ)]n−1

) ≤

≤ (1 + 2c)
(

1 + (1 + cτ) + · · ·+ (1 + cτ)n−1 ≤ (1 + cτ)n − 1
cτ

)
≤

≤ (1 + 2c)
e2c

cτ
≤ cn.

Using these estimates we obtain that
|‖S−1‖| ≤ cn. (19)

It was proved an estimate for the matrix B in [7]:
|‖B‖| ≤ cnγ−2 ln(n). (20)

So we can formulate the following assertion
Lemma 1. Let assumptions (2)-(6) are ful�lled. Then estimates (19), (20)
hold true.

Using (18) we have

x̃ =
[
E − S−1B

]−1
S−1φ,

z̃ =
[
E − S−1B

]−1
S−1ψ,

(21)

where E is a diagonal matrix with unit operators I on diagonal. Using lemma
1 we obtain that

|‖S−1B‖| ≤ cnγ−1 ln(n) → 0, n →∞. (22)
It means that for n large enough there exists the matrix

[
E − S−1B

]−1 and
∣∣∣
∥∥∥
[
E − S−1B

]−1
∥∥∥
∣∣∣ ≤ c.

Consequently we obtain the following stability estimates from (21) using lem-
ma 1:

|‖x̃‖| ≤ cn|‖φ‖|,
|‖z̃‖| ≤ cn|‖ψ‖|. (23)

Let Πn be the set of all polynomials in t with vector coe�cients of degree less
or equal than n. In complete analogy with [1, 19, 20] the following Lebesgue
inequality for vector-valued functions can be proved

‖u(t)− Pn(t; u)‖C[−1,1] ≡ max
t∈[−1,1]

‖u(t)− Pn(t; u)‖ ≤ (1 + Λn)En(u),

with the error of the best approximation of u by polynomials of degree not
greater than n

En(u) = inf
p∈Πn

max
t∈[−1,1]

‖u(t)− p(t)‖.
Now, we can go over to the main result of this section.

Theorem 1. Let the assumptions of Lemma 1 with γ < 1 hold, then there
exists a positive constant c such that
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1. For n large enough it holds
|‖z̃‖| ≤ cnγ−1 · ln n · En(Aγ

0v),

where v is the solution of (9);
2. The �rst equation in (18) can be written in the form

x̃ = S−1Bx̃ + S−1φ,

and can be solved by the �xed point iteration
x̃(k+1) = S−1Bx̃(k) + S−1φ, k = 0, 1, ...; x̃(0) − arbitrary,

with the convergence rate of an geometrical progression with the denom-
inator q ≤ cnγ−1 ln(n) < 1 for n large enough.

Proof. For z̃ we have the second estimate in (23). The norm of the �rst sum-
mand on the right hand side of this inequality can be estimated in the following
way

|‖ψ‖| = max
1≤k≤n

∥∥∥∥∥
∫ tk

tk−1

{
Aγ

ke−Ak(tk−s)[Ak −A(s)]×

×A−γ
k (Aγ

kA−γ
0 )(Aγ

0v(s)− Pn(s; Aγ
0v))

}
ds

∥∥∥∥∥ ≤

≤ c max
1≤k≤n

∫ tk

tk−1

|tk − s|−γ |tk − s| ‖Aγ
0v(s)− Pn(s; Aγ

0v)‖ds ≤

≤ cτ2−γ
max ‖Aγ

0u(s)− Pn(·;Aγ
0v)‖C[−1,1] ≤ cτ2−γ

max(1 + Λn)En(Aγ
0v).

So, we obtain
|‖ψ‖| ≤ cnγ−2 · ln n · En(Aγ

0u), (24)
Now, the �rst assertion of the theorem follows from (23), (24). The second

one follows from (18) and (22). ¤

Tabl. 1. The error in the case n = 4, x = 0.5

Point t ε
-1 0.00005276

-0.70710678 0.00097645
0 0.00063440

0.70710678 0.00029592
1 0.00010552

4. Examples
Let us consider the following problem

∂u(x, t)
∂t

− ∂2u(x, t)
∂x2

+ q(x, t)u(x, t) = f(x, t),

u(0, t) = u(1, t) = 0,
u(x,−1) + αu(x, 1) = ϕ(x),

(25)
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Tabl. 2. The error in the case n = 6, x = 0.5

Point t ε
-1 8.12568908Ee-7

-0.86602540 0.00010146
-0.5 0.00030932
0 0.00022136
0.5 0.00013419

0.86602540 0.00007182
1 0.00000162

Tabl. 3. The error in the case n = 8, x = 0.5

Point t ε
-1 0.00000117

-0.92387953 0.00000613
-0.70710678 0.00004544
-0.38268343 0.00005753

0 0.00004745
0.38268343 0.00003362
0.70710678 0.00002096
0.92387953 0.00000846

1 0.00000235

Tabl. 4. The error in the case n = 12, x = 0.5

Point t ε
-1 0.49451310e-8

-0.96592582 0.14687232e-7
-0.86602540 0.23393074e-6
-0.70710678 0.54494052e-6

-0.5 0.76722515e-6
-0.25881904 0.82803283e-6

0 0.76362937e-6
0.25881904 0.63174173e-6

0.5 0.47173110e-6
0.70710678 0.30381367e-6
0.86602540 0.14341583e-6
0.96592582 0.21271757e-7

1 0.98902621e-8

with f(x, t) = e−π2(1+t) sin(πx)(1+ t), α = 0.5, ϕ(x) =
(
1 + 0.5e−2π2

)
sin(πx),

q(x, t) = 1+ t. Then, the solution of this problem is u(x, t) = e−π2(1+t) sin(πx).
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Tabl. 5. The error in the case n = 16, X = 0.5

Point t ε
-1 0.20628738e-11

-0.98078528 0.28602854e-10
-0.92387953 0.48425552e-9
-0.83146961 0.14258845e-8
-0.70710678 0.25968220e-8
-0.55557023 0.36339719e-8
-0.38268343 0.42916820e-8
-0.19509032 0.44975339e-8

0 0.43045006e-8
0.19509032 0.38169887e-8
0.38268343 0.31414290e-8
0.55557023 0.23686579e-8
0.70710678 0.15787207e-8
0.83146961 0.85640040e-9
0.92387953 0.30309439e-9
0.98078528 0.16809109e-10

1 0.41257476e-11

The problem (25) can be written down in the form (9) where the operator
A(t) is de�ned by

D(A(t)) = D(A) = {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

A(t)v = −∂2v

∂x2
+ (1 + t)v.

Coe�cients of the system (16) were calculated by using the Fourier series expan-
sion. The results of calculation presented in tables con�rm our theory above.
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