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MODIFIED NEWTON METHOD FOR ANTENNA
POWER SYNTHESIS PROBLEM WITH FIXED
NORM OF THE PATTERN

MYKHAYLO ANDRIYCHUK, MYKOLA VOYTOVYCH

PE3toME. IlocramoBka 3azadi CHHTE3y AHTEH 3a IOTYXKHICTIO JIOTIOBHEHA
CyTT€EBOIO (DI3UTIHOIO yMOBOIO PiBHOCTI HOPM 334aHOI i ogep:kanol miarpam. 3a
JoromMoro Mmeromay Jlarpam:ka 3amada 3BefeHa m0 60e3yMOBHOI MiHiMizaril 3
HEBIIOMUM TIapaMeTpoM (MHOKHUKOM Jlarpam:ka), AKUi BIATOBITAE 32 BUKO-
HaHHA 3rajaHol ymoBu. PiBuauaam Eitepa maa i€l 3amadi € HesiHiifHe
inTenasbHe piBHAHHSA THy [aMMmeprrTeiina 3 KyOi4HOIO 3a/1€KHICTIO HigiHTer-
pasbHOl GyHKIHNT Bix Momysns nrykanol dyHKT i sinifiHol 3aexkHicTIO Big 11
aprymenTa ($Ha30BOro MHOXKHUKA). PiBHAHHSA PO3B A3yeThCa MomudiKOBAaHIM
meronom Hpioroma. YwmcsoBl pe3ynabraTy IPOIeMOHCTPOBAHI HA IIPUKJIAIL
JIIHIAHOT AaHTEHM, STKA OMHUCYETHCS iHTerpajbHUM rreperBopeHasM Pyp’e dinit-
Hol ¢ymukiii. Busgsieno i mpoanasiz0BaHO YHUCETHHO MPOTEC TAJIYKEHHS PO3-
B’43KiB 3aadi.

ABsTRACT. The problem formulation of the antenna synthesis according to
the prescribed power radiation pattern is generalized by taking into account
the important physical restriction on the norm of the synthesized pattern. By
the Lagrange method, the problem is reduced to an unconditional variational
problem with unknown parameter (Lagrange multiplier), which provides the
condition of the norm equality. The Lagrange-Euler equation for this problem
is a nonlinear integral equation of the Hammerstein type with cubic depen-
dence of the integrand on modulus of the unknown function. The argument
(phase) factor of this function is involved in the integrand linearly. The mod-
ified Newton method is used to solve this nonlinear equation. Numerical
results are demonstrated on the example of the linear antenna. The solution
branching is observed numerically and analyzed.

1. INTRODUCTION

The antenna power synthesis problem [1] belongs to the phase optimization
problems in which the argument (phase) of a desired complex function is not
the given function, but it is an additional parameter to be optimized. In con-
trast to the more usual synthesis problem according to the prescribed amplitude
pattern [2], the main term in the functional of the power problem to be min-
imized, is the mean square difference between not the modulus (amplitudes)
of obtained and desired radiation patterns, but between their squared values
(powers). Increasing the algebraic degree of the unknown function leads to the
higher nonlinearity of the problem and causes new theoretical and computa-
tional complications.

Key words. Antenna power synthesis problem, Nonlinear integral equation, Modified New-
ton method, Branching of solutions
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The possibility to provide the local irregularities in the desired pattern more
precisely than in the synthesis problem by the given amplitude radiation pattern
is one of the advantages of the power synthesis.

In its earlier formulation the power synthesis had some disadvantage con-
nected with absence of any restriction onto the norm of radiation pattern. In
this case the radiation pattern is involved in all terms of nonlinear integral
equation as an linear multiplier, what admits, in particular, the existence of
zero solution. Moreover, it is turned out that this solution is unique at certain
combinations of parameters.

To avoid the above disadvantage, and to take into account some physical re-
quirements on the synthesized radiation pattern, we supplement the functional
to be optimized by additional condition describing the norm equality of the
desired and obtained radiation patterns. Some modifications of this condition
were used in [3]-[5] in other formulations of the antenna synthesis problems.
Such conditional minimization problem can be reduced to the unconditional
one by the Lagrange multipliers method.

The Lagrange-Euler equation for resulting functional is an nonlinear integral
equation of the Hammerstein type. It contains the unknown function in the
integrand as a cubic algebraic term.

The equation is numerically solved by the modified Newton method. Since
the problem has nonunique solutions, they can be separated only by the ap-
propriate choice of the initial approximations. Different types of solutions were
found and analyzed. Their branching points were observed numerically as well.
Of course, such an approach does not investigate the branching process com-
pletely. This question is a subject of special studies. For this purpose the
approach based on the complex polynomial presentation of the solutions [6]
can be appied.

Some results of this paper were announced in [7].

2. PROBLEM FORMULATION
The current v on the antenna and radiation pattern f generated by it, are
connected by the relation

f=Au, (1)

where A is a linear bounded operator. The antenna synthesis problem according
to the prescribed power radiation pattern F? consists in minimization of the
functional [1]

oa(u) = ||F? = |fPII5 + allull3, (2)

where || -||{, || -|| are the mean square norms in the spaces of the currents and
radiation patterns, respectively, o > 0 is a given positive coefficient (weight
factor); further we assume |[F||3 = 1. We supplement this functional by the
condition

1F113 = 1. (3)
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Using the Lagrange multipliers method, we reduce the problem (2)-(3) to
minimization of the functional

apu(w) = [1F2 = [fP|3 + allull§ — pllfII3 (4)
with undefined coefficient (Lagrange multiplier) p. Fixing p, we denote by w,
and f, the current u minimizing o, ,(u) and radiation pattern f generated by
it, respectively. Then the condition (3) may be considered as the transcendental
equation for determining p. Another way to solve the problem is to find u, f
and p simultaneously.
The Lagrange-Euler equation for the functional (4) can be written in the
form

af —2AA%[(F? —|f]*)f] — nAA*f = 0. (5)
Here A* is the operator adjoint to A. After f and p is found from (5), (3),
the desired field distribution u is calculated as

w= = AT((F? ~ [PV + pAS) (©

Equation (3) may be supplemented to (5), and they together may be con-
sidered as the equation system for determining f and p. The modified Newton
method described in [9] in the context of similar systems of equation, can be
applied to system (5), (3). In order to use it, we convert equations (5), (3) to
the convenient form

®(f, p) = af = 2AA%[(F? — |fI) f] - nAA™f =0, (7)
v(f)=IfIF-1=0. (8)

The next approximation to the unknown f and p is calculated in the used
method as

for1 = fp+0f0+idf", (9)

Pp+1 = fip + Opp, (10)
where d f}, 0 f’;,, dpp are found from the linear equation system

[a — ,U,pAA* — 2AA*(F2 Nz

—[fp[?) + 4AA*(f,)] 1AL fofo) ) A4 o)
) o — pAA* — 2AA*(F?— ’
AL Undy) GG A |
2f, —2f, 0
Sf) —o,
x| of", | =1 -2, | (11)
5#? _\I/p
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In the case when the parameter p is fixed, equation (8) does not participate in
the system, then the last row in system (11), as well as the last column in its
matrix are omitted.

3. NUMERICAL RESULTS
The proposed approach has been tested on the example of the synthesis
problem for the linear antenna of limited length, which is described by the
Fourier transform operator mapping on the compactly bounded functions. The
desired power pattern F? is assumed to be given also as a compactly bounded
function. In this case the operators A, A*, and the kernel K(&1,&2) of the
operator AA* have the forms

1
f(§) =Au= /u(w)eicxgdx, (12)
“1
1
Atg = o | g(e)e de, (13)
1
N sinc(§ —&7)
K(e.¢) = e S (1)

where x is the normalized coordinate on the antenna, £ = sin#/sin¥y is the
generalized angular coordinate in the far zone, 2¢q is the angle where the pre-
scribed power pattern F? differs from zero, ¢ = kasindy is the characteristic
physical parameter, 2a is the antenna length.

The Lagrange-Euler equation for the functional (4) for this example has the
form

n_ 2 ! sine(§ —&/) ¢, 0 _ 2 _
of(¢) - 2 [ RS ~ 1@ Pl
B Lsine(¢ — €1) B
(G (15)

The numerical results are presented for the prescribed power patterns
F2(¢) =1/2 and F?(¢) = cos(nz/2), |z| < 1; for |z > 1 these functions equal
Zero.

The main result of the optimization is the mean-square deviation oo = || F?—
|£I?||3 of the power patterns (the first term in functional (4)), two other terms
have the auxiliary sense. Dependencies of og on the parameter ¢ are shown
for these two prescribed patterns in Fig.1, respectively, for different solutions
of equation (15). The results depend essentially on the parameter a (weight
factor in functional (4)); its values are given in the figures. The solutions branch
at some values of ¢; these values are denoted by ¢,1 (the index n values relate
to different «).

The real solutions to (15) exist for two given F2(¢) and all values of ¢ (dashed
lines in the figures). Different behaviour of o¢ for different F? at small c is
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8o 2.0C, Gy 4.0y Gy 6.0

(a)

0

Fic. 1. The mean-square deviation of power patterns for differ-
ent solutions to (15); (A) F2(¢) = 0.5; (B) F2(¢&) = cos?(7£/2)

explained by the fact, that the real solution to (15) is asymptotically constant
at ¢ — 0. Therefore, the function F?(¢) = const can be easily approximated at
small c. This property is inherent only to this given F?2,

Note, that at 4 = 0 and fixed o equation (15) has only zero solution at
small ¢. This is explained by the fact that the second term in functional (4) is
dominant at small c.

At the points ¢ = c¢,1 the complex solutions with odd phase functions
arg f(—§) = —arg f(§) (solid lines) branch off from the real solutions. The
branching points approximately coincide with the first maximums of og as a
function of ¢ for the real solution. It is easy to check from (6) that the current
distribution on the antenna, which generates the pattern with odd arg f(&), is
real, but it has zero points in the interval x € [—1,1]. This fact is important
from the practical point of view, because in this case no phase transformer
device is needed for its creation.

The next characteristic points in Fig.1 are the points ¢ = ¢,2 where two new
complex solutions simultaneously arise with odd and even phases, respectively.
They have the same |f(£| and hence the same og(u). However, the current
u(z) is different for these solutions. One of them, corresponding the the odd
arg f(§), is real and has zero points in z € [—1,1], whereas the second one,
with the even phase (arg f(—¢§) = arg f(£)) is even complex function (in some
cases it also can have zeros on the antenna). The solutions with odd phase
branch off from one of the same type (that is, with the odd phase), whereas
the solution with even phase branch off from the real one; both them arise at
the same point cp2. Consequently, at least four solutions exist at ¢ > cpo: one
real (that is, with zero phase), one with even phase, and two with odd phases.
In Fig. 1 the results only for one solution with odd phase are presented.

Note that the evenness of the phase distributions arg f(§) and argu(zx) is
caused by the symmetry of the given function F2(¢) and both intervals = €
[—1,1] and € € [—1, 1].
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As it is investigated so far, the solution behavior for the considered problem
is qualitatively similar to that for the synthesis problem according to the am-
plitude radiation pattern (the rigorous solutions to this problem see in [8], [9]).
However, this analogy can be not complete: the problem considered here has
nonlinearity of the higher degree and can have additional solutions different in
the behavior from those of the mentioned problem.

At fixed ¢ the current norm almost does not depend on « for the solutions
of all types. This is caused by the fact that this norm is hardly affected by the
radiation pattern norm, which is fixed in our formulation.
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The optimal directivity patterns f(£) and the currents u(z) which create
them, corresponding to the solutions of different type for the desired function
F2(¢) = const, are presented in Figs. 2, 3; the parameters are shown in the
captions. The curves are labeled as follows: (1) — real solution; (2) — first
solution with odd phase; (3) — second solution with odd phase; (4) — solution
with even phase. Analogous results for the case F2(¢) = cos(mz/2) are shown
in Figs. 4, 5. In this case the amplitude of power pattern in all solutions almost
coincides with the desired one.
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THE ALTERNATING METHOD APPLIED
TO TWO-POINT BOUNDARY VALUE PROBLEMS

GEORGE BARAVDISH, B. TOMAS JOHANSSON

PE3IOME. Ausbrepuytountii itepamniitauii meros Kozmosa-Ma3bi, mo 6yB 3ampo-
[OHOBAHUH /11 00epHEHUX KPAHOBUX 33124 Jjisd PIBHAHD B YACTUHHUX I10X1/1-
HIX, 32CTOCOBAHO /0 IBO-TOYKOBOI KPaioBOl 33421 /11t 3BUHAHOr0 nudepeH-
MIaJIbHOTO PIBHAHHS APYTOTO MOPSAKY. JlOCTimKeHo BUMIAIOK JIiHIHHOTO 1m-
depenniaabHOro oneparopa Apyroro LOPsJKy. 30KpPeMa, OAAaHO KpUTepii
301KHOCTI sIK 3B’sI30K MixK KoedimienTamMu audepeHIfajlbHor0 oneparopa i
KIHI[EBUM MOMEHTOM dacy iHTepBasy. s meminiiinoro mudepeHIiasHoro
oliepaTopa BUBEJAEHO Jeski (Gopmysu, 3a JOLOMOIOIO SKUX MOXKHA JOBECTH
36ixkHicTh. OHAK, K IIOKA3AJIN YNCEIbHI €KCIIEPUMEHTH, 3HAXOIKEHHS KPH-
Tepio 36iKHOCTI B HEIIHINHOMY BUIMAJAKY € HETPHUBIAJIHHOIO 33AT€I0.
ABsTRACT. The alternating iterative method of Kozlov and Maz’ya, originally
proposed for inverse boundary value problems for partial differential opera-
tors, is applied to a two-point boundary value problem for a second-order
ordinary differential operator. The case of a linear second-order operator is
investigated in detail. In particular, a criteria for convergence expressing a
relationship between the coefficients of this operator and the final time of the
interval is given. For nonlinear operators some formulas are derived on which
a proof of convergence can be obtained. However, as is highlighted by a nu-
merical example, finding criteria on the problem to guarantee convergence of
the alternating method in the nonlinear case is nontrivial.

1. INTRODUCTION

The alternating iterative method was proposed in 1989 by V. A. Kozlov and
V. G. Maz’ya [33] to solve some inverse ill-posed problems such as the Cauchy
problem for a self-adjoint and strongly elliptic operator and data reconstruction
for hyperbolic operators. An advantage with the alternating method is that one
solves well-posed problems for the same type of governing partial differential
operator in the solution domain as in the ill-posed problem and there is no pa-
rameter involved in the procedure. These properties have made the alternating
method a popular choice in engineering applications and we give a brief survey
on some of these results and applications before introducing the problem to be
studied.

For general applications and implementation of the alternating method for
Cauchy problems for time-independent operators (typically the Laplace oper-
ator), see [35, 23, 8, 16, 42, 40, 29, 24|. Relaxation to speed up the conver-
gence has been introduced and examined in [29, 30, 25, 27|. Generalization
of the alternating method to the Stokes system was undertaken in [7| and to

Key words. Heat equation, mixed problem, Rothe’s method, boundary integral equation
method, trigonometrical quadrature method.
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the Helmholtz operator in [26], see also [10]. The alternating method for the
Laplace equation was extended to unbounded domains in [13]|. Convergence for
some nonlinear operators was shown in [41, 4]. The various numerical imple-
mentations have mainly been performed using the boundary element method
or integral equations, which is natural when only boundary data is updated.
Implementation using the finite element method and error estimates suitable
for adaptive methods were given in [5]. In that work it was also shown that the
alternating method for elliptic problems can be interpreted as the minimization
of a certain functional.

The aim of the present study is to show that the alternating method can
be applied also to some two-point boundary value problems for a second-order
operator. Specifically, we study

u’(t) + f(t,u) =0, in I,
u(0) = ¢, (1)

Here, I = [0,T], where T' > 0 is a real number, and f : [ x X — X. We
do not strive after the most general situation nor to have a method that can
be compared with the many advanced numerical methods already presented in
the literature for ordinary differential operators of the form (1). Instead, as
pointed out above, we are interested solely in the alternating method and to
add some more knowledge around this procedure, in particular, to give some
classes of functions f for which the iterative method converges and to give some
f for which there is no convergence. Thus, for simplicity, we concentrate on (1)
when f is a continuous function, and where the space X is R™ or a Hilbert
space; potentially X can be a Banach space. In fact, the main part of this
study is devoted to the linear case when f = Q(t)u with Q(t) = A+ B(t)
being a smooth positive self-adjoint operator on X, and to show convergence
of the alternating method in this case thereby generalizing the similar situation
in [33] to time-dependent operators. One can of course have a higher order
differential operator as well as different type of boundary conditions but we do
not investigate that further here.

There are many applications leading to a model of the form (1), for example,
deflection of cantilever beams under certain load [11], plate deflection theory [2],
confinement of a plasma column using radiation pressure [47], heat transfer in
fins [32], the study of tumour growth [1, 52], cell oxygen uptake [36, 39] and in
modelling the distribution of heat sources in the human head [19, 44| to only
mention a few.

Partly due to its many applications, there is an overwhelming literature on
two-point boundary value problems and it is not within the scope of this study
to give a general overview; instead below we point towards some references
for (1) and within these the reader can find further references.

Existence and uniqueness of a solution to (1) is nontrivial. In the case X =
R™, existence of a solution was settled in [48, 49]. For existence of a solution
when X is a Banach space, see [12, 51, 43]. General references for second-order

12
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differential equations in Banach spaces are [18, Chapter 2|, [21, Chapter 2
Section 7] and [46, Chapter 5 Section 3.

For general ideas on the numerical solution of (1), see [3, Chapter 11] and [31].
An excellent overview of both theoretical and numerical findings for (1), starting
with the seminal paper of E. Picard [45], is given in the introduction in [14].

Let us then describe the method that we shall use to obtain a numerical ap-
proximation to (1). Following the original paper on the alternating method [33],
the algorithm is:

(i) Make an initial guess 79 of w/(0). Then the first approximation wg is
obtained by solving

ug(t) + f(t,u0) =0, in I,
u(0) = 10-

(ii) Having obtained usgk, the approximation uggyq for k > 0, is obtained by
solving

u’Q’k+1(t) + f(t, u2k-+1) = 0, n I,
g1 (T') = ), (3)
U (T') = iy (T).

(iii) Then ugg4o is obtained by solving

ugk+2(t) + f(t,ugk42) =0, in I,
Ung42(0) = 7, (4)
Usy,,5(0) = ugy;, 4 (0).

The procedure then continues by iterating in the last two steps. Clearly, the
initial value problems solved in each step are well-posed.

As mentioned above, we shall mainly concentrate on the linear case and
in Section 2, we investigate the situation when f(t,u) = Q(t)u, with Q(t) =
A+ B(t) being a self-adjoint linear smooth operator generating a (vector) sine
and cosine function. Convergence of the alternating procedure is shown under a
restriction on the final time 7', see Theorem 2.2. We remark that the conditions
on Q(t) can be relaxed such that @ can be a differential operator on the space X,
thus the results obtained can be applied to time-dependent hyperbolic problems
as well. The results in Section 2 builds on Chapter 5 in [6], where the setting
was R".

To gain more insight and to be able to state a condition that is more easy
to check for convergence of the alternating method, in Section 3 a linear and
scalar equation is examined when X = R and f(¢t,u) = ¢(t)u. It is shown
that provided that the smallest eigenvalue for some two-point boundary value
problems in the interval I is greater than one then the method converges for
0 < Ty < T, see Theorem 3.4. In Section 3.1, we describe a class of functions f
for which the alternating method diverges. In Section 4, we briefly investigate
the nonlinear case. We derive some formulas for the iterates on which a proof of
convergence can be based. However, this needs some monotonicity results for
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the solution and the function f. As is highlighted by a numerical example in
Section 4.1, the alternating method can converge in the nonlinear case without
the iterates being monotonically increasing (decreasing) towards the analytical
solution. Thus, a full proof of the convergence in the nonlinear case seems
intricate and beyond the scope of this study. In Section 4.1, we also suggest and
briefly investigate a modification in the sense of linearization in the alternating
procedure. This modification appears to converge for classes of functions where
the original alternating method diverges. This merit further investigations of
this linearization but it is not pursued here but deferred to future work.

2. THE ALTERNATING PROCEDURE FOR SECOND ORDER LINEAR EQUATIONS
We start by first introducing some notation. The space C(I; X) is the set
of all continuous functions v : I — X and endowed with the usual supremum
norm
= t)l.
oo = max fo(t)
Similarly, C¥(I; X) is the space of k-times differentiable functions with the k-
th derivative being continuous (supremum norm) and k& > 1 an integer. The
spectral radius of an operator () is defined as usual,

r(Q) = sup{|A[; A € o(Q)}.

We are interested in solving (1) in the case when f(¢,u) = Q(t)u. We assume
that

Q(t) = A+ B(b), ()

where A is a linear operator generating a cosine function, i.e. a function c(t)
mapping into the space of bounded operators on X and satisfying c(t + s) +
c(t —s) = c(t)e(s), where t,s > 0, and ¢(0) = I, see further [18, Section 2| for
criteria on A to guarantee existence of such a function c¢(t). Moreover, B(t)
maps into the space of bounded linear operators on X and is twice strongly
continuously differentiable and the domain of B(t) has to contain the domain
of A. Furthermore, Q(¢) is assumed to be self-adjoint and positive. This latter
condition will in particular guarantee that in the case of R”, the initial value
problems used in the alternating method will not be stiff.

We study the linear second-order differential equation with two-point bound-
ary value conditions:

v+ Q(t)u=0, inlI,
u(0) = ©
u(T) =1,

where u € C?([0,T); X) and Q as above; for the boundary data ¢, ¥ € X.

It is known, see [38], that for problem (6) there exists functions S(¢) and
C(t), commonly denoted the (vector) sine and cosine function respectively,
that satisfy

S(0) = C'(0) =0, S'(0) = C(0) = 1.

14
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Provided that the spectral radius r(C*(T)S'(T)) < 1, then S(T') has an inverse
and the solution to (6) can be given as

u(t) = SH)S(T)~ (% = C(T)p) + C(t)p. (7)

This will be verified in the next section.

For simplicity, we shall assume that X is a Hilbert space mainly to simplify
the use of adjoint operators; most of the derivations can be justified also in a
Banach space.

1. Properties of the sine and cosine functions. The solutions S(t) and
C(t) need not be self-adjoint although Q(¢) is. By C* and S* we mean the
adjoint of C' and S respectively, i.e. the adjoint of C(t) and S(¢) for ¢t € I. For
the sake of completeness we include a proof of the following.

Lemma 1. The solutions S(t) and C(t) to problem (6) satisfy the identities:
SO - SO = 1, )

and
S'(t)C*(t) — C'(t)S*(t) = I. (9)

The elements S*(t) and C*(t) are the adjoint operators of S(t) and C(t), and
1 is the identity.

Proof. Due to the smoothness assumption on ), we can differentiate the left-
hand side of equality (8) to formally obtain

d /% *
LS (0 - 5" ()
Clt)+ 5" ()C'

= S"() ) = S"(H)C(t) = ST ()C"(t) =
= S"MCE) - S (HC"(t) =
= —(Q®SH)CH) + 5" (1)QH)C ()

)
= =SH)QMC[H) + 57 (1)Q(HC(t) =

The equality (8) then follows by formally integrating this using the initial con-
ditions for the S(¢) and C(¢) and their derivatives.
To prove (9), we first show that S*S" and C*C" are self-adjoint We have
d
dt
Again, formally integrating using that S(0) = 0, it follows that S*S" = §™S.
Similarly, one can show that C*C’ = C"™*C.
Define the following operator matrix

_(—C"@) (1)

—(8*9" = §"9) = §*5" — 55 = $*QS — S*QRS = 0.

This matrix is a left inverse of

4= (5% g'(é)))’

15
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that is BA = I, and this is straightforward to check by formal matrix multipli-
cation using (8) together with S*S" = §*S and C*C’' = C"*C. Thus, B is the
inverse of A and using that therefore BA =1, i.e.

(30 SN (ED S-(Y
gives (9). _

We note that from (11) follows immediately that also SC* and S’C"™* are
self-adjoint, which we state as a separate result.

Lemma 2. The operators SC* and S'C"™* are self-adjoint.

We then verify that provided r(C*(T)S'(T)) < 1 then (7) is a well-defined
solution to (6).

Lemma 3. Assume that r(C*(T)S'(T)) < 1. Then the inverse of S(T) emists.
Proof. This is a standard application of the Neumann series in combination
with the relation (8). Indeed,
k—1 '
(I = CH(M)S'(T)) Y _(CHM)S'(T)Y = (I—(CHT)S(T)"). (12)
=0
Letting k tend to infinity one can conclude, since r(C*(T)S’(T)) < 1, that
(I — C*(T)S'(T)) has an inverse. Applying (8) the result follows. O

2. Convergence of the alternating procedure for (6). The alternating
procedure for problem (6) was given in the introduction. For clarity, we state
the steps again. The element ug satisfies the initial value problem

uly + Q(t)ugr =0, in I,
UQk(O) = ¥, (13)
Uék(O) = u/2k—1(0)7

where u((0) = 7 is arbitrary. The solution to this problem is given by

uak(t) = S(t)iy_1(0) + C(t)e. (14)
The element usg1 is constructed as the solution to

Uy + Q) uzk1 =0, in I,

ugk1(T) = 9, (15)
u/2k+1 (T) = ul2k(T)’

with solution
ugk+1(t) = (S()C™(T)=C(t)S™(T))ugye (T)+(C(£)S™(T) =S () C™(T))¢. (16)

To verify that this indeed is a solution one can use that SC* and S'C’™* are
self-adjoint according to Lemma 2 together with (8)-(9).

We shall then establish convergence of the alternating algorithm (convergence
was shown in [33] for time-independent operators).
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Theorem 1. Let u be a solution to problem (6) and let C(t) and S(t) be the fun-
damental cosine and sine solutions to this problem. Let ug be the k-th approz-
imate solution generated by the alternating procedure. If r(C*(T)S'(T)) < 1,
where v is the spectral radius, then
lugk — ufloo < C16*

and

lugk i1 — ulloo < Cad",
where Cy and Cy are positive constants and 6 € (r(C*(T)S'(T)),1).

Proof. The solution ugg41 to (15) is given by (16) and this gives
ugr1(t) = (SECH(T) = C(t)S™(T))ug (T) +
+HC)S™(T) = SHC™(T))yp = (17)
= Z1(t)ug,(T) + Z2(t)0.

In particular, calculating u), ,(0) and using that the solution to (13) is given
by (14) tedious but straightforward calculations show that

k—1
ug(t) = S(t) Z(C*(T)S'(T))j CH(T)(C(T)p — ) +
. (18)
+S(6)(CH(T)S"(T))*n + C(t)p.
Using this expression in (17) one derives
ugk1(t) = Z1(8)S"™(T)(CH(T)S"(T))"n +
k—1
+Z1(8)S™(T) Y (CH(T)S"(T))'C™(T)(C(T)p — ) +
j=0
+Z1(t)C™(T)p + Za(t)1).
Similar to the proof of Lemma 3 it follows from identity (8) that
k—1
Y (CHDS(T) = (I -CHDT)S(T)" (I - (CHT)S'(T)") =
=0
(19)

= S7THT)CH(T)HI = (CH(T)S"(T)").
Employing this in (18) one obtains
ugk(t) = SO — (CH(T)S'(T))")SHT)C™(T) " C™(T)(C(T)p — ¥) +
+S(t)(C*(T)S'(T))*n + C(t)p =
= SE)(CH(T)S"(T)"(n = S™HT)C(T)p — ) +

+S()STHTNC(T)p —¥) + C(t)p.

Similarly, using (19) in (17)

ugk1(t) = Zi(O)ST(T)CHT)S' (1)) — STHT)C(T)p — ) +
+S()S™HT)(C(T)p —¥) + C(t).
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Next, from Lemma 3 the element S~!(T') exists and thus the solution to prob-
lem (6) is given by (7). Using this, we finally have
uzk(t) — u(t) = S()(C*(T)S'(T))*(n — u'(0))

and similarly

uzk1(t) — ul(t) = Z1()ST(T)(C*(T)S'(T))*(n — u'(0)).
Taking norms and making use of the identity

r(Q) = limsup | Q“|I'/*, (20)
k—o0

we get

luzk — ulloe < 1SllsoI(CH(T)S'(T))*lIn — u' (0)]] < C16*
and

luzkr1 = ulloe < 1Z1lloo ST (T)IICH(T)S'(T)) [l — ' (0)]] < Cad®,

where § € (r(C*(T)S'(T)),1). Thus, the result follows. O

Remark 1. One can relax the conditions on the operator Q@ = A + B(t). In
fact, one can impose conditions such that B(t) can be a differential operator
and thus the problem studied can model for example the Dirichlet problem for
a hyperbolic equation, see [37]. This then generalizes the results in [33] for
the Dirichlet problem for hyperbolic operators to include time-dependent co-
efficients. Note though that the Dirichlet problem for the hyperbolic problem
has only a unique solution when 7' is irrational, see [20]. Note also that gener-
alizing to include equations with a term V (¢)u’ is considerable more difficult in
the Banach space setting, see [18, Chapter §|.

Remark 2. Consider the partial differential operator
Au+ f(u) =0 in Q

supplied with Dirichlet boundary conditions, where ) is an annular smooth
domain in R™. Searching for a radial solution, u(r), leads to the equation

— L)+ fu(r) = 0.

U”(T’) _|_ n

2—

Substituting s = r*~" gives

u’(s) + p(s) f(u(s)) =0,
with boundary conditions u(s1) = ¢ and u(s2) = v, see further [34]. Thus,
with f of the above form, the results also apply to problems for the Laplace
equation. Nonlinear functions f will be discussed in Section 4, thus the al-

ternating method could potentially be applied to semi-linear problems for the
Laplace operator.

3. A SCALAR EQUATION
The results in the previous section are in an abstract setting and as remarked
at the end of the previous section the operator Q(¢) could even in fact be a
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partial differential operator. Since the present study has as one of its aims to
study the alternating method for ordinary differential equations, we simplify in
this section and replace Q(t) by ¢2(t), where q(t) is a scalar real-valued function
and X =R, and study a classical scalar second-order two point boundary value
problem,

"+ @ (t)u=0, in I,

u(0) = o, (21)

u(T) =,
where ¢ € C(0,7). The condition for convergence of the alternating method
stated in Lemma 1 is in the case of (21) reduced to |¢(T)s'(T')| <1, where ¢ and
s are the usual fundamental solutions. To give conditions on the function ¢ and
final time 7' for which this condition is satisfied, we shall need the following two
lemmas below. These essentially follow from classical comparison theorems for

Sturm-Liouville operators; for completeness we give the proofs. For an overview
of history and results on Sturm-Liouville comparison theory, see [15, 17, 50].

Lemma 4. Let a,b € C[0,T], and let y be a nontrivial solution of
y'+a*(t)y =0,
y'(0) = 0.
Suppose that y has its first positive zero at t = T, and let z be a nontrivial
solution of the equation

2+ b2 (t)z =0,
Z(0) =0,

with b*(t) > a?(t) on (0,T). Then there exists T with 0 < 7 < T, such that

z(1) = 0.

Proof. Without loss of generality we can assume that y(0) = 1. Therefore, by
the assumption that y has no zeros in 0 < t < T, we find that y is positive
on this interval. Using the governing equation, it follows that ¢’ is decreasing
on (0,7). Assume then that z has no zeros in (0,7, for instance, that z is
positive on (0,7). Let w = ¢’z — y2’; then w(0) = 0 and using y(T) = 0 gives
w(T) =y (T)z(T) < 0 since y' is decreasing and z is positive. However,

w’:y”z—l—y'z'—y'z’—yz":yz(bQ—GQ) > 0,

which is a contradiction. )
Similarly, one can show a result about zeros of the derivative.

Lemma 5. Let a,b € C[0,T], and let y be a nontrivial solution of

{ V' +a(t)y =0,
y(0) = 0.

Suppose that y' has its first positive zero at t =T, and let z be a solution of

2+ b3 (t)z = 0,
{ z(0) =0,
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with b2(t) > a®(t) on (0,T). Then there exists T with 0 < 7 < T, such that
Z/(1)=0.

Proof. We can assume that y'(0) = 1, and since by assumption 3’ does not have
any zero on (0,7") one can conclude that y is positive on (0,7"). Assume that
2’ has no zeros in (0,7T), for instance, that 2’ is positive on (0,7'). This gives
that z is positive on (0,7) since z(0) = 0. Let w = y'z — y2’, then w(0) = 0
and using that y/(T) = 0 together with the positiveness of y and 2z’ imply
w(T) = —y(T)2(T) < 0. However,

w = y”z+y'z' _ylzl _yzu — yz(b2 _ a2) > 0,

which is a contradiction. a

To derive properties of the fundamental solutions ¢ and s, we shall use the
above lemmas together with the following two eigenvalue problems to compare
zeros of the solutions. Let Apn be the first eigenvalue of the following problem™

u” + Ag*(t)u =0, in I,
u(0) =0, (22)
u'(T) =0,

and let Axp be the first eigenvalue of the problem’

u’ + A (t)u =0, in I,
W' (0) = 0, (23)
u(T) = 0.

Lemma 6. Let Apy and Anp be defined as above. If 1 < min{Apn,AnD},
then the alternating procedure converges on every interval [0,T1], 0 < Ty <T.

Proof. The fundamental solution ¢(t) satisfies ¢(0) = 1 and ¢/(0) = 0. Clearly,
from the governing equation for this function, ¢/(¢) is non-positive on the in-
terval (0,7) implying that ¢(¢) is decreasing on this interval. Suppose that
c(T1) = 0 for some 0 < T} < T. Then, from Lemma 4 with T = Ty and a? = ¢°
and b* = Aypgq?, we conclude that the solution to (23) is zero for ¢t = 7 with
0 <7 < Ti. However, then the eigenfunction solution to (23) would be identi-
cally zero, which is a contradiction. Therefore, we find that ¢(¢) do no change
sign on [0,77] and we can conclude that 0 < ¢(t) < 1 on [0,7}]. A similar con-
clusion can be made using Lemma 5 for s'(t), and therefore 0 < ¢(t)s'(t) < 1
on [0,71]. Thus, the condition for convergence in Theorem 1 is satisfied. O

It is then possible to state a convergence result for the alternating method
involving a condition on the coefficient ¢ and the final time 7.

Theorem 2. If T < (2maxo<;<7 |q(t)|)"I7, then the alternating procedure
converges as a geometric progression on the interval (0,7T).

*The subscript DN refers to a Dirichlet condition at ¢ = 0 and a Neumann condition at
t="T.

TThe subscript N D refers to a Neumann condition at ¢ = 0 and a Dirichlet condition at
t="1T.
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Proof. Put a®(t) = ¢*(t) and b*(t) = maxo<;<7 ¢*(t) = M?. Once can check
that 1 < min{Apn, Anp} in the interval [0, 7], where T7 < w/2M. Thus, the
conclusion follows from Lemma 6. O

3. Non-convergence for the alternating method. As mentioned in the
introduction, we are interested in a class of equations for which the alternating
method do not converge. Guided by the results in the previous section, we can
then give such a class of equations.

Consider the following problem:

" — ¢*(t)u=0, in I,
= 0

where ¢ € C[0,T]. Let ¢ and s be the fundamental solutions corresponding to
this equation. Examining the proof of Theorem 1 it is clear that the alternating
method do not converge if |s'(T)e(T)| > 1. We adjust T, if necessary, such that
c and s do not have any zeros for 0 < t < 7. We shall then show that
|s'(T)e(T)| > 1 holds for the fundamental solutions to (24).

Proposition 1. Let ¢ and t be the fundamental solutions corresponding to the
equation (24). Then |s'(T)c(T)| > 1.

Proof. Since T is chosen such that ¢ and s do not have any zerosin 0 < t < T and
since ¢(0) = 1 we conclude that ¢ is positive on (0, 7). Hence, it follows from the
equation (24) that ¢’ is positive, which implies that ¢ is increasing on (0, 7).
Thus, ¢(T) > ¢(0) = 1. In similar way, one can show that s'(T) > §'(0) = 1.
O

Therefore, since |s'(T)c(T)| > 1, we can conclude that the alternating method
applied to (24) will not converge.

4. NONLINEAR OPERATORS
In this section we shall investigate the nonlinear case

u’(t) + f(u(t)) =0, in I,
=% )

For simplicity, we assume that u takes values in R. We shall further assume that
there exists a unique solution to problem (25). The existence and uniqueness of
a solution is a nontrivial matter, and there are plenty of results and conditions
in the literature. A good place to start is Chapter 1 in [9]. From that chapter
it follows that under a Lipschitz condition on f there exists a time-interval
where existence and uniqueness of a solution to (25) holds. Note that only
assuming that f is continuous and positive will not guarantee uniqueness, for
counterexamples, see [22].

We shall write down the solution to each of the first four steps in the alter-
nating method to be able to derive some general expressions for the generated
elements n; and (.
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To generate an initial guess for the alternating method, let

V() =0, in I,

v(0) = ¢, (26)
o(T) =,
that is
T—t

Then define 9 = v/(0) = %(¢) — ¢). With this initial guess, the first approxi-
mation wug in the alternating procedure is given by

ug(t) + f(uo(t)) =0, in I,
up(0) = o, (27)
U{J(O) = o,

with formal solution

i) = +tm— [ (=) suotrdr = Lo o= [ sun(r) an

where in the last equality the expression for the element 1y was used. The
derivative of ug at t = T is calculated from this as

w(®) = 50 =)= [ flulr)) ar
giving .
G = u(T) = 56 =) = [ fualr))dr

The next approximation u; is found from

ui(t) + f(ui(t)) =0, in I,
u(T) =, (28)
ull(T) = <17

with solution

T
ul(t):¢+(t—T)§1+/t (t —7)f(ur(7)) dr.

Inserting the expression for (i,

— T T
w®) = v+ =) = =7 [ S dr+ [ (=) dr

From this, the derivative of u; at zero is

(0 = ;-0 - [ (o) — Flus (7))
N2 = Uy - T 2 0 0 1 .
Then uo is constructed as the solution to

uy(t) + f(uz(t)) =0, in I,
u2(0) = ¢, (29)
uy(0) = 12,
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and formally
us(t) = @+t /0 (t =7)f(uz(7)) dr =
+ T
= ot =)=t [ () = () dr -

- / (t = 1) f(us(r)) dr.
0

Calculating the derivative at t =T we obtain

1 T
G =up(T) = 5( =) = /O (f(uo(7)) = fur(7)) + flua(7)))dr. (30
Then wsg is constructed,

us(t) + f(us(t)) =0, in I,
Y, (31)

having the solution

T
w(®) =0+ ¢ =)o+ [ (¢~ 1) flus(r) dr
¢
or by using the expression for (3,
us (t) = ’lﬁ"i‘

T
=) (30— 9= [ ) - fn() + fluatr)ar )+
T
+ /t (t —7)f(us(7))dr.

From this expression, we have the derivative

M= (0) = (0 — o)

T
— [ G an(r)) = £ () + Sualr) ~ Sua(r)) dr).

Note that (30) and (32) justifies the term alternating method, since the sign
appear to alternate with each iteration.
We further observe that

T
G- = /0 (Flus(r)) — f(ua(r))) dr

(32)

and
T
n— = /0 (Flus(r)) — f(us(r) dr.

Continuing by iterating in the last two steps, a simple induction step reveals,
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Proposition 2. Let {na}32, and {(or+1}32, be generated from the alternating
procedure. Then

T
Nok42 — M2k = /0 (f(uary1(7)) — f(uar(r))) dr
and

T
Cok43 — Copt1 = /0 (f(u2ry1(7)) — f(ugrr2(7))) dr.

Now, note that if f was a positive increasing function and if the approxi-
mations uy generated by the alternating method satsfied ug1 > ug, then one
can conclude that {n} will be an increasing sequence and {(ox} a decreas-
ing sequence. Thus, provided these could be bounded from above and below,
one could establish a convergence proof. Another possibility is that the odd
approximations {ugxy1} are all above each of the even approximations {ugg}.

However, it appears rather difficult to find conditions on the function f and
the final time 7" to have such conditions satisfied. In fact, in the next section, we
shall take a rather simple function f and show numerically that the sequences
{m2r} and {Cox} do not need to be monotone, and still there appears to be
convergence.

4. A numerical example for a nonlinear problem. Let

u’(t) + 3sin(2u(t)) =0, in I,
u(0) =0, (33)
u(T) = 1.

1

Here, f(u) = 5sin(2u(t)) is Lipschitz with constant L = 1. Hence, from [9, p.
5] there is a unique solution to (33) for 7' < 2v/2. In fact, we assume that psi
is chosen such that we have the following explicit expression for the solution,
2t
et —1

t) = in ———.
u(t) = arcsin 1

(34)

The initial guess is constructed as in the previous section. The initial value
problems needed to be solved in each iteration step of the alternating proce-
dure are solved with the Matlab function ODE45 (Matlab version R2013b on a
computer with Windows 8.2 and an Intel(R) Core(TM) i3-3217U Central Unit
Processor (CPU) at 1.8GHz).

In Fig. 1(a) we present the results obtained after 8 iterations (that is uy
is the final approximation; the corresponding value for k for the solution wuoy
and wuggy1, respectively, is marked out on each approximation) obtained with
T = 1.6 and 1 generated from (34). As can be seen from this figure there is
convergence towards the solution to (33). Moreover, a monotone behaviour of
the approximations, expected due to Proposition 2, is present. In fact, with
these solutions together with the function f and Proposition 2, the sequences
Nk and (x should both be positive and decreasing. This has been checked for
and is the case in the numerical simulations.

Increasing T there is convergence of the similar kind up to about 7' = 1.8,
where the method starts to become slower and eventually does not converge.
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Choosing instead T' = 2.8 and taking ¢ = 0.5, one can see that monotonicity
is no longer present in the sense that some even iterates woy intersects some
odd iterates ugp1; this is shown in Fig. 1(b). In this case, we used the
Matlab function bvpc4 to generate an approximation to the solution to (33) to
test convergence against with ¢ = 0.5 formula (34) does not give the sought
solution.

One can also change sign of the function f and run the procedure with —f.
This causes problems with the alternating method and only for small values of
T there seems to be convergence. For example, the method diverges for 7'=1
and ¢ = 1 as is highlighted in Fig. 2(a). Note that changing sign was shown
in the linear case in Section 3.1 to generate non-convergent sequences in the
alternating procedure.

We remark that we have also tried a linearization in the alternating method
in the sense that f is instead evaluated on the solution from the previous
step. This new linearized procedure does not give any significant improvement
for (33). However, changing to — f this linearized procedure appears to converge
for T'=1 and ¢ = 1 as shown in Fig. 2(b).

a) T'=1.6 and ¢ = u(1.6), b) T =28 and ¢ =0.5
u from (4.34)

FiG. 1. The solutions ugy (---) and uak+1 (- - ), and the analytical
solution u (—) for various 7" and .

5. CONCLUSION

The alternating method [33] was investigated for two-point boundary value
problems for second order time-dependent differential operators. Convergence
was established in the linear case extending [33] to the time-dependent case
with the operators taking values in a Hilbert space (potentially the similar
analysis can be carried over to the Banach space setting). In the scalar case, a
criteria involving the coefficients of the operator and the final time were given
to guarantee convergence. It was also shown that changing sign of a term in
the differential operator generates equations for which the alternating method
does not converge. Moreover, for nonlinear operators, expressions were derived
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PSfrag replacements S O 1 ; ; ; 1 i PSrag replacements
1

0 o1 02 03 04 05 06 07 08 09 ) 1

a) T'=1and ¢ =1 with —f(u) b) T =1, ¢ =1 with — f(u) and
linearization

Fi1G. 2. The solutions ugy (- --) and ugg+1 (---), and the analytical
solution u (—) for various T" and .

on which a proof of convergence can potentially be obtained. However, as was
highlighted by numerical examples, to pin-point precise criteria on the operator
and final time to have a proof of convergence also in the nonlinear case seem
difficult. A linearization was suggested such that linear differential equations
were solved at each iteration step and this linearization turned out to converge
in some cases where the orignal alternating method did not converge. This
merits further investigations and is deferred to future work.
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AN ALTERNATING BOUNDARY INTEGRAL
BASED METHOD FOR A CAUCHY PROBLEM
FOR KLEIN-GORDON EQUATION

ROMAN CHAPKO, DMYTRO LABA

PE3IOME. Posrnsmaerscs ducenbHe po3s’si3yBanns 3amaqi Komi qyist piBasan-
g Kueftna-Topmona y 18038’ a3Hii 110ckiit o6siacti. 3Bakaroun HA HEKOPEKT-
HicTh mi€l JiHiliHOI 00epHEHOI 3a/a4i, BUKOPHCTAHO AJIGTEPHYIOUUN METOZ,
SIKUH BOJIOJIIE PETyISpU3yIOINME BJIACTUBOCTAMH. [le mpuBoanTh 10 po3B’s13y-
BaHHs JBOX MIIIAaHUX KPaMOBHMX 3aJa4 Ha KOxKHiil ireparii. 11i mimrani 3amadi
HAOJIMKEHO PO3B’A3y0ThCA METOI0OM I'DAHNYHAX IHTerpaIbHuX piBHAHD. 1Ipn-
BEIEHO Pe3Y/IbTATH JINCEJbHUX eKCIIEPUMEHTIB.

ABSTRACT. We consider the numerical solution of a Cauchy problem for
the Klein-Gordon equation in a planar double connected domain. Due to
the ill-posedness of this linear inverse problem the alternating method with
regularization properties is used. It leads to two mixed well-posed boundary
value problems on every iteration. These problems are solved by boundary
integral equation method. Numerical examples are presented.

1. INTRODUCTION
Let D be a double connected domain in IR? with inner and outer boundaries
I'; and Ty, respectively. We suppose that I'1,T's € C3 (see Fig. 1). Let v
denote the outward unit normal on boundary.

Fic. 1. An example of a double connected domain

Given the sufficiently smooth continuous functions f1 and fa, we consider
the Cauchy problem of finding a function v € C?(D) N C'(D) which satisfies

Key words. Klein-Gordon equation; Cauchy problem; Double connected domain; Single-
and double layer potentials; Integral equations; Alternating method.
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the Klein-Gordon equation

Au—»*u=0 in D (1)
and the boundary value conditions
ou
= — = Ts.
u=f and 5, 9 on T2 (2)

In (1) > > 0 is a given constant. In particular we are interested in finding
the Cauchy data on the inner boundary I';.

For the uniqueness of a solution to the Cauchy problem (1), (2) see, for
example, [2]. The solution does not in general depend continuously on the
data, i.e. the problem is ill-posed in the sense of Hadamard, thus making
classical methods inappropriate.

We shall employ the so-called alternating iterative method proposed in [6]
and successfully applied in several engineering problems, see for example [5] and
[8]. The use of the alternating method with an integral equation approach for
the Laplace equation is discussed in [3|. The details of alternating procedure for
the case of the Klein-Gordon equation are listed in section 4. In each iteration,
mixed direct problems are solved in the solution domain D. There are the
Dirichlet-Neumann mixed boundary value problem

Aw—»*w=0 in D, (3)
0
w=h on Iy, %:g on I'y (4)
and Neumann-Dirichlet mixed boundary value problem
Av—3*v=0 in D, (5)
0
a—:j =p on Iy, v=/f on Is. (6)

For the direct problems in this study, we propose and investigate a numerical
method based on the potential theory. Instead, the problems are each reduced
to boundary integral equations over I'y and I's. This approach makes the
implementation of the alternating method very efficient.

2. INTEGRAL EQUATION METHOD FOR THE MIXED PROBLEMS

2.1. DIRICHLET-NEUMANN MIXED PROBLEM
The problem (3), (4) will be solved by reducing to the system of integral
equations of the first kind. We represent the solution w € C?(D)NCY(D) as a
combination of a single- and a double-layer potential

w(z) :/wl(y)@(x,y)ds(y)+/¢2(y)a‘ﬂxvy>

() ds(y), =€ D, (7)
Iy I

where 1 and @9 are unknown continuous densities, ®(z,y) = %Ko(%]w —y|)
is a fundamental solution of the equation (3) in term of the modified Hankel
function Ky [1].
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From the continuity of the single-layer potential and the normal derivative
of the double-layer potential we obtain for the problem (3), (4) the following
system of integral equations of the first kind

/sol(y)@(x,y)ds(y) +/w2(y)(st(y) = h(z), zely,
I'1 'y
/wl(y)agfa)y)ds(yﬂ 5
N1
o 00(x,y) B
* au(x)1/¢2(y)ay<y)d8(y) =g(zx), zeTs.

It is known that modified Bessel functions have the following asymptotic prop-
erties [1] Ko(2) ~Inl, 2z — 0and Ki(2) ~ 2, 2z — 0. Thus, we obtained
the system of integral equations of the first kind which contains kernels with
logarithmic singularity as well as a hypersingularity.

Using the Maue type expression |7] the second equation from (8) could be
rewritten in the following way

/ ©1(y)®(z,y)ds(y) + 65(;2 (y)ajéx;)y ) ds(y)—
Iy I’y
2 / 021)® (1) (x) - v(w)lds(y) = g(z), z €Ty,
T's

where 6 denotes the unit tangential vector for I's.

For the future numerical implementation we consider a parametrization of
the system (8). We assume that the domain boundaries have the parametric
representations

;= {xz(t) = (xil(t),mig(t)), t e [0,271’]}, 1=1,2,

where z; : R — IR? are C° and 27-periodic with |2/}(t)| > 0 for all ¢ € [0, 27].
As a result of the parametrization of the system (8) we obtain

27
% / (1 () Ha1 (8, 7) + po(7) Hia(t, )] dT = h(t),
. (9)

[ i) E (1 7) + () Bt 7) + o) Hoalt, )] b = (),

2
0

where p1i(t) = pi(zi(t)), i = 1,2, h(t) = h(z1(t)), g(t) = 2g(x2(t))|z2()]. The
representation of kernels of the obtained system is listed below

Hy(t,7) = Kolelray (7))}t (7))
ri2lh7) - va(T)) 1 oy,

Ho(t, 7) = 3K (5¢|r12(t, 7)) Ty
r12(t,7)]
Han(t,7) = 25283 G 1, 7)) 220 (o) o),
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[raa(t, 7) - 25(1)]
ra2(t, )|
Has(t,7) = 256" Ko (selraa(t, 7)) [25(2) - (7))
Here we introduced the notation ri;(t, 7) = ;(t) — x;(7).
Next we express the system of integral equations (9) in the specific form to

be able to apply the trigonometrical quadrature rules. The system of integral
equations in the following form is ready for application of the numerical methods

,

Hoo(t,7) = —23¢K ) (5¢|roa(t, 7))

t—1T1

2w
1 4
— H},(t,7)In - sin?
e [l (27 sin
0

+ HE (t,7)) + po(7)Hyo(t, 7)]dT = h(t),
21 (10)

% /[,u1 (T)Ho1(t,7) + ph(7) cot T t+

0

t—T1

+ MQ(T)(H%Q(t, 7)In % sin? + H222(t, 7))]dT = g(t).

\

Here kernels are represented as follows
1
Hiy(t,7) = =50z (t) = 21(7)]) 21 (7)),
H212(t7 7_) =

=2 | Al DD Bl 1,y -t ) (0

= To(selraa(t, ) )raa(t, 7) - va(t) |25 (8) o (t) - 2o (7)+

Iy (>|raa(t, 7))

#|raa(t, ) ro2(t, 7) - va(t) |5 (t)raa(t, 7) - va(7)|za(7)] |

4 t—
H}(t,7) = Hlt,7) = Hj(t,7)In — sin” — T ot i=1,2
e
with diagonal terms

1 1. esx®|oh (1))
(0 = - L0, B30 = L PO ) )

and 20,0 ()2
e |y (t)]
AL
L a0 o) | LOR | (0 0)? a1
6 3 [z)P 2 |25 (1) |25(2)|* 2 ’
where Iy and I; are the modified Bessel functions and v is the Euler constant
[1].
For m € NU {0} and 0 < a < 1, by C"™[0, 2] we denote the space of m-
times uniformly Holder continuously differentiable and 27-periodic functions
furnished with the usual Holder norm. Using the Riesz theory [7] we can

H,(t,t) = »*In
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conclude that for given functions h € C™T12[0, 2], g € C™[0, 2] the system
of integral equations (10) provides a unique solution p; € C™%[0,27] and
pe € C™TLel0 27].

Clearly, we have according to (7) the following representation for the normal
derivative on the boundary I'y

ow 1

5(95) = —5901(37)+

o0d(z, y) 0 (x,y)
+/<P1(y)st(y)+/¢2(y)(wa]/(y)d5(y)» xely,

I 'y

Taking into account the parametric representation of I';, ¢ = 1,2 and by
some transformation in the kernels we obtain

) 00 (1) = —2m(D)+
+% / [MI(T) (Lll(t’ 7)In % s’ AT+ Lt T)> B ()
0

+po(7) La(t, 7')] dr, te€|0;2n]

with kernels

7“11(75, 7’) -1 (t)
r11(t, 7))

Lu(t,7) = Sh(Am(t 7)) 2 (7)1,

ot —1T
2 bl

4
Lio(t,7) = Li(t,7) — L11(¢t,7) In — sin t#T,
e

zi(t) - v (t)

BT ]

2.2. NEUMANN-DIRICHLET MIXED PROBLEM
For solving the mixed boundary value problem (5), (6) we use the similar
boundary integral equations approach as described in the previous section.
The solution to the problem (5), (6) inside the domain could be represented
as the following sum of potentials

v(r) = /wl(y)wdsw) +/<p2(y)<1>(x,y)d8(y), z €D.

1 2
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As in the previous section, using the boundary conditions, we obtain the system
of integral equations which after parametrization and all needed transforma-
tions is represented like

or [l(rh ot Tt () )t s T
0
B (7)) + palr) Fia(t, )]y = p),
or (12)
;/[m(ﬂﬁm(tﬁH
0
4 () (Al (t,7) = sin? T 4 By (1, m))dr = £(6)

Here the kernels are smooth functions and their differential properties are de-
pendent from smoothness of the boundaries I';. Using approach described ear-
lier in this section, one can check the existence and uniqueness of the solution
to the system (12).

Again we have the following way to calculate the function values on the inner
boundary I'y

i) = 5@+ [ G ast) + [ a)®lendste), el

Fl 1—‘l2

The corresponding formula for the function values in terms of parametric
representation of the boundary curve I'; can be obtained

o(ar (1) = s (0)+

2 e

2
1 ~ 4 t— -
+/ [/1,1(7’) <L11(t,7’) lnfsin2 2 T —|—L12(t,7‘)> +
0

+p(T) La(t, 7')] dr.

3. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

3.1. QUADRATURE METHOD

To discretize our integral equations of the first kind we suggest quadrature
7T
method. Let M € IN and t; = ]M, j=0,...,2M — 1. For approximation of

corresponding integrals we use the following trigonometrical quadratures [4, 7|
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1 2 | 2M
or [ £~ S s,
0 7=0
1 2 oM—1
2ﬂ_/f(7') In — sin? dr ~ R;(t) f(t)), (13)
0 J=0
2 2M—1

1|1 1 , cos M (t —t;)
Rj(t) = _M 5 + Z ;COSZ(t—tj) + TJ
i=1
and
1= 1
T;(t) = i Z icosi(t —tj) — icosM(t —tj).
i=1

After application quadrature formulas (13) and performing collocation using
the nodes of interpolation we obtain the system of linear equations with respect
to unknown fig(t;) = pe(t;), £ =1,2,5=0,...,2M — 1

( 2M—1 2M -1

_ 1 _
> Ml(tj)Hh(tk?tj)Rj(tk)er D Bty Hiy (b, t)+
=0 =0
1 2M—1
topp Do Bt Huo(te t) = h(ty), k=0,....2M —1,
1 2M—1 = 2M—1
oYY > dn(t) Hor(teoty) + Y oty T (t)— (14)
=0 =0
2M—1
- j{: fio(t;) Hao (ti, t) Ry (t) —
=0
1 2M—1
- 537 fio(t;)Hay(tr, ti) = g(tr), k=0,...,2M — 1.
=0

Finally, we have the following representation for approximate solution to Dirich-
let-Neumann mixed problem (3), (4) in the domain D

1 2M—1
w(z) ~ 577 > i (ty) Ko(sdw — a(t;)])2h (8) |+
=0
1 & [(z —22(t))) - va(t))],
—|—m Z fio(t) 2Ky (s|z — x2(t5)]) [z — 22(1))| lzy(t;)], €D
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Taking into account (11) the numerical approximation for the normal derivative
on I'1 can be calculated as

ow 1 2M—1
5, (@1(t)) = =5 (t) + > () Lua (b, ) Ry (k) +
=0
2M—1 1 2M—1
+m JZ_(:) Ml(tj)Lm(tkatj)'i‘m JZ_(:) Mg(tj)Lg(tk,tj), k=0,...,2M — 1.

Numerical solution of the system (12) is realized in the similar way.

3.2. NUMERICAL EXPERIMENTS FOR MIXED PROBLEMS
Let’s choose the domain with following boundaries (see Fig. 2)
'y = {z(t) = (0.5cos(t) + 0.5 cos(2t) — 0.25, sin(t)),t € [0, 27|}
and
Iy = {z(t) = (0.3cos(t) + 0.25, 0.2sin(t)),t € [0, 27]}.
The boundary conditions for the Dirichlet-Neumann problem are given as
h(z) = 0.5z1, =z €T}y, g(x) =0.0523, x €Ty
and for the Neumann-Dirichlet problem we choose
p(r)=e ", zely, f(z) =0.25sin(z1 + x2), = €Iy,

For both problems we state s = 1.

The maximum norm errors of the obtained numerical solution values on
I'y for the Dirichlet-Neumann problem (3), (4) and calculated values of the
normal derivative on I'; for the Neumann-Dirichlet problem (5), (6) are listed
for various values of the mesh size M in the Table 1. Note, that as the "exact”
solutions we use the approximation solutions obtained by our numerical method
with M = 128.

08
0B
04

02f

2k

o4k

06 F2

nsk

F1G. 2. Solution domain 1
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TABL. 1. Errors of the numerical solutions for the mixed problems

M| | % - dg;z ||C(F1) |[v — Ue:v”C(Fl)

4 | 1.631718-1073 | 5.145063 - 103
8 | 2.131915-10° | 3.133429-107*
16 | 8.192651-10"10 | 4.243675 1077
32| 3.295214 - 101 [ 5.041247-10~ 13

4. AN ALTERNATING METHOD FOR THE CAUCHY PROBLEM

4.1. AN ALTERNATING PROCEDURE

To obtain the solution to Cauchy problem (1), (2) we use the alternating
iterative procedure.

Fach iteration of alternating procedure requires solving one of the mixed
boundary value problems and finding Cauchy data on the inner domain bound-
ary. These problems are numerically solved by application of integral equations
method described in the above sections.

In problem definitions (3), (4) and (5), (6) functions f and g are the same
as in the Cauchy problem (1), (2).

The functions p and h will be substituted with solution approximations dur-
ing the alternating procedure run.

The alternating procedure of solving Cauchy problem (1), (2) runs as follows

— The first approximation u(?) to the solution is obtained by solving the
problem (5), (6), with p = pg, where pg is an arbitrary initial guess.
~ Having constructed  u*)| we find  u(®*t1) by solving (3), (4), with
h = u(2k) |
I
au(2k+1)
ov
I'1
The following result about the convergence of alternating procedure can be
obtained using the similar approach as in [3].

~ To obtain u(®***2) the problem (5), (6) is solved with p =

Theorem 1. Suppose that Cauchy problem (1), (2) with appropriate input data
f and g has a bounded solution. Let uy be the k-th approrimate solution in the
alternating procedure. Then the following is true:

li — =0
kg{.lo | u ukHL2(D)
for any sufficiently smooth initial data element pg which starts the procedure.

Also we have to note that alternating procedure which is applied to solve
Cauchy problem is a regularizing method [3].

4.2. NUMERICAL EXPERIMENTS FOR THE CAUCHY PROBLEM
In the numerical experiments we will use the solutions to the mixed problems
for generating the input functions for problem (1), (2); i.e. we solve the mixed
problem with predefined input functions, calculate the Cauchy data on both
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boundaries and as a result we got the input data for (1), (2) as well as the solu-
tion and it’s normal derivative values on the inner boundary (the approximate
solution will be compared with this values for checking the results). Please also
note that the constant s is set to one in the following numerical experiments.

Ezxample 1. In the first example we will use the same domain as on Fig. 2.
We generate input data for Cauchy problem by solving mixed problem (3), (4)
with

h(z) = 6(z% 4 23), = €Ty, g(xz) = 3sin(xy + x2), €Ty

With M = 128 and zero initial guess which starts the alternating procedure,
we obtain the results reflected in Fig. 3 and Fig. 4 for function and normal
derivative reconstructions in case of exact input and input data with noise. The

solid line (—) denotes the graph of exact solution and the dashed line (- - -)
denotes the numerical solution obtained by alternating procedure.

Exact data, n = 500 Data with 3% noise, n = 185

Fic. 3. Function values on the inner boundary I'y for Ex. 1

Exact data, n = 500 Data with 3% noise, n = 181

Fi1G. 4. Normal derivative values on the inner boundary I'; for Ex. 1

39



ROMAN CHAPKO, DMYTRO LABA
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Exact data Data with 3% noise

Fia. 5. C-error of function (—) and normal derivative (- - -) on
I'; for Ex. 1

Example 2. Assume that boundaries have the following parametric represen-
tations (see Fig. 6)

'y = {z(t) = (0.5cos(t), 0.5sin(t)), te€[0,2n]}
and
Iy = {z(t) = (2cos(t), sin(t)), te€[0,2n]}.

To obtain input functions for this numerical example we solve the mixed
boundary value problem (5), (6) with

p(x):l'l—i-fl?Q, werh
f(z) =0.5z1, xeTls.

Fi1G. 6. Solution domain 2

The results of Cauchy data reconstruction on I'y are presented in Fig. 7 and
Fig. 8. The corresponding C-errors on every iteration step are reflected in Fig. 9
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Exact data, n = 500 Data with 3% noise, n = 110

FiG. 7. Function values on the inner boundary I'; for Ex.2

Exact data, n = 500 Data with 3% noise, n = 121

FiG. 8. Normal derivative values on the inner boundary I'; for Ex. 2

]
1
1
[}
]
1
]
1
1
[}
1
1
1
1
1
1

L n L N L L L L L 0
0 50 oo 180 200 250 300 350 400 450 600

100 180 200 250 300 350 400 450 500

Exact data Data with 3% noise

Fic. 9. C-error of solution function (—) and normal derivative
(---)onI' for Ex.2

As one can observe from the above numerical examples, a satisfactory quality
for the reconstruction of the boundary function and the normal derivative on
the inner boundary is obtained with a reasonable stability against noisy data.
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THREE-POINT DIFFERENCE SCHEMES OF
HIGH-ORDER ACCURACY FOR SECOND-ORDER
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH BOUNDARY CONDITIONS OF THIRD KIND

MARTA KROL, MYROSLAV KUTNIV

PE3OME. [ mHeninifiHUX 3BHYaiHUX IudepeHIaJ bHIX PIBHAHBb APYTOro
MOPAAKY 3 MOXiTHOIO B IIPaBiil YaCTUHI Ta KPAUOBUMH YMOBAMU TPETHOTO POIY
100y/10BaHO Ta 0OI'PYHTOBAHO TPUTOYKOBI PI3HUIEBI CXEMH BUCOKOTO IOPSIKY
TOYHOCTL HA HepiBHOMIipHIiH citri. [IoOymoBaHO Tak0XK AMPOKCHMAIIIIO TOTOKY
KpaitoBoi 33129l y By3j1ax citku. [[jist 00UNCIeHHs O3B’ 3Ky PI3HUIIEBUX CXEM
BUKODHUCTOBYIOTbCA iTepamiiiHi MeTonu. /JloBeneHO iCHyBaHHA Ta €IUHICTH
PO3B’A3KY IIUX CXeM, BCTAHOBJIEHO OIIHKY TOYHOCTL. EdeKTUBHICTS TPUTOUIKO-
BUX DI3HHIIEBUX CXeM IIOCTOTO MOPSIKY TOYHOCTI IPOLTIOCTPOBAHA Ha IMPUK-
JTaZax.

ABsTRACT. Three-point difference schemes of hight-order accuracy on a non-
equidistant grid for the second-order nonlinear ordinary differential equations
with derivative in the right-hand side and boundary conditions of the third
kind is constructed and justified. We also construct an approximation of
flow for boundary value problem at grid nodes. Iterative methods were used
to compute the solution of difference schemes. We prove the existence and
uniqueness of the solution of this schemes and determine the order of accuracy.
The efficiency of a three-point difference schemes of sixth-order accuracy is
illustrated by an examples.

1. INTRODUCTION
An approach for construction of exact three-point difference scheme (ETDS)
and three-point difference schemes (TDS) of high-order accuracy on a equidis-
tant grid for the nonlinear problems of the form

i [HO%| = f@w, se @D w0 =, wb) =

was suggested in [8, 7|. These results on a non-equidistant grid were generalized
and developed in [6] and for monotone boundary value problems in [5, 1].

In the present paper the effective algorithmic implementation ETDS, pro-
posed in [9], was developed via the truncated TDS for a nonlinear ODEs

% [’“(:”)ZZ] _ (mu le e (0,1), (1)

Key words. Nonlinear ordinary differential equations, boundary conditions of third kind,
exact three-point difference schemes, three-point difference schemes of hight-order accuracy,
iterative methods.
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with a boundary conditions

dzg’) ~ Bru(0) = —pu, —k(l)dzg) = Bou(l) =~y (2)

where k(x), f (z,u,§) are given functions, a (1, B2, 1, 42 are given numbers.
To find the coefficients and right-hand side of TDS at each node’s z;,7 =
1,2,..., N —1 of the non-equidistance grid we need to solve two auxiliary initial
value problems for nonlinear ODEs and two initial value problems for linear
ODEs on the intervals [x;_1, z;] (forward) and [z}, z41] (backward). Moreover,
to find right-hand sides difference boundary conditions we need to solve initial
value problems for nonlinear and linear ODEs on the intervals [z, z1] (forward)
and [zny_1,2zn] (backward). These initial value problems can be solved by
executing only one step with an arbitrary one-step method order of accuracy
m = 2[(m+1)/2] (m is a given the positive integer, [-] denotes the entire part
of the number in this brackets). As a result the implementations ETDS which
received from truncated TDS of rank m, for which it is proved that it has
an order of accuracy m. Constructed approaching flow k(z)du/dx at the grid
nodes, the order of accuracy of which is the same as the solution, that is of m.

k(0)

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION
Sufficient conditions for the existence and uniqueness of weak solutions of
the problem (1), (2) are given by following statement.

Theorem 1. Let the following assumptions be satisfied
0<ec <k(x)<cy Vrel01], k(z)eQ'o,1], (3)
fue(@) = £ (,0,6) € QU0 1] Vu,€ € RY,
fr(u,€) = f(z,u,€) € C(R?) Yz €[0,1],
|f (2,1, €) = fo(2)| < c(lul)lg(@) +[€]] Vo€ [0,1], u,& € R, (5)
[f (2,0, 8) = f (@, 0,m)] (u—v) <0 Vze[0,1], u,v,&ne R, (6)

Bl > Oa BZ > 0. (7)
Then  the problem (1),(2) has a unique solution wu(z) € W3(0,1), with

du
k(z) — € C|0,1].
u(@), (z) 5+ € C0,1]
Here c(t) is a continuous function, fo(z) € L2(0,1), g(x) € L1(0,1), ¢s, ca, c3
are some real constants, Q”[0, 1] is the class of functions having p piece-wise

continuous derivatives and a finite number of discontinuity points of first kind.
The proof can be found in [9].

3. ALGORITHMIC IMPLEMENTATION OF THE EXACT
THREE-POINT DIFFERENCE SCHEMES
On the interval (0, 1) we introduce the non-equidistant grid

(Dh:{xjé(o,l), j=12 . .N—-1, hj:$j_$jfl >0, hy + ha+ ...+ hy}

such the discontinuity points of functions k(z), f (z,u,&) coincide with the
nodes of the grid wy. Denote by p the set of all discontinuity points and assume
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that IV in such that p C @p. At discontinuity points the solution of problem
(1),(2) should satisfy the continuity conditions

d d
u(z; —0) = u(x; +0), k:(x)d—z = k:(x)% V; € p.
—0 r=x;+0

T=x;

For problem (1),(2) in paper [9] is constructed ETDS of the form

(auz)z; = —p(xj,u), j=1,2,..,N—1, (8)
7 (a1uz,0 — Bruo) = —p(xo, u),
! (9)
7 (anuz N + Poun) = —p(TN,u),
N
where
Y T Ui o Wi T Uy _ Uit T Uy
Uzg,j h] y  Ugj hj y  Ugj hj+1 ,
1 -t hi+h
a(z;) = [th(%)} , hj=- +2 L hg=0,5m, hy =0,5hy,
j
zj
plajon) = V@) [ WO (5, 5) dé+
Tj—1
Tj+1
HViept [ Vs (s, f) de,
z;

(oo, = BV ™ [ V31 (s, g) aé + iy,

o) = ¥ el [ VO (6 ) de e
o ta T a
vmm-l ot v2<x>—x/k(t).

First of all, take into account, that since

1ot / Vi (£u(6). 5 ) de -

Tit(-n

= (—D)*VI () ZL(xj,u) + Y (x5, u) — wjj(_1)a,
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where Y (z,u), Zi(z,u),j =2 —a, 3—a,..N+1—a, a = 1,2 are the
solutions of the initial value problems

dYOZ(x,u) _ Zgl(a:,u) dZZY(x,u) . (x,YO{(a:,u), Z&(x,u)) 7

dx k(z) dzx k()
Tj-240 < T < Tj—lta (10)

) . du
Yi(Tjqp(—1)es ) = Ujp(—1ye,  Zo(Tjp—1ye,u) = k(z )d:r

Y
T=T ) (~1)a

and VI (z) = (=1)*"1V{ () are the solutions of the initial value problems
dvi(z) 1
dr k()
Vi(Tjp(—1)e) =0, j=2-a,3-a,..N+1l-a, a=12

Obviously, the right-hand side of the ETDS can be written as

Tj—24+a < T < Tj-14a; (11)

(o) = L3 0 [ Zia + (e s |
Tj,u) = — - T (zj,u - , ,
¥ J h] —~ J Vdj (Z'])
(0 0) = - [ 28 (o, u) + 2@ U1 (13)
To,U) = — R
©\Zo, hO 2 05 ‘/QO(LUO) M1,
1 YN($N u) —UN_1 :|
u) = — |—ZN (zn, 1 ’ + izl - 14
o) = oo | =2 o) 4 T 1y
Therefore, to construct the ETDS (8), (9), (12)-(14) for j = 2 — a,3 —
a,...,N +1 — « it is necessary to solve initial value problems (10), (1 ) in the
forward direction (o = 1), and in the backward direction (o = 2). We will

solve then numerically by using one-step methods:

Yogm)j(.fU], u) = Uj+(_1)a + ( )a+1hj 14+a X

du o
x @, (xj+(1)a,uj+(1)a, <kd$> o (1) hy,i 1+a> ,  (15)
] — «

. d
24 (25, u) = (k “) O
10(

dzr

du o

X g <1‘j+(1)%uj+(1)a> <kd> ,(=1) i hj— 1+a> ) (16)
T/ (-1

V(m)J( _( )a+1h’j l+aq)3( j+(—1)a,0,( )a+1h] 1+a) (17)

o (@)
where @4 (xz,u,v, h), P (x,u,v,h), P (z,u,h) are increment functions,

(), -w
dx (1) dx

Z{mi (xj,u) approximates the values Zg[(mj, u) with an order of accuracy m,

)
T=Tj+ (-

Ya(m)](xj,u) and Vém)j(xj) approximate Yoz(xj,u) and Vg(mj), respectively,
with accuracy order m.
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If k(xz) and the right-hand side of the differential equation f(x,u,§) are
differentiated a sufficient number of times, then there exist expansions

Yo{ (Ij7 U) :Yogm” (xjv u)+
+ [(—1)a+1hj—1+a]m+1¢g¢(xj+(—1)a7u) + O(h;”ﬁra) (18)
Z3(wj,u) =Z5™ (@), u)+
+ (1) 1] " (g 1o w) + O(RTHR ), (19)
Vi (x5) =V (z))+
+ (=D 1) " (4 (1)0) + O(RTHE ). (20)

If in the ETDS (8), (9), (12)-(14) the exact solutions of the corresponding
initial value problems (10), (11) are approximated by numerical solutions, the
following truncated TDS of rank m is obtained:

(a(m)y@))m = _tp(m)(xjvy(m))a J=12,...,N -1, (21)

x

1 I I
hi[] (ag ya:O 51y ): _90( )(':U()ay( ))7

L/ (m) (m) (m) 7 - (22)
—— (WU + By ) = =™ @,y ™),
N
where
; 1oy, 7
) = [V @) L=z,
]
2 J
. 3 N o Yo (@), u) = ujp(—1)a)
" g w) = 113 (1) | 24 0) + (1) Lo,
a=1 Va ( ])
() 1| mo Y™ (o, u) — u
2 (.’IJ(), )_7 ZQ (IE(], >+ (m)0 +M B
o V"™ ()
()N
7 1 m Y, TN, U) — UN_
w(m)(xN,u):f? ~ 2" (e, u) + L ((m];fN) AR
N Vi (xN)

We need the following assertion to prove the existence and uniqueness of a
solution to TDS (21), (22) and to establish its accuracy.

Lemma 1. Let

0<c <k(z)<ec; Vzel0,1], k(z)e@m™0,1],

f(z,u, ) € ]9 C™ ([wj—1, 5] X RQ).
Then one has the following estimates

o™ (a;) —ala;)| < MIA™, j =12, N, (23)
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So(m) (xjv ’LL) - (P(xj, u) =

_ {h;.n+1 k(o) (w0 - k) ) - W“Lw} "

AR e
+Oo|L—L ), j=1,2.. N1,
h;

o™ (20, 1) — (0, u) =
=M k@) (vl - R0 ) ]|+

r=x1

if m is odd and

o™ (25, u) — p(xj,u) =
— {h;ﬂ [k(x) (WK%U) - w{(x)k(x)zihﬂj)]zzxj+0}@+

hm+ 1 + hm+ 1
+O<J”1 , j=1,2,....,N—1,
hy

Sp(m)(:v()? U) - SO(Z'(), U) =
_ W

=58 [ (vt - oo )] o ().

So(m) (xNv u) - SO(xNv u) =
hiy

hy [km (w{V (2, u) — 97 <w>k<l‘>jz>]m e <h§; 1> |

if m is even.

Proof. The estimate (23) follows from relation (20). Actually,

VI () — VI )
o) alay) = ML = 007
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Let us prove (24)-(29). Note that

2

o™ (g u) = plajw) =Bt Y (=1)° {Zém)j(ij) — Zl(wju)+
o o=t , (30)
+(=1)* Yo' (2, u) — Yit(=1> Vi (zj,u) — Ujp(—1)e
V™I () Vi (z))

_ 1 .
@™ (20, u) — @(0,u) {Zé (0, u) — 23 (w0, u) +

)
Vi @) — w1 YP(wo,u) — w (31)
ARNET Viwo) [
_ 1 m
oM (an,u) — plen,u) = o { 2" (@xu) + 2 o w) +

m 32
+Y1( )N(xN,u) —uN-1 YIN(LUN,U) —uN_1 (32)

Vl(m)N(xN) VN (zn)

From Lemma 3.4 (see [4, p.102] ) and the equalities

j h'fl et
V) =3 o O 0
] — [e3

o du
Y (), u) = ujp(—1pe = (=1)**hy :

j=lta oo +O(hj_14a);

T=Tjq(~1)e

=2—-a,3—qa,...N+1—a, a=1,2

we obtain

259 (g, 0) - Zi (x5, u) =

«

« m 77—+« m (33)
= —[(= 1)y 10l ™ T (@ e, u) + O(h™2.,),
y ()i (75, u) = Ujp(—1)e B Yo{(mj,u).— Ui (-1 _ IRERITES I S
Vogm)J ($3) Vg (.fL']) j—1+o
- . d 34
<[k (20 - H @ ) v e
T o= e
+O(ML ), j=2-a,3-a,.,N+1-0a, a=1.2
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Then the equalities (30)-(32) are reduced to estimates (25), (26), and

m 1 m
30( )($]‘,’LL) - @(‘rjau) = hij { hj—i—JElX

<[k (7 @~ R ) ] -

(35)
i i) (Wl - H@k@ )~ H) } '

m+2 m+2
h;j ’

for odd m, and to (28), (29), and

(36)

for even m.
Since

[km <w{<w,u> - ¢5<x>k<x)$>}m_mj_l B

du

= [se) (vt - wﬁx)k(a:)dxﬂx:xj +O(hy),

O (xj-1,u) = $(aj,u) + O(hy),
it follows from (35) and (36) that the estimates (24) and (27) hold.

On the basis of the above-obtained results, one can prove the following as-
sertion.

Theorem 2. Let the assumptions of Theorem 1 and Lemma 1 hold. Then

there exists an hg > 0 such that for all {hj}j.vzl with |h| = max h; < hy and
I<j<N

TDS (21), (22) has a unique solution, whose accuracy is characterized by the
estimate

9 1/2

< M|n|™,

*

SR

0127“:]}7,

dy (™ ok du

k

(m) _
Hy Y dx dzx

1727&)h

0,2,6m

20
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where
1/2
N
||u||0,2,éh = Zhjug? )
=0
dy™ (m) (m);j (m)
k’(l‘) dx :ajfl+ay5¢7j_1+a + Za (l‘ja Yy ) +
m)i (. . (m)) _ , (")
Yo (25,y Yii( 1ya
+(—1)° ( J (m)j) Jj+(—1) Ca=1,2,
Va " ()
j=1,2,...,N—1,
dy(™) " dy'™ m
(z) . = 51y(() ), k(x) = = —52%(\] )+ po,
T=x0 T=TN

and M is a constant independent of |h|.

Proof. Let us consider the operators

_i ( gm)uzp — ﬁluo) s ] = 07

ho
B}(Lm)uj = —(@™uz)zy, §=1,2,.,N—1, (37)
1 m .
a(ag\, )Uj,N+ﬁ2UN>7 ]:Na
1 7 - .
_fTO <a§ )ul’,O - BIUO> B gp(m)(x()’u)’ J=0,
AT (@) =4 —(0™ug)s g — o™ (5, u), =12 N =1, (38)

1 . . )
<a§\7 )uij‘f‘ﬁQUN) _SO( )(xN7u>7 J= N7
hn

which is defined in the finite-dimensional space of grid functions H (&) with
the scalar products

(,0)g, = Y MEuE)v(E) + hougvo + Anunon,

£ewy,
(u,v)r = D h(©uE)v(€), & =dbnUay,
gew;
and the norms
1/2 1/2
g, = ()’ Nullgger = (wu) 2,
9 9 1/2 () 1/2
Il 2z, = (1l 20, + Nualngr) o Nullggm = (BY™wu)
Because (see proof of Theorem 2 in [9])
1
d R R 2
(ol — el o)u =), < —ar [ {51000 - o) — ula) + olol} an.
0

ol
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Vi)
Vi (z;)

Vi (n)
Vi (z;)

a(n) = u(z;) + u(zj_1) , xjo1 <n <y,

then due to (23)-(29) 3hp > 0 such that V{hj}j.vzl with |h| = max hj < hg
<j<

the following estimation holds:

0<é <a™(z) Voe oF,
<cp(m) (x,u) — go(m) (x,v),u— v> . <o.
Wh

Then, from the Green’s first difference formula [3, p.26]) and inequality (see |3,
p-39])

nllulloos, < (3 1)y + Arug + Bauy, 1 >0, (39)

it follows that

(4 @) = AP @) u =), = () (a = 0a)1)
+ 81 (ug — v0)? + o (uy — vn)* —

— (¢ @) = oM@ v) =) > fu— vl =
- (aw) (ug — v2)2, 1)@ + B (uo — vo)® + Ba (uy — vy)* >

> min {é, 1} [((ug—g — vz)?, 1)w; + B1(ug — v0)? + B2(un — vn)?| >

> min{ér, 1}y flu—v|g e, - (40)

Therefore, if |h| < hg, then A;Im) (x,u) is strongly monotone operator, and
the TDS (21), (22) has a unique solution y(™ (z),z € &y, (see [2, p.461]).

For error z(z) = y™ (z) — u(z),z € &y, of difference scheme (21), (22) will
have a problem

~ |[a™ @)z @) - (¢ ™) - o @) =

T

~ B (41)
= %0( )(33>U) —o(z,u) + [(a(m)(ﬂﬁ) - a(:ﬂ)) ugz(:n)]x, T € Oy,
1 = _ _
" T ag 22,0 — 51Z0) - (sO(m)(on,y(m)) - SO(m)(ﬂﬁo,U)) =
(42)
m 1 m
= ¢ (w0, u) = plao,w) + 1= (af” — a1) e,
1 m m m m
— (ag\; )Zz,N - 5221\/) - (90( Ny, y™) — ol )(CEN,U)) =
" (13)

_ 1 -
— ¢(m)(xN,u) — ey, u) — — (agv ) _ aN) Uz, N-
N
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From (41)-(43) we obtain
(A7 @y ™) = AP @), 2) =
= (((a"™ = a) ua); ,2),, — (aﬁ?“) - @N) uz NZN+ (44)
+ (agﬁo - CL1> Uz 020 + (Qp(m) (l’, u) - QD(IE, u)a Z)Lf)h :

Using the relations (23)-(29), Cauchy-Bunyakovsky-Schwartz inequality, for-
mula of summation by parts (see [3, p.25]), evaluate the expression on the
right-hand side equality (44)

(6 ) ), ), (o~ o (67 o) =

= (6 =) ) o ol 1

M |h[™
‘0,2,@;{ < & HZHB,(:_VL) )

020f S (45)

< MI[h™ ||z

(go(m)(:c,u) _ SO(JZU)72> . <M |h|m+1 ||Zi‘”0,2,®;f <
—_— ||z ™)
> él B;L )

if m is odd;

” n M |h]™
(¢ @w) = ol w).2) < MI™ el zp < =2 lelpgm . (47

if m is even.
Taking into account the relations (40), (44)-(47) is the true estimation

2 (M) )y 4 (1) m )
el < (A7 (@) = A @), 2) < MR 2] o

Hence it follows that ||z|| ;om) < M |h|™. So on the basis of equivalence of norms
h

Il 2.6, H'”B}(m), we obtain
1

HZHLQ,i;h <M ’h’m- (48)

Due to (23), (48), (33), (34), (15)-(17) we have
dz dz
(3),

< B |0] < M A", ’(%) ‘smzmsmhrm (19)
L) N
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dz m
(45) ) < ot~
J

|25 (™) 4+ (1) . -

(m)
ya‘j,?—l—&—a

+ [aj-1+al ‘Z:E’J—l-&-a‘ +

chm)j (aj‘j, u) - Uj+(_1)a

_Z(gm)j(xjvu) - <_1)a (m)](

;)
+ 1 Z8 (), u) — Z5 (g, u)| +

Y™ (25,0) = uji(pya - Yd(mj,0) —ujpcaye
Va™ () Va(ay)
< M|h™+

m dy(m) a
+ 2 (f'fﬁ(l)“’ e (k da ) ,(=1) +1hj1+a> -
JH(=1e

du o
—d <.’Bj+(_1)a,u]'+(_1)a, <kdx> e 7(—1) +1hj_1+a>
j — «@

a=1,2 j=1,2..,N-1,

+

)

where
P h
Because
By ( 0) = ——, &y 00)—L
W w0 = pay SR =y

so using the Theorem on finite increments, we obtain

0P (z,u,v,h) 0P (z,u,v,h)

O (z,u,v,h) = ®(x,u,v,0) + h 5 =h 5 , he(0,h).
Then
<k:dz) < M |h|™ +
dx ) ;

(m) dy(™) a+17,
oo <xj+(—1)‘*? jH(—1) (k ydx )j+(—1)a ) (_1) Jr1hj—1—«—04>

+ hj—1+a oh -

o (wj-i-(—l)a’uj-&-(—l)”" (k%)j-i-(—l)a ) (_1)a+1hj—1+a) -

o (50)

o4
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O*B(@j1(-1)2, Uit (- Bit(-1)2, Aj-1+a)
Ohou

< MIh[™ + hj_11a |2+ (1| +

(%)
4T/ j4 (1o

., a=12 j=12.,N—1,

O*®(@j1(-1)2, Uit (- Bi(-1)2, Aj-1+a)
Ohov

(+z)
dx /) i (~1)a

where @; = uj + 0z, 0 < 0; < 1,05 = (k%) +n; (kE),, 0<m; <1, j=
0,1,2,...,N.
Consistently applying inequalities (49), (50), we obtain

(kdz>
dx /
< M|h|m

|
dzllo s,
Therefore, taking into account (48), we will have ||z||i2@h < M |h|™

For solving the nonlinear TDS order of accuracy m (21), (22) apply the
iteration method.

+ hj—1+a

< M |n|™ + |n| My

<M|n™, j=0,1,2,..,N

Hence

Theorem 3. Let the conditions of Theorem 2 are satisfied. Then
’cp(m)(:c,u) — go(m)(x,v)’ < Llu—v|,
there exist an hg > 0 such that for all {hj}j.vzl with |h| < hg,
0<é <a™(z),

(Al(lm) (x,u) — A,(lm) (z,v),u — v) )

Wh

2
> Jlu = vl
the iteration method
B(m) y( y(
h T

mmn) _ ,,(mn—1)

i Agbm)(x’y(m,nfl)) =0, z€wp n=12.., (51)

S0 (g — Bt d2 BV (@) + V™ (a)
Bi + B2 + BBV (1)

, T Edp,
T J m)k T ol m)k
VM (@) =Y V™ @), i)=Y v )
k=1 k=j+1

~ -2
1+—L
T =70 =
0 ~v1 min {ép, 1}

converges and for the error we have

[y |}, < MOA™+q"), q= V=, (52)

1727(‘%}1

with
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where the operators B,(lm), Agm) (z,u) are determined by the formulas (37), (38),

dy(ﬁz,n) o dy(ﬁv,,n) A
k(x) . = 51y(() ), k(x) . = _/32y](\7 )+ o,
T=m0 T=TN
dy(m’n) (m,n) m)j m,n
k(x) dr :aj—l—&-ozyj’jfpra + Z& )i (Ija y( ’ )>
I::Ej

Ya(m)j x}?y(m,n) _ g, mn) .
F(=1)° ( J - ) J+(=1) Ca=12
Va " ()

)

j=1,2,..,N -1
and M 1is a constant independent of |h|,m,n.

Proof. According to Theorem 2 we have

* * *

y4Wh

o= _
] (53)

<

1,2,0n 1,2,0n

< M |h|™ + Hy(m’”) —ym

1727‘f"h .

o N ) .
Considering that the f(x,u,§) € AU1 C™([xj—1,2;] x R?), we obtain
]:

@ u) = o) < Llu—vl, @€ b

Using the Cauchy-Bunyakovsky-Schwartz inequality and (39) we get an esti-
mate

(Agm)(ﬂ:,u) - Agm)(%v)’w%h < e =l g Tl o +

e @) — oM@ o)

0,2,&m, <

<l = vll gom llwll o + Ll = vllo 0, 1@llg 5.5, <
1
L
= 1 ~min fer 1V - m m) -
B ( * Vlmin{61,1}> s ”HB; >Hw||B}<L )

We put w = (B,(lm))71 (Aém) (x,u) — Aém) (m,v)), then

m -1 m m
[(57) " (AP e - AP )| <
Bm
. " (54)
< 1+# lu — vl o
- ~v1min {é, 1} By

o6
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From (41), (54) it follows

<A§Lm)(x,U) B Agm)(x,v), (B}(Lm))—l (Al(lm)(x7u) _ A}(f”(;;;,v))) <

- 2
S = of2 oy <
—_—— u— || m
- ~1min {é, 1} By =

wp,
L ?
A7) A ()
< [ . B ‘
> <1+71m1n{51,1}) ( h (:Eyu) h (ZE,U),’LL ’U)Q

Therefore |3, p.353], the iteration method (51) converges in the space H om).
h

As the norms ||-[|1 .5, , Il yom) are equivalent, then the error can be estimated
1< h
as

[y =y < angn.

1 72’éh
In addition

dy (™) dy (™)
0 0

< M; Hy(m’n) —ytm

< Byl ) <

A b
1’27@}1

N

< B i) <

A M
1,2,wp

Yzj—1+a ~ Yzj-1+a

dy (™) dy (™) ()
_ < la'
(k dx ) (k dx 4_‘%_”“‘
j J

) =]+

a2 el e
+ % Y (g, ™)) — Y™ (xy,y(m))’ <

Vo™ J(%’))
sy,
+ ‘iZ&m)j(xj,u) — + Va(m)lj(x])’ %Yogm) (5, u) - X
oo, =

S M3 Hy(m’n) - y(m)Hl 25 5 ] = 1725 "'7N’
y4,Wh

o7
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dy(™m) " dy (™

k _
dx dzx

<y

0,2,wp,

1,2,6n
Hence we get that
Hy(ﬁm) m>H < Mqg". (55)

1,2,
From the inequality (53), (55) implies the following estimate (52).
From a practical point of view to find a solution TDS (21), (22) will eventu-
ally need to use an iteration method of Newton. Linearizing (21), (22) taking
into account the equality

_ (m)
. -1 1+a (m) dy
oM gy ™) =h; Z e |y D T gy

hZ+h
+O<7+1>, j=1,2,.,N—1,

T=Ljp(-1)e

hj

_ _ a dy™)
o™ (o, y™) = f <x1,y§ L=

1
) +—u1+0(h),
ho
T=I1

dy (™ 1
— h
. + ——p2+ O (hn),

So(m) (l'Na y(ﬁl)) = f TN-1, y](\;n)la h

T=TN-1

(m) hs oy
=Yz j—1ta T 0 (JFL]> )

j=2—-a,3—a,.. N+1—qa, a=1,2,

dy (™)
dx

T=Tj+(-1)

then modified Newton iteration method will be a form

1) dylmmn—1)
. of (1:] 17y]mn ) R ) _
g T=rj_1 vy(m,n)
2h; ou j=1

(a(m)Vyg(@m’n))i - +

(m,n—1)
8f <ZE l)y(mn 1)7@7 )

2hj 8u ]+1

m,n— (m,n—1)
n, of <:c] 1,3/]( Y, % >
+ —= i s VA v @.’”)4_
2h; o€ Ya,j

8 T (mn 1)7 M )

hj+1 f < 7+1 yj—i—l dx =z v (m n) _

2h, ¢ ™

— o (g gy mn=1)\ _ (07, (=) i=1,2,.,.N—1
@ ( Y ) ( Yz >Aj’ J > ’

€T,

_l’_

+

(56)

_l’_

o8
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1 m,n m,n m,n
P (a§ ’ )Vyi,o’ )~ 81y ))+

ho
of (wyf™ b 85 Y
T=T1 m,n
+ Vy, 7+
e (57
8f <$17y§m7n_1)7 dyT ) ( )
=11 mmn)
+ B¢ Vym’o =
_ 1 _
_ (m) (mmn—1)\ _ * (m,n) (m,n—1) . (m,n—1)
¥ <$07y ) h() (al x.0 /6 ) )
~ b ( (mn + B2 Vy )) +
h N N
m,n— 1 d (m,n—1)
<CCN 17?41(\[ 1 )7 Y dx Ile) ()
5 Vyn_ 1+
( N (58)
< TN— 173/5\7/7”11 1)7dyT > (mm)
T=TN-—-1 m,n)
85 vya’:,N -
_ 1 - _
_ () (m,n—1) L (m,n) (m,n—1) (m,n—1)
) = D gy =1,2, N =1, n=1,2, (59)
4. NUMERICAL EXAMPLES
Example 1. Let us consider boundary value problem
d2
5 =mep), we(01),
(60)
du(0) ™ du(1)
—u(0)=——=+1Inl - —u(l) = — —In2
o —u(0) \/3—&-11,5, o —u(l) V31 —In2,

with the exact solution

= e (3 (1))

Since f(z,u,&) = —m? exp(u) it follows that condition (5) is satisfied if we take
fo(x) = 0,¢(t) = w2 exp(t), g(z) = 1. Besides we have

[f (z,u,&) — f(x,v,m)] (u—v) = =% exp(fu+(1—0)v)(u—v)> <0, 0<6<1.

Thus, due to Theorem 1 the problem has a unique solution.

29
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For numerical solution of problem (60) on the equidistance grid wy, = {z; =
jh,j=0,1,...., N,h = 1/N} we use TDS of the sixth order of accuracy (m = 6)

g = =@y @), j=1,2... N1,

Yaej =
2
. (yg(f) - ﬁly86)> = = (20,99, (61)
2
- (yg(fj)v + /J’zyj(ﬁ)) = - (zn,y ),
with
2 (6)j
, Yo (zj,u) — uip(_1)e
(6) (. _p1 1) | 26y 1) 7 j+(=1)
o (g, u) = h C;( )" 2o (g, u) 4+ (—1) = ,
(6)0
2 Y. o, U) — U
30()(550771):% Z§6)O($0,u)+ 2 <0h ) 1+,u1 ’
(6)N
2 Y, —Uun_
90(6)($N7u):ﬁ _Z§6)N($N,U)+ - (xN’hU) e tH2 |
ﬁlzl) 52:17 L_ln]_’{)’ M2:\/§7T+11'12,

m=g

and Y%’ (z,u), z% (x,u) are numerical solutions of initial value problems

avd (w,u) dZ3, (,u) - <
T:Zé (CC,U), T:_f ($7Ydj (J,’,’U,),Z(jl (JI,U)),
Tj—24a < T < Tj—2+a, (62)

Ya (@jenerw) = ey 2o (@pnu) = 2 :
T=Tji(-1)e

j=2-a,3—a,..N+1—a, a=12

computed by a explicit Runge-Kutta method of the sixth-order of accuracy (see
Table 6.1 [10, p.189)).

To determine the solution of the difference scheme (61) the modified Newton
method (56)-(59) will be used. System linear algebraic equations (56)-(58) for
the unknowns Vy(©™) (z), = € &), we solved by Gaussian elimination for linear
system with a tridiagonal matrix.

Numerical results are given in Table 1. To evaluate the convergence rate in
practice, we introduced the following quantities
. 12O .,

;D =logy Hz(i

*

er = Hz(ﬁ)

— Hy<6> _

1,2,00p 1,2,0p 6) Hi?,a}h/z

In the following example the implementation of the TDS uses the h — h/2 a
posteriori estimation to achieve a given accuracy FPS. The comparison with
the true error Er shows that this accuracy is actually achieved.
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TABL. 1. Numerical results for problem (60).

N Er p
16 0,2241-107°

32 0,3522-1077 |6
64 0,5514-107° |6
128 0,8642-1071 |6

Example 2. Let us consider the boundary value problem

d?u du
@ = 3U@, x € (0, 1),

du(0

du(0) = —1,5/ cosh?(0, 75), (63)
dx

du(1
- l:l; ) —u(l)=1,5/ coshQ(O, 75) + tanh(0, 75).
1-2
The exact solution is u(x) = tanh 3(4m)

The numerical results which have been obtained for difference scheme of
order of accuracy 6 are given in Table 2

TABL. 2. Numerical results for problem (63).

EPS N Er

1074 2048 0,1323-107°
1076 2048 0,4816 - 10~
108 4096 0,4078 - 107°
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INTERPOLATING FUNCTIONAL POLYNOMIAL
FOR THE APPROXIMATE SOLUTION OF
THE BOUNDARY VALUE PROBLEM

VOLODYMYR MAKAROV, IGOR DEMKIV

PE3IOME. ¥ pobori, 3acTocoByioun (yHKIiOHAIBEMI moinoM Heorona mo-
OymoBaHUI HA KOHTHHYAJIbHIM MHOXKWHI BY3JiB, OyIy€TbCH IHTEPITOISAITHIH
dyHKIIOHATHHIIT TOIHOM N-T0 MOPSIAKY s HAOJIMIKEHHST 10 PO3B’SI3KY Kpa-
0BO1 33724l IPYroro mopaaKy.

ABsTRACT. Interpolating functional polynomial of order for the approxima-
tion to the solution of the boundary value problem of the second order is
constructed and justified in this paper. This is done using Newton functional
polynomial constructed on a continual set of knots.

1. INTRODUCTION
Many authors investigated the generalization of the classical theory of one
variable functions interpolation to the case of nonlinear functionals and opera-
tors (see for example [1, 2, 3,4, 5, 6, 7, 8] ). In particular, in [9] it is suggested
to seek for Newton-type interpolants in the class of functional polynomials of
the following form

Bu(2(-)) = Ko+

+sz:/01 /211/:1 K8(7S)f[1[$(2i) —xi—1(z)] dzs . .. dz, (1)

1

where z; (z) € Q[0,1], i = 0,1,... are arbitrary, fixed elements from the space
Q][0, 1]. Which is a space of piecewise continuous on the interval [0, 1] functions
with a finite number of discontinuity points of the first kind. For determination
of the kernels Ko, K5 (Z'®), s = 1,n a following continual set of knots

n

SU” (Z,g”> =20 (Z) +ZIH(Z§Z) [xz (Z) — Xj—1 (Z)], z € [0, 1}, (2)
€= (61,&,....&) €Uy =
={Z"=(z1,29,...,2n) 1 0< 21 <29 < ... <z, <1},

was introduced and continual interpolation conditions of the form

Key words. Newton’s functional polynomial, continual set of nodes, boundary value prob-
lem, interpolating functional polynomial.
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(e (€)-F (e (6) veeo,

were set, where H (z) is a Heaviside function.

In the above-mentioned work, it was shown that the necessary conditions for
polynomial (1) to be interpolating on the continual knots (2) are the determi-
nation of its kernels according to the following formulas

Ko=F(z0()),

Ky () = (=1)° [ [ [ (z0) — i1 (20)] 7 aaa
=1 3

(2 (%)

s=1,n.

To ensure sufficient condition for polynomial P, (z (+)) to be interpolating on
continual knots (2) the following substitution rules satisfaction

opP
- - p+1 (. sp+l _
e ol LA CCA) | .
oP Tpi1 (2p) — xp—1 (2p) 3
= | o F (P (-, 2 } pi1 (%) —p-1(z) ()
[821822...8zp (I ( : >) Zpp1=zp P (zp) — xp—1(2p)
p=Ln-1

were required.

The purpose of this paper is to develop and study the interpolating functional
polynomial for approximation of the solution of the second order boundary
value problem.

2. STATEMENT OF THE PROBLEM
One must apply the Newton type functional polynomial of the form (1),
(2) and construct the approximation to the solution of the following boundary
value problem.

U'(2:q()) —q(@)U (239 () = =f (), x€(0,1), (4)
U(0;q()) =0, U(lq())=0. (5)

3. SOLUTION OF THE PROBLEM
When the function f (x) is fixed, one can consider solution of the problem

(4), (5) as non-linear operator with respect to ¢ (). We introduce the following
continual interpolating knots

(5 €) =Y @), )

where
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and the frame of these knots are
( ) *i =0
i(x)=—, 1=0,n.
4 n

Let us write the following n— degree interpolating functional polynomial of
Newton type

Un(l’?(l(‘)):g/ol/zjw-/zj1Ki($§Q(‘))li[1n(Q<Zp)_Z>d7p7 (8)

where '
81

WU (ﬂ‘] (333 z ))> (9)

Ki(z;q()) = (1)’

i=1,n, Ko(z;q())=U(x;0).

According to Theorem 2.1 from [9] the necessary and sufficient condition for
polynomial (8), (9) to be interpolating for solution of the boundary problem
(4), (5) on a continual set of interpolating knots (6), (7), i.e. the following
conditions were met

— — —
U(wa (€)= Un(ma" (- €"). vE e  (0)

is the following substitution rules to be applicable
€i—€i1)> ’ (11)

[351U <x;qi <'7 gi))Li:&_l N ;021(] <1’;qi <'; ?z
1=2,n.

The following statement is fulfilled.

Lemma 1. Let the solution of boundary value problem (4), (5) be considered
as non-linear operator with respect to q(x). Then it satisfies the substitution

rule (11).
Proof. Consider the following boundary problem

ot (2 - - (E) <,
x € (0,1),

U(O;qi <?’)) =0, U(l;qi (?’)) =0. (13)

As consequences from (12), (13) we have following two boundary value prob-
lems with the same differential operator

2 . —.
o o () -
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I ()
N idffl (e =6-)U (a4’ (- €)) b=ti1
{35—1 U (s 5 ?i>)]£¢=si1 _— " )
2 ' .
i [t e )] -
_;:1711 H (@ =&)le,,_, a;,_lU <-’L‘; q ( < &:&1)) = (16)

2 d

51’&-1)) ’

N ﬁd&'—lH(x —&-)U <a:;qi ('7 ¢
— 0. (17)

o YA
Ulzq (¢
0&i—1 (x I ( ¢ fifi—1>> =0,1

Note that right hand sides of their differential equations differ only by numer-
ical multiplier. Comparison of boundary value problems (14), (15) and (16),
(17) proves the lemma.

To construct the interpolant (8), (9) one must find the solution of the prob-
lems (12), (13) at ¢ = 0, n. Then we have

1
U (230) = Ko (219 () = /0 Go (x.€) £ (€) de,

v(sd (7)) = [ Gwor@e i=Tn

where G; (x,€), i = 0,n are Green’s functions of the corresponding boundary
value problems

GO(x?g)_{é(l—w)v E<z <,
1 Vii(z) Vo (§), 0<z<¢,
Gi (.’L’,é) B Vl,i (1) { ‘/271‘ (x) Vl,z‘ (f), E<zr <.

Here Vi ; (z), Vo, (x) are solutions of the following Cauchy problems:

PV (2) =1
d@_an(x—gp)Vm(@:o, re(0,1), a=1%
p:
dVi; (0) dVa; (1)

V(=0 = V(1) =0
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It is quite simple to find functions Vi ; (x), Va; () in explicit form because
the differential equations which they satisfy have a piecewise constant coeffi-
cient. In particular at ¢ = 1 we obtain

x, ngggla
Vi () = \/ﬁsinh\/15(1‘—51)+xcosh\/15(x—§1), &L <z<1,
1
Vnsinh — (1 — ), &<z <1,
Var () = v e
fcosh%(lffl)(q:ffl)Jr\/ﬁsth, 0<z<&.

4. CONCLUSIONS
Thus, Newton type interpolating functional polynomial of n—degree of form
(8), (9) was obtained. This polynomial will be the approximation to the solution
of the boundary value problem (4), (5).
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FD-METHOD FOR SOLVING THE STURM-LIOUVILLE
PROBLEM WITH POTENTIAL THAT IS THE DERIVATIVE
OF A FUNCTION OF BOUNDED VARIATION

VOLODYMYR MAKAROV, NATALIIA ROMANIUK, IGOR LAZURCHAK

PE3IOME. Posrimsmaersca ckanspaa 3amagda [ltypma-Jliysimisg 3 moremmia-
JIOM, IO € TIOXiAHOIO Bif dyHKIiT 0OMerkeHol Bapialil, Ta KpalloOBIMH yMOBaMU
Hipixme. Bukmanena ocuosa peasizamnii FD-meTony y Bumagky, kom GyHKIGS
G (z), mo nabymxkae norennian q (T), € TOTOXKHIM HyJI€M, a TAKOXK Yy 3arajibHo-
My BUMAJKy. BcTaHoOBIIEHI JOCTATHI YMOBH CyNepPEKCITOHEHIATHHOT 301K HOCTI
FD-meTony Ta OmiHKH #I0TO TOYHOCTI, 9Ki € 3HAYHUM IIOCUJICHHAM Ta y3araJib-
HEHHSIM BIAIIOBIIHUX Pe3yJIbTaTiB, OTPUMAHHX B MIOIEPETHIX poboTax.

ABSTRACT. We consider a scalar Sturm-Liouville problem with the Dirichlet
boundary conditions where the potential ¢ (z) is assumed to be a derivative
of the function with bounded variation. The application of the abstract FD-
method scheme to such eigenvalue problem is studied in the scope of this
work. In addition to the general case when the function g (z) approximating
g (z) is assumed to be arbitrary we study the case when § (z) is equal to zero
everywhere. We obtain new sufficient conditions for the super-exponential
convergence of the FD-method and its accuracy estimates which essentially
generalize similar results obtained in the earlier works.

MSC 2010: 65L15, 65120, 34B09, 34B24, 34116, 341.20.

1. INTRODUCTION
Most of the current technological and industrial advancements in electronics
rely on the increasingly rigorous quantum-mechanical models. The models
where the discontinuities of the potential are essential to represent the modelled
phenomena and can not be disregarded. Mathematically such models can be
represented as follows (the one particle, many center Hamiltonian):

H=-A+) 7aba(), (1)

aeR

where A is a Laplace operator in L? (Rd), d stands for the dimension of the
configuration space, X is a discrete, countable at most, subset in R?, 6, (+) is
a Dirac delta function at the point a (i.e. a single measure concentrated at
a) (see [1]). H describes the energy of the quantum mechanical particle which
moves under the influence of an "interaction potential" created by the "point
source" forces 74, located at a. We will denote this function as ¢ (z) and refer
to it as Dirac delta function (DDF').

Key words. Sturm-Liouville problem, Dirac delta function potential, distribution potential,
functional-discrete method, super-exponential convergence rate.
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Dirac delta function (DDF) potentials had been used for modelling of atomic
and molecular systems including atomic lattices, quantum heterostructures,
semiconductors, organic fluorescent materials, solar cells etc. (see [1, 2, 3] and
citations of them). Among recent applications of (1) one may mention the
novel structure of quantum waveguide [2] based on the modelling with the
same potential as in (1) having the finite numbers of delta functions. This
type of potentials are called Dirac comb by the authors of [2]. History of the
studies, mathematical properties and the visualization for some of the models
involving such discontinuous potentials as well as various physical applications
are summarized in [3].

Linear Sturm-Liouville problem with distribution potentials are extensively
studied theoretically (for example see [4]). The authors of [5] derive the to-
tal regularized trace formula of differential Sturm-Liouville operators on a fi-
nite closed interval with singular potentials ¢(z) that are not locally integrable
functions and such that [ ¢(z)dz € BV,[0,] in the sense of distributions (the
definition of BV,[0, 7| will be given shortly). During the technical revision of
5] author of [6] found a simple proof for the case of potential ¢ (z) =6 (z — §).
Note that if ¢(z) € Ly then Theorem 1 from [5] contains the results of [7].
Independently from [5] the authors of [8] received the spectral asymptotic and
the trace formula on the interval [0,(] for the class of potentials, which may
contain finite of sum J-functions.

In the current paper we study an eigenvalue problem for the Hamiltonian
having the form (1) with d =1, X = {a}, a € (0,1), which is stated as follows:

d?u(x)
e +A—q(z))u(x) =0, z € (0,1), u(0) =0, u(l) =0, (2)
where
_do(x)

and o(z) is a function of bounded variation.
We start by summarizing some useful facts from the real analysis. Since o(x)
is the function of bounded variation, the following representation is valid:

o(x) = h(z) + ¢ (x) + x(2),

with h(z), ¥(x), x(z) being the jump function, the absolutely continuous func-
tion and the singular function correspondingly (see. [9], p.347). The singular
part x(z) has at most countable number of discontinuities which coincide with
those of the jump function h(x). Let us enumerate these discontinuity points in
the ascending order and denote them as ), € (0,1), p=1,2,..., 21 <22 < ...,
then h(z) = >, vH (z — xp), where ~, are real numbers, H(z) is the Heavi-
side function. From now on we assume that o(z) belongs to the class BV,[0, 1].
That is the class of functions with bounded variation and which are right con-
tinuous at any point x € (0,1) and continuous at the endpoints x = 0 and
=1

An essential role in the proof of FD-method’s convergence rely on the fol-
lowing result:
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Theorem 1. ([10], p.481) Let o(x) € BV,[0,1] and a function f(z) be contin-
uous on the segment [0, 1], then the following inequality holds true:

1

/ f(z)do(z)| < max [f(@)] [l
J xz€(0,1]
x);0,1}.

}

Due to the importance of the model there exist a large number of software
packages for the numerical solution of the singular scalar Sturm-Liouville prob-
lems. Most notable FORTRAN packages are SLO2F [11] and SLEDGE [12] im-
plementing the Pruess method, SLEIGN [13, 14] and SLEIGN2 [15] - shooting
method based on the Priifer transformation. MATSLISE package [16] imple-
ments the Constant Perturbation Methods (CPM) and the Line Perturbation
Methods (LPM) in MATLAB.

The code of SLEIGN2 became a considerable improvement of SLEIGN code.
It covers more problem cases than other software packages, existent at that
moment. Among other things the developers of SLEIGN2 expand the list of
singular self-adjoint problems compatible with the package. Such list along with
problem’s classification, numerical examples and the package documentation
can be found in [15]. The mentioned FORTRAN codes is available as a part
of SLTSTPAK package (see [17]). Its implementation details as well as 60 test
problem application examples are given [18]. Taking in to account the joint
interest from different application areas, and the lack of common interface for
the mentioned software packages the developers (V. Ledoux and rest of authors)
created MATSLISE. It offers an interactive graphical user interface for various
Sturm-Liouville problem solvers and the ability to control the parameters of the
solver on-the-fly. Aside of that it contains some useful solution visualization
tools (see [19]).

In spite of the large amount of implementations none of the mentioned pack-
ages can handle DDF potentials directly.

The purpose of the current work is to study, justify and propose algo-
rithm implementation of the FD-method for eigenvalue problem for the Sturm-
Liouville operator (2) with the potential being the derivative of the function
with bounded variation such as

where ||ol|, = var {o(

k
q(x) =Y W (x—w) +¢' (), 2, € (0,1), p=T,k.

p=1
The results, presented here, extends the results reported in [20] in the linear
case (N (u) = 0), where the potential g (z) have only one singularity (k = 1).
Aside of that the current work contains the generalization of section 5 from
[21], where the FD-method (with g(x) = 0) considered in application to (2)

with ¢ (z) = aé (z — ), a > 0.

In section 2 we apply the simplest version of the FD-method, when the func-
tion ¢ (=), approximating the potential ¢ (x), is zero everywhere. The necessary
conditions of the applied method’s convergence is given. We show that under
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such conditions the method will converge super-exponentially. The practical
implications of the technique proposed here lie in the fact that theoretical es-
timates on the lowest eigenvalue number for which the method is justified to
converge, are more close to the number obtained experimentally. It may be
considered as an improvement of the similar conditions from theorem 1 [8]. In
the end of the section we present some numerical experiments to justify our
theoretical results. The algorithm of general FD-method scheme (g(z) # 0)
along with its justification is given in section 3. The results of a numerical
calculation presented in the end of the section illustrate the effectiveness of the
proposed algorithm.

2. FD-METHOD FOR ¢(z) =0
To find the approximate solution of the problem (2) we shall apply the FD-
method of the m-th rank with the function g(z) = 0. Detailed justification for
the choice of the FD-method scheme used here will be given in section 3 dealing
with the general case g(x) # 0. The m-th rank approximate solution will be
sought in the form of a finite sum

3=0 7=0

where every summand in (3) is obtained from the solution of the recurrent
sequence of problems

2, (7+1)
Wﬂq%) G+D) Z)\(JH PDul® (1) + q()ul) (),
X

, , 4
uITY0) =0, u¥TV (1) =0, 2 €(0,1), j=0,1,...,m—1, @)

ul® = V2sin(nrz), A = (n7)?,
supplied by the solvability condition

1

1
AGHD — Z)\(ﬁ-l p)/u ul®( dx+/q uld) (2) ul® (z)dx
0

0

and the following orthogonality condition

1
/u I (2) w0 (2)dx = 0,
0

which guaranties the uniqueness of the solution to (4). Let us represent the
solution to (4) using the generalized Green’s function approach:
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uff (@) =

J
9n(@,€) [ AT () + q(ﬁ)uﬁf’(&)] dé =

o _

1

p=0
1
MG+ / gn (1, €)uP) (€)d + / gn(, €)u) ()do(€), (5)
0

0

J
p=0

1 1
A = [ @ @0 e = [ u (i do(o).
0 0

where
gn(2,€) = [(a: — H(z —Wfl)) cos(nmzx) s1;17(£223?)} sin(né)+
N sin(nmz)(€ — HW(fL — 1)) cos(nm) gt (2,6) + gna(®, ),
gna(2,€) = (x_H(x_jT)L) COS(NTL) i (e ) (6)
_i_sin(nﬂa:)(fr;H( —x)) cos(ne),
902(0:) = ~ 20T i),

The generalized Green’s function g,(z,§) has the following properties:
gn(xvg) = gn(é.vx)7 gn(xv‘f) = gn(l - Z, - g)v

1 1
/gn(x,f) sin(nma)dx = 0, /gn(m,ﬁ) sin(nm€)d¢ = 0,
0 0

1 1 7
|gn(2,6)| < —+5—5 <

™ 2(mn)?2 = 6mn’

Representation (5) along with the properties of Green function (7) and the
results of theorem 1 allows us to obtain the following recurrent system of in-

equalities
J
] < ot (3o e )
p=1

A < v2 o] o, (8

j=0,1,...,m—1.
One can deduce from (8) that

ul)

~—

) < 30, 3l 2]
p=0 h
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where My, = v/2||gnll lloll, < V25 o],
To obtain the solution of (8) we use the generating functions method (see
[22]). It gives us the following sequence of estimates for the solution

L) (25 — ! M

‘ G ‘ <2\f( o) (M) < \/i(j+1)\/7f7’

G| < 4 fof. D yar i < 2o, M)

AT ‘§4H ||v(23+2)|l(4M) < 2, (G+1)vmj’
] = 0, 1, ..., - ]-a

where (2j))! =2-4-...-25, (2j+ 1! =1-3-...-(25 4+ 1). These estimates
along with the assumptions regarding the form of o(z) yields the next result.
Theorem 2. Let o(x) € BV,[0,1] and the following condition holds true

def
Tn i 4M 4\/§”gn”oo HUH’U < 17 (9)

then the FD-method for the Sturm—Liouville problem (2) converges super-ezpo-
nentially. Moreover the error estimates satisfy (10), (11)

m ' m+1
[ -2 uw| < vor, . (o)
— (m+2)\/m(m+1)(1 —ry,)
m < 2o, '
M= Al = A = Y AT < v_n . 11
jz_; " ~ (m+1)/mm(1l —ry) (11)

This result is a considerable extension and generalization of the similar results
of section 5 from [21], as well as the results of theorem 1 from [8]. In order to
show that let us recall the similar result from [8]. If o(z) € BV,[0, 1] and

(el 1) (12

then the following representation (in the notation of current work) is valid

1 11
- [ [0@] dote) - [ [ hnier,edotendotes) + vi(o),
0 0 0

where

2
Fnl1,62) = 41223 (1—cos(2mng;)) sin(2mnés_i) x

y [i@(zwgg_g+(—1)i—1sgn<52—51> ,

o(t) = (1 —t)/2,
2 4.4 +467 |||, + 2]|o]f; des

(1)

w (s lloll,) - (13)

vna(0)| < ol
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At the same time, it follows from theorem 2 that
An = (mn)2 A + AP + RO, (14)

where

o _
e
53
&
s
2
—~
)
S~—
Y
2
&

1
2
A= [ [0 @] doto), A=
0
1

uD () = / gn (2, €Y (€)dor (),
0

while the residual term Rg) satisfies

2|oll, 75
RO < T lv'n 15
‘ " ‘_ 3V2r(1l—1y) (15)

as long as (9) holds. To make the comparison of the estimates (13) and (15)
more convenient, we employ the estimate for r,

d 1 1 d
i 2l ol < 42 |+ 5o, <

2(mn)?
142
3mn
Then the estimate (15) could be replaced by the estimate

<

def
||O—H’U = ’rn72'

2||0'Hv7“7211 def
<—— = Ym(n,|ol,), 16
= 37 (L—rn1) Ym (1, ]lo][,) (16)

n

‘ R®)

valid for all n such that

2v/2 s V2 def
n>— |U||v+\/||0||v+4||UHv = M. (17)

By comparing (12) and (17) it is easy to see that

ny > N, Vo], € [0,00), | ﬁim (np — Ny ) = 00,
g ’U_>
i.e. the condition (17) is less strict than the condition (12). Let us now compare
estimates (16) and (13) for the residual terms for n > np, when both estimates
make sense. For the clarity we remove the second summand from
1 1

A = [u0@) [ guar(a, 00 (€ do()do(e)+

0

0
1 1
+ / ul® () / gno(z, €)ul0(€)do (€)do (z) = An%)l +An%;
0 0

(see (6)) and combine it with R One can observe, afterwards, that

v, 5(0) = RY + A7),
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which after taking the norm of both sides lead us to the estimate for

/7

2o, r2
(o] < | R lollris . loll der -

2 S Sm(l . ’f'n71) + (TLTF) - Vm( 7||0-Hv)‘

Using the elementary computations we see that

n

W, llolly,) > Fm(n, lloll,), Yell, = 0.

Consequently, we have shown that the second-rank FD-method could be more

efficient than the approach suggested in [21] from the accuracy standpoint.
Example 2.1. Let us consider problem (2) with the potential ¢ (z) =

d(x —a) for g(x) = 0, where a is a real number and a € (0,1). The algo-

rithm of FD method described above is ezactly realizable (see [23]) in this case.
Let us denote

1
(@) = ga (60), 1) = [ ga (o) L (0)dt 5= 1.2
0

By applying and the so-called sifting or sampling property for function f €
C*[0,1], which reads as

1
/f (x —a)dz = f(a), a€(0,1)
0

to (5) we obtain the following formulas for approximations of eigenvalues:

12

AP = [uf? (@), AP = [ <°>< )| 1o (@),
A9 = [ @) (- [0 @] 5@+ @)
A = [ @) ([ >—3[u£?> @] b@n @+ @),
AP = [ @) (- [0 @] @) +

+ [ul® ]4(410 @) + 211 (@)]) -

6 [l (@] o (@) 1 (a) + o (a))")

By setting a = 12 we obtain
R

75



VOLODYMYR MAKAROV, NATALITA ROMANIUK, IGOR LAZURCHAK

1 (3\/5 — 4) cos (ﬂ'nﬂ) + 1+

h (2 - 12n272
n (\/5 — 1) sin (Wnﬂ) n 3 cos (Wnﬁ) -1
4n3m3 16 nimrd ’
1 B (2\[ — 3) sin (ﬂnﬂ) +1 (3\[ — 4) Ccos (ﬂnﬁ) +1
Iz <\/§> - 24n373 - 16n4mt -
n 3 (\/5 — 1) sin (7m\/§) n 5 cos (Wnﬂ) -1
16n57d 32 nbmb ’

1440n4 74 24nS7d

1Y) (30v2—43)cos (mnv2) =2 (2v2 —3) sin (7nv/2)
B(s)=- - ’

5 (3\/§ — 4) Cos (Wnﬂ) +1 n i (\@ — 1) sin (7m\/§)

+ 96 nOyb 32 n’r’ +
35 cos (wn\/i) -1
256 n8md '

From here we derive analytical expressions for the corrections to eigenvalues:
)\%1) =1 —cos (Wn\@) ,
2-1
A2) = V2 [2 sin (7TTL\/§) —sin (27m\/§)} +

" dn

+ N [4 COS (wn\/ﬁ) —cos (27m\f2> - 3} )

8n2m2

NON— [(27—15\/5) cos (mﬂ) - (36—24\/5) cos (27mﬂ) -

" 48n2n2
— (~13+9v2) cos (37nv2) — 4] +
+ \é;?)_ﬂ?} [—5 sin (wn\@) +4 sin (27Tn\/§> —sin (37m\/§>} —
15 cos <7m\/§> — 6 cos <27m\f2) + cos (37rnx/§> — 10} ,

|
16n4r

O [(33—26\@) sin (m\/i) - (102—74\@) sin (27m\/§) +

" 96n3md
+ (93—66\/5) sin (?mm/i) - (27 —19\@) sin (47”“/5)} *
T [(84v2-160) cos(mnv'2) + (260 — 168v2) cos (2mnv/2) +

128n4md

+ (—160 + 108x/§) cos (?mm/i) + (35 - 24\f2> cos (47rm/§) +25] -
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3 [—14sin <7m\/§> +14sin (27m\/§) _6sin (3m\f2)+

 32n57d

+ sin (47nv2) | (V2-1) + o (56 cos (nnv2) -

128n576

— 28 cos (27m\f2> + 8 cos (37771\/5) — cos <47m\/§> — 35} .

Symbolic and numerical computations were carried out using the computer
algebra system Maple 17.00 (where Digits=50). The exact values of first four
smallest eigenvalues are:

T & 11.02252382511, A5" ~ 41.34074086778,
57~ 89.10712301833, A" ~ 158.4324892201.

Numerical results are given in Table 1, where we show the absolute error of

m R
approximation to the eigenvalue [A\S* — A,|, n = 1,4 calculated by the FD-

method with the rank m =1,7.

TABL. 1. Convergence of FD-method for the eigenvalues A, n =1, 4.

m m m m
AT — Ay ST — Ag ST — A3 A§T — g
1.1529194 1.8623232 2.8068340 - 10~ | 5.1881880 - 10!
1.13335918-10~! | 4.1070777 - 10~3 | 3.9480386 - 10~ | 8.1111546 - 103
7.74223271-1073 | 5.4659978 - 1073 | 3.5908153 - 10~° | 2.0458308 - 10~°
2.41326302-10* | 2.2361009 - 10~ | 2.7688079 - 106 | 4.7899759 - 10~6
1.80327662-107° | 1.7567730 - 10~° | 2.2495782-10~% | 9.7346306 - 108
2.80813804-10~6 | 2.7903081 - 10~% | 1.7826757 - 109 | 1.1955865 - 10~?
8.40809762-10~% | 8.3989549 - 10~% | 5.1188146-10~'! | 1.0727859.10—10
1.70181022-10~8 | 1.7004392 - 10~8 | 7.0536476-10"3 | 1.6910131-10~12

3

O Uk N~ O

One can see that the method converges for all eigenvalues including n = 1,
even though condition (9) of theorem 2 is satisfied for n > 2 only.

3. GENERAL SCHEME OF FD-METHOD (FOR ¢(z) # 0)
If condition (9) is not valid, one has to apply the general FD-method tech-
nique. We intend to consider this case in the present section. For this purpose
we embed problem (2) into the more general parametrical problem set

2ux
Fulnt, { va (@) -

(18)
[w ~ ¥ (@ }

€ (0,
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where v (z) is the absolutely continuous function while v () stands for its
piecewise linear approximation,

. Tp1 — T T — T
z) =1 (xp) ———— + ¢ (x o
D) =¥ (1) 22 e ()
) Y (Tps1) — ¢ (x
w/(x):¢1-7p: (P+) ( p)}
Lp+1 — Tp
x € [thprrl] y b= ﬂa
O=z0< 21 <... <2p41 = 1.
We look for the solution (18) in the form of series
=> uld (@), A, () =) APH. (19)
=0 §=0

We substitute expressions (19) into (18) and then compare the coefficients in
front of the equal powers of t. It gives us the following recurrence sequence of
boundary problems:

d2ug+1) (z)

IO () = T
va — ' (@) pulf ) () =
j ) (20)
-3 Aﬁf“ Vi (@) + [w )= @)] ul? (@) =
= —Fqgj'H) (), x €(0,1),
ud ™ (0) = (1) =0,
1
A = [l ) [ (0) )] ) () en
’ 1
/ w® () ud*D () de = 0, (22)
0
J=0,1,

Here the pair {)\ u? (m)} = { A\ (0),uy (0)} is the solution of the basic
problem

82u k A
— vaé (2 —2p) — ' () pul® () =0, 2 € (0,1),
=1

u( 7(10 ) =0,
The sufficient conditions for the convergence of the series for u,(z,t) and

An(t) at t = 1, where u, (z) = up (x,1), Ay = A\ (1),n = 1,2,..., will be
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presented later. But first we give the algorithmic implementation of the FD-
method.
Let us rewrite the problem (23) in the alternative form

2, (0)
w + {)\(0) - &’(x)} u® (z) =0,

z € (0,21) U (xy,29) U... U (24, 1), (24)
uld) (0) = u) (1) =0,
|:U7(7,0) (x)i| = - U%O) (xp + O) - U7(7,0) (xp - O) = 07
@) a0 a0 o b
dx dl' d:L, ’YP n P/
I:Ip

p=1k. (matching conditions)

On the intervals [z,, 2p+1),p = 0,k — 1 and [zg, 1] the solutions of equation
(24) can be written as follows

p=0k-1, B =0,

)

ul® () = Ag’)zl sin ( uﬁ% (1- x)) , & € [z, 1],

where
) = A0 — .

The calculation of constants AI(D?%, p=0,Ek, BZ(??%, p=1,k—1is performed us-
ing the combination of conditions (25) which when applied to the representation
of solutions lead us to the following homogeneous system:

0 . 0
- A;(;—)l,nSHl( M'Ez,zj—l (%‘%—ﬂ) -

= B os (il (a0 4 B =
= A, iy eos (Vi o =) +

+ Blg(l)l,n\/u,(g;_l sin (\/ug)_l (mp—xp_1)> + (26)
+\ uipAQ) —,BO =0, p=Tk-1, BY)=0,
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- A (s ) -

— Bl(co—)l,n cos (VMS)}@1 (xp — $k_1)> +

+ s (il 1= a)) =0,

= A, iy cos (a0 ) +

# B s (ks ()] -
- A,({S; [\/E%cos < ,ui% (1- mk)> +

+7% sin ( uﬁ% (1- xk.)>] =0.

We look for the roots of determinant A ()\g))> of system (26) which are
different from 1, ,, p = 0,k. Every eigenvalue of problems (24)-(25) is the

zero of determinant A ()\7(10)) having the multiplicity 1. The eigenvalues form

a monotonically increasing sequence )\go) < /\go) <. < )\,(10) < ... which tends

to infinity.
For the given /\7(10) the solution to system (26) can be determined only up to

a constant factor which we calculate from the normalization condition
1
2

1
ol | ok =
0

oo

The sequence of the normalized eigenfunctions {ug)) (:U)} ) form a complete
n=

orthonormal system in Lo [0,1]. The above mentioned facts follow from the

results of chapter 12 in [10].
Let us, move on to the solution of the recurrent sequence of problems (20)-
(22). First we rewrite these equations in the equivalent form

d%ﬁf“) ()

w0

EOU () = PG () = ~F (@),

dx?
x € (0,21) U (x1,22) U...U (24, 1),
u (@) = uf), @ € (2p,2p11), p=0.k, (27)

uf T (0) = uf V(1) =0,

[ugﬂ) (x)} =0,
dy Y ( )x:x (matching
! - ] — ypu;ﬁrl) (z,),p =1,k conditions)
T=xp
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Whereupon, its solution possess a representation
) (@) = A sin (il o - ) ) +

+ B cos (il o~ ) ) -

z sin < uﬁ?} (z— 5)) .
_ / FUHD (6) dé, @ € [wp,@psn).

(0) "

FUH) (&) de, = e [z, 1].

By combining (27) and the matching conditions we obtain the following

system for coefficients A;(,];:{l), Bgf;l):

_ A](Jjjlesin < /1,7(3;_1 (xp—xp— 1)) — B](j;"ilncos < M%q (zp —wp_1)> +

)

7 sin (/101 (2 ©))

(0)

Tp—1 /"Ln7p—1

i 0 0 i+1 0
= ATy cos (Vs (o = ) + B

X sin< 1“53;2;4 (:Ep—xp1)> + M%%A;(aj,‘r—fl) _%Byggﬁkl) =

F{TY (¢) de,

+BUH) = —

. (28)
S / cos( w L (ap —5)) FUHD (6) d,

p=1k-1, By =0,
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(0)

i (4 -0)
— / F(]—i—l)

= dé—
— 4 () dg
Tp lu’n,k
Tk sin ( /‘7(1% | (g — f)) )
_ Flt+l de,
— 0 (¢) de
Th—1 Mn,k—l

AP cos (Ve (- o)) +
# B0y sin (Vi o= ) ) -

- [Vl (Vollk =) +

1
+7% sin < ,ug?zc (1-— xk))} = —/COS ( ,uq(gi (xp — 5)) FUTD (&) de—

_ /COS < Ngl()}g—l (Q}k—f)> F7§J+1) (5) d€+
1sin ( p,fl% (zr — f)) ‘
+ vk/ © FTD()de.

. Pk
Ty n,

The left-hand-side matrix of this system of linear algebraic equations is de-
generate since it coincides with that of the system (26). For the solution of
(28) to exist it is necessary and sufficient that the vector composed from the

right-hand-side coefficients is orthogonal to the eigenvector of the conjugate
matrix.

Let us introduce the following vectors

T
V=3 ag ) AV B L AT B AL
AU+ { U+ }T
n P p=1,k ’
Zp gin (\/m (xp - f))
AUrn_)_ / FYH0(¢) de,
np (0) "
Tp—1 Hn,pfl
Zp
_ /COS < M;;_l (pr — g)) FTSIJ+1)(§> df}a
Tp—1
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p = 17 k_ 17
. 1gin Ng??c (xg — f)) )
7 (J _J)_ Jj+1 _
b / ——L R (e
Ty 'un,k

Tk

~ [ o (W“)Tl (or — 5)) FUHD () det
1gin <m<l’k - 5))
F{TY (&) d¢

(0) "
T 'u'n k

+Vk

and denote the matrix of the system (26) as D,,. Then systems (26), (28) could
be presented in the matrix-vector form

Dn?éo) - 6’ Dn?éjﬂ-l) - ﬁr(Lj+1), j=0,1,... (29)

If ZZ is the eigenvector (row) that corresponds to the null eigenvalue of the
matrix Dy, i.e.

Zr'D, =0,
then the necessary and sufficient condition of the solvability of system (29) is
ZIAYHY = 0. (30)

It is easy to show that condition (30) is equivalent to the integral condition
having the form

FUHD ()0 (2) dz = 0. (31)

o _

Next we wind from (31) or, equivalently, from (30) that

]

1
AU—PHD) /u%o) (z) ulP (x) da+
! 0

J
)\g-ﬂ): _

! (32)

+ [ @) [ @) @)]uf) (z) da,

Since the solution of system of linear algebraic equations (29) is found with the

accuracy up to a constant factor, uﬁf 1) (x) is found with the same accuracy.
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The constant factor can be calculated from the orthogonality condition (22),
and formula (32) is transformed to (21).

The aforementioned results give us all information necessary to apply FD-
method to some concrete problem. They however are not so useful to get the
sufficient conditions of its convergence and the corresponding accuracy esti-
mates (both a-priory and a-posteriori).

To get those estimates we propose an alternative approach. Relying on the

o0

completeness of the orthonormalized system {%(10) (:c)} ) in Ly [0, 1], we write
n=

down the solution to problem (20) in the following form:

1
°° uy) (z)

j+1 _ j+1 0
W (@)= =3 [ FI )l (€) de i
= A =
0
pFEN
It lead us to the estimate

e B Ll

J ‘ . . (33)
< Mo 330 PG| [uld| || [0 @)= (@)] w @) 1
=1
where
M, ! ! (34)
n = Mmax , )
P CORP G
Let us introduce a function
@) v )
w (w') = max max —=dt|.
0<p<k z€[zp,Tp+1] Tp+1 — Tp
Tp
Then by substituting (21) into (33) we receive the sequence of estimates
J
oo < {3 oo o ] .
=1 (35)
o0 <o) 2]
that lead to the following inequality
J
] < 6 3 S o .
1=0

The solution of inequality (36) be obtained via the generating functions method.
It has a following form (see [24])

(25 + 1N

(25 + 4! —
[AMuw (WP it

TUHDVAG+D) (DAL

Huwl)H < (4Mpw ()2
(37)
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Inequality (37) permit us to get the corresponding inequality for the eigenvalue
from (35)

5J

(27 =N w (W) n .

(27 +2)! G+DV7j

Using estimates (37), (38) one can easily deduce that the next statement is
correct

Theorem 3. Let

D] < w () 742 (38)

va (x —xp) +1 (2) (39)

and the following condition holds true
i S a0 (¢ < 1,

then the F'D-method for the Sturm—Liouville problem (18), (39) converges super-
exponentially. Moreover the following error estimates are valid:

) ~m—+1
‘un—un < lun =D ul| < d: —,  (40)
— (m+2)y/m(m+1)(1—7y)
M — Al < A= STA0)| < oWy 41
Z (m+1)y/mm (1 —7y,) (41)

Remark 3.1. In order to to understand the behavior of 7y, with respect to n
one can use (34) and theorem 2. They lead to the estimates on the denominator

from (34)
A0 _ 50 =7 (2n—1)+

n n—
k
+2 Z Tp [s.in2 (nmx,) —sin? (n — 1) TTp)| + R — Rq(12—)1 >
p=1
Wl [ 7 P
(2n—1) -4 2% n L
' Z'p' 2w [1—@*1—72”_1}’
7l Tnt1 7
A(O) _)\(0) 2 4 B p 1 n+ n
n+1 n n"‘ Z|p| \F l_f'n+1+1—72n s

These estimates are valid under condition (9), i.e. estimates (40), (41) and
(10), (11) from the theorem 2 are valid under the same restriction on n. How-
ever, T, has a reserve of easing the restrictions onn up to its complete exclusion.
This reserve caused by the occurrence of factor w (') in 7y, that will relax the
restrictions on n provided that function ' (x) is, at least, piecewise continuous
function from Q°[0,1], i.e. ¥ () € C[0,1]NQ'[0,1].

Remark 3.2. If the conditions of theorem 8 are met then the series
up (z,1) = 222, ul) ()7, A\ (t) = >0 A are absolutely convergent
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for |t| < 1. Moreover they approzimate the exact solution of given problem
U (2) = 1 (2,1) = X220 ud (@), An = A (1) = 232 A,

Example 3.1. We applied the FD-method to problem (2) with the potential
q(z) =6 (z— 1) + 100z in the following cases: a) V(@)=0 k=1, z; = 1,
71 = 1; b) the interval (0,1) is partitioned into two equal subintervals (¢ (z) #
0, k=1, 21 = 3,71 = 1); ¢) the interval (0,1) is partitioned into four equal

TABL. 2. Convergence of FD-method for eigenvalue A;

m |a) Y (z)=0,k=1, |b)¢'(x)Z£0, k=1, |c)¢'(z)#0, k=3,
5T — A AT — )\1’ AT —
0 | 39.79669103 2.270616222 2.168801379 - 10~ 1
1 | 10.20330897 8.341737964 - 10~ 1 6.083140294 - 102
2 | 2.135818380 1.901098870 - 102 5.300909434 - 10~°
3 | 2.135818380 3.157060409 - 103 4.333553271 - 106
4 | 1.226920389 2.930165507 - 10~* 1.367746278 - 108
5 | 1.226920389 2.102813177 - 10~° 5.850330410 - 1010
6 | 9.509541771 - 10! 4.743628885 - 106 3.835005760 - 10~ 12
7 | 9.509541771 - 10! 5.240882809 - 108 9.702842701 - 10~ 4
8 | 8.506978298 - 10! 7.286716281 - 108 1.229092383 - 10~ 1°
9 | 8.506978298 - 10! 2.930256199 - 102 1.865391361 - 1017
10 | 8.276761403 - 10~ 1 1.032042190 - 102 4.064792983 - 1019
11 | 8.276761403 - 10~ 1 1.038538699 - 10~10 | 3.423104476 - 10~2!
12 | 8.508842593 - 101 1.221151730 - 10~ 11 1.238050539 - 10~22
13 | 8.508842593 - 10! 2.481662360 - 10~ 12 3.497226425 - 10~2°
14 | 9.094304891 - 101 8.479672332 - 10~1* | 3.323469489 - 1026
15 | 9.094304891 - 10~ 1 4.980766446 - 10~ 14 1.068874105 - 10—28
16 | 1.000506593 1.155397490 - 10~ 1° 7.886548397 - 1030
17 | 1.000506593 8.676674901 - 10~16 | 9.000481917 - 1032
18 | 1.125540512 6.964067548 - 1017 1.660871600 - 1033
19 | 1.125540512 1.270480995 - 10~ 17 4.098653028 - 1073°
20 | 1.288866993 2.045466355 - 1018 | 2.760733186 - 1037

subintervals (¢/(z) Z 0,k =3, 21 =}, 20 = 1,25 =

~

1

%771:0772:17’73:0)'

We computed the exact eigenvalue (further denoted by A{*) and its ap-
proximation (denoted by A1) using the computer algebra system Maple 17.00
(Digits=100). The smallest exact eigenvalue of the problem, considered here,
is equal to

AT &~ 51.56855019480048558891973935119068439085.

The absolute errors of approximations

A§F — )\1' to smallest eigenvalue A ob-

tained using the FD-method of rank m = 1,20 in the cases a)-c) are presented
in table 2.

One can see from the table 2 that the simplest form of the FD-method
a) (with ¢/(z) = 0) for the first eigenvalue is divergent while the FD-method
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converges when the interval is partitioned into two or more subintervals. The
convergence rate is doubled with increase in the number of subdivision points
(from one to three).

10.

11.

12.

13.

14.

15.

16.

17.

18.
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UDC 519.6+517.983.54

IMPLICIT ITERATION METHOD OF SOLVING
LINEAR EQUATIONS WITH APPROXIMATING
RIGHT-HAND MEMBER AND APPROXIMATELY
SPECIFIED OPERATOR

OLEG MATYSIK

PE3IOME. V riasbepToBOMY MPOCTOPI AOCTIAKYETHCS HESIBHUN METOJT iTepa-
it po3B’sI3yBaHHS JIIHINHUX PIBHSHD 3 HEHETATUBHIM CAMOCIIPSIKEHIM 1 Heca-
MOCIIPSIZKeHUM 0OMexkeHuM omepaTtopoM. JloBemerno 30iKHICTH METOMY Yy BU-
MaJKy armpiopHOro BHOOpY dHCJIA iTepariil y BUXiaHIA HOpMI TiIH6EpTOBOTO
IPOCTOPY, B IIPUIYIIEHH], MO MOXUOKY € He TiILKY B TIPaBiil YaCcTUHI pIBHIHHS,
a it B oneparopi. OTpuMaHO OLIHKK NOXUOKU 1 AllpiOPHUN MOMEHT 3YIIHHKU.
ABSTRACT. The article deals with the study of the implicit method of solving
linear equations with nonnegative self-adjoint and nonself-adjoint limited op-
erator in Hilbert space. It aims at proving the method convergence in case of a
priori choice of the number of iterations in the basic norm of Hilbert space on
the assumption of existing errors not only in the equation right-hand member
but in the operator as well. Error estimation and a priori stop moment are
obtained.

1. PROBLEM STATEMENT
Let H and F be Hilbert spaces and A € £(H,F), i. e. A is a linear
continuous operator functioning from H to F. It is assumed that zero belongs
to operator spectrum A, but it is not its characteristic constant. The following
equation is solved
Ax =y. (1)
The problem of searching for element x € H by element y € F' is incorrect,
for arbitrary small disturbances in the right-hand member y may result in
arbitrary disturbances in solution.
Let us suppose that the accurate development x* € H of equation (1) exists
and is the unique one. We shall search for it with the help of iteration process

(E+ oA"Yz, 1 = (E — aA®)?z, + 204 1y, 20 = 0,k € N, (2)

where F is an identity operator while « is an iteration parameter.

We consider that operator A and the right-hand member of equation (1) are
specified approximately, i.e. approximation ys, ||y — ys|| < ¢ is known instead
of y, and operator A,, ||A — A,|| <n is known instead of operator A. Suppose
0 € Sp(4,),Sp(A,) € [0, M]. Then method (2) will look

(E+ 042A727k):vn+1 =(F - aAfz)zxn + 204A7];_1y5,x0 =0,k € N. (3)

Key words. Regularization, iteration method, incorrect problem, Hilbert space, self-
conjugated and non self-conjugated approximately operator.
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The case of approximate right-member of equation ys and faithful operator
A for the method under consideration (3) has been studied in monograph [1]. It
deals with a priori and a posteriori choice of a regularization parameter and the
case of non-unique solution of problem (1), as well as with proving the method
convergence in Hilbert space energy norm.

Let us prove the method convergence (3) in case of a priori choice of a reg-
ularization parameter in solving the equation A,z = y; with the approximate
operator A, and the approximate right-hand member ys and obtain a priori
estimated errors.

2. THE CASE OF SELF-ADJOINT NONNEGATIVE OPERATORS
Let H equal F', A= A* >0, A, = A >0, Sp(A,) C [0,M], 0 <n < no.
The iteration method (3) will be presented in the following way:

Ty = gn(An)ys, (4)

B (1 _ a)\k)Qn
(1 + a2)\2k)n
conditions for functions g,(\) with a > 0:

where g,(\) = A71 . There have been obtained in [1-2] the

sup |gn(N)| < 0tk y = 2kal/F n > 0, (5)
o< A<M

sup A1 — Agn(N)| < 7sn™*/F . (n > 0),0 < 5 < 00 —( i )S/k (6)
Og)é)kf In > s ) ) y Vs ecve )

(here s is the degree of source representability of exact solution z* = A%z, s >
0, |zl < p),

sup |1_)\gn()\)| §’70770:17n>07 (7)
0<A<M
sup Al — Agn(A)| — 0,n — oo. (8)
0<A<M

The following is valid:

Lemma 1. Let A= A* >0, A, = A} >0, |4, — A|| < n, Sp(4,) C [0, M],
(0 <n < mo), @ >0 and conditions (7), (8) be satisfied. Then ||Gpyv| — 0
atn — oo, 1 — 0 Vv € N(A)* = R(A), where N(A) = {x € H|Az = 0} and
Gny = FE — Apgn(Ay).

Proof. We have
|G| = H(E Angn(Ag))vll =

_ k\2n
_ /(1—)\gn ))dE\v H/ (L= ad") dEw <

£
(1 — aXk)n (1 — a\k)n
/ (11 a2k B | gpamy B -

IN

£
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M (1= a2 M

— n .

/(1+O&2)\2k)ndE>\v <gq (8) /dE)\U — 0,n — o0,
€

€

as for A € [e, M]
(1 — a)k)?
0 1 a2ahyn <q(e) < 1.

£

3
(1 — ak)?n
/ (1+ a2/\2k)ndE/\v < ||/ dExv|| = [|Ecv]| =0, €—0

0
owing to integrated spectrum properties [3-4]. Consequently, ||Gpnyv|| — 0 at
n — 00, n — 0. Lemma 1 is proved. O

The convergence condition for method (3) is given by

Theorem 1. Let A= A* >0, A, = A} >0, |4, — Al <n, Sp(4,
0<n<mn) a>0,ye€ RA), |ly—uys|l <09 and conditions (5
be satisfied. Let us choose parameter n = n(d,n) in approzimation
(6 + n)n*(6,n) — 0 at n(6,n) — o0, § — 0, n — 0. Then Tp(s
0—0,7—0.

) € [0, M],
), (7), (8)
(

) so that

M) T* at

Proof. According to (4) we have x,, = gn(Ay)ys. Then
Tp — zt = gn(AT])y5 -z = _Gnnl'* + Gnnl‘* + gn(An)yé -2t =
= _Gnnx* + (E_Angn(An))x* +gn(A77)y5 -z = _Gnnx* +gn(A77)(y5 _Anx*)'
Condition (5) being as follows [|g,(A4,)]| < sup |gn( V)| < !k, then
0<A<

1ys — Ana™[| < llys — yll + lly — Apz™| =
= llys — yll + |Az" — Ayz™|| <6+ [|[A = Ayllll=*]| < &+ nllz"]].
Consequently,

120 =2 < NGuna® (|4l gn(An) (g5 = Agz )| < [|Grn™ || +yn' /(5 4+nl2*)).

As appears from Lemma 1, ||Gppz*|| — 0 at n — oo, n — 0, and according
to the condition of Theorem 1, n'/¥(§ + ) — 0 at 6 — 0, n — 0. Thus,
|Zn(sy) — 2*[| — 0, § — 0, n — 0. Theorem 1 is proved. O

Theorem 2. Let A= A* >0, A, = A} >0, ||A, — Al <n, Sp(A,) C [0, M],
0<n<m), a>0ye R(A), |lys —yll <0 and conditions (5), (6) be
satisfied. If the exact solution is source representable, i.e. z* = A%z, s > 0,
l|z|l < p, then error estimation is equitable

min(1,s) —s/k

T (5. — 2| < Yocsn p+ s~ Fp+ nt* (S + nllz*]]),0 < s < oo

Proof. Using the source representability of the exact solution we have

[Grnz™ || = |GnnA%2]| < [|Gry(A® — Af])ZH + ||Gm]Af]z|| <

. 9)
/Fp,

min(1,s)

< Yocsm “p 4 ysn
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as according to Lemma 1.1 [5,p. 91] || A7 — A%[| < csn™(L8) el = const, (cs < 2
for 0 < s <1). Then
|2y =27 < yoesn™ ™ ptysn ™ Fppan! M (6 4n]*])),0 < s < co. (10)

Theorem 2 is proved. o
If the right side of estimation (10) is minimized by n, we get the meaning of
a priori stop moment:

S [ 5YsP
PR DT N
P Ly (O [l |n)

57s ) o = (i) I 1 gmsisa)
Y

k
/(stD) o k/(s+1) x11—k/(s+1)
= dsp [6 + nllz™ ] :

. Consequently,

here ds =
where < 5%

s \ (s+k)/(s+1)
e = (31)
Let us substitute nqy in estimation (10) to get

afle*s/(8+1)pk/(s+1) 5+ on*”]—k/(S'*‘l) )

s/k
(& + nlla*|)*/ D 4

|25 — =" llopt < Yoesn™ ™ p + yap (dspk/(ﬁl))
+y ((5 + n”x*H) di/kpl/(erl) (5 + 77||w*H)_1/(8+1) _
= 0ca™ 1)+ (5 + " )0 (d 5yl HD gl g1/ 1)) =

= 'YOCSTZmin(l’s)p + pl/(s+1)cls (5 + "7||x*H)S/(S+1) 7

where
R L (81/(s+1) 4 S—s/(s—l—l)) 3/ 5+ L (s+1)
_ (;{j)S(lk)/(k(erl)) (1 + S)e—s/(k(S—H))_
Hence

@5 — =" llopt < csn™inth) py

s \s(1=k)/(k(s+1))
(32)
Note. Optimal error estimation does not depend on o, whereas nop; depends
on «. Since there are no contingencies concerning o upwards (o > 0), it is
possible to choose a so as to make nopy = 1. For that it is enough to take

(1+s)e/FEFD LR (5 4 |y 4.

s )(S+k)/(s+1) o8/ (1) e/ (s1) [5 4 on*H]*k/(erl) )

Qopt = (%

3. THE CASE OF NONSELF-ADJOINT OPERATORS
In case of nonself-adjoint problem iteration method (3) will be presented as

2
[E + a2(A;;A,7)2’f] ol = [E — a(ALA)F] 2t
+20 (AL A T Atys, w0 =0, k€ N.

(11)
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It can be written as follows:
Ty = gn (AL An) AL Ys- (12)
It follows from Lemma 1 that

Lemma 2. Let A, A, € £(H,F),||A, — Al < n,||4,*> < M,a > 0 and
conditions (7), (8) be satisfied. Then

| Kol — 0 at n — oo,n — 0,Yv € N(A)* = R(A*), (13)
| Kppz|| — 0 at n — oo 17—>0 Vz € N(A*)T = R(A), (14)
where Ky = E — Ay Aygn(ApAy), Kny = E — AyAj gn(AyA7).

Lemma 2 is used for proving the following theorem.

Theorem 3. Let A, A, € £(H,F), ||[A— A, <n, ||4,I> <M, (0<n<n),
a >0,y € RA), |lys —yll < 0 and conditions (5), (7), (8) be satisfied.
Parameter n = n(d,n) is chosen so as to get

(6 4+ n)>n'*(8,m) — 0 at n(6,n) — 00,6 — 0,7 — 0. (15)
Then x5, — «* at 6 — 0, — 0.
Proof. For approximation error ., we have
Ty — 2 = —Kunz™ + gn(A7Ay) A5 (ys — Apz™). (16)
We see [[ga (45 A4y) A5 | = llgn (A5 4y) (A5 A7) 2] < 7enH/ Y, where

Y« = Sup (nl/(%) sup )\1/2|gn()\)> < 2k12aMCR) (1, . 141].
n>0 0<A<M

Since [lys—Apz™|| < llys—yll+lly—Ana™|| = llys—yl|+||Az*— Apa™|| < 640z,
it follows that ||gn (A} Ap) As (ys— Aga®)|| < 2k/20/ Rt/ R (6 4+{|2*||n). That
is why

|n(smy — 21 < ([ Knga™ || + [lgn (A7 An) A3 (ys — Apz™) || < [[ K™ [+

+2kl/2al/(2k)nl/(2k)(5 + on*H)
Let us show that || K,,z*|| — 0 at n — oo, n — 0. Actually,

||Km7$*H = H(E - A;Angn(A;An))x*H =

1454 1454l
* (1 B a}\k)?n *
= (1= Agn(A))dENz™ || = WﬂiEA% <
1 )\k 2n HA:A”H (1 /\k)2n
-« -«
——————dE\z* ——————dE\x"
/ 1+ a2a2kyn AT + / (1 + a2a2kyn AT

[
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Then
145 An | (1 — axkye | Az Ay ||
demﬁ* <q"(¢) / dE\z*|| — 0, n — oo,

€ 5
(1 — ark)?

Trazer <4<t

as for A € [é‘, HA;;AUH]’

£

€
(1-— a)\k)Q” .
/WWk_)ndE/\flf* < dE)\CU = ”E5$*|| — O, e—0
0

owing to integrated spectrum properties [3—4].

From statement (15) n'/*(6 +n)? — 0 at n — oo, § — 0, n — 0. Hence
2k1/201/ R/ CR) (§ 4 n||z*|) — 0, n — 00, § — 0, n — 0. Thus,

@ — 2| =0, n—o0, 60, -0

Theorem 3 is proved. o
The following is valid

Theorem 4. Let A, A, € L(H,F), |[A— Al <n, |A,]> < M, (0 <5 <mn),
a >0,y € R(A), |lys—yl| < 0. If the exact solution can be represented
as ¥ = |A|°z, s > 0, ||z|| < p, |A] = (A*A)l/2 and conditions (5), (6) are
satisfied, then estimation error is real

Hxn((s,n) — x*H < ~ocs (1 + |Ing|) ™) oy
a4 2201 P (5.4 [l2¥| ), 0 < 5 < oo

Proof. In case of sourcewise representable exact solution z* = |A|*z =
(A*A)S/Qz owing to (6) we get sup A/2|1 — Ag,(\)| < vs/gn*‘*/(%), where

0<ASM
s \s/(2k)
T = 4kae) . Then
K2 = 14l [ ~ A (1500 ] =
= H (A;An)8/2 [E— AL Angn (A;An)] z“ < 75/2n—5/(2k)p_
Hence

oyl = | Knnl A2l = 1oy (145]° ~ A1) 2] +
+ ||an7‘An|SZ|| = I (]_ + ‘ lnn|) nmln(l’s)p + ’YS/QTL_S/(Qk)p’

since according to [5, p. 92] we have [[|4,[* — |A]*|| < cs (14 |Inn|) pmints),
cs = const, (cs <2 for 0 < s <1). Following (16)

[Zn(om — || < 1Kz || + 7.n'/ @) (6 + ¥ n) = | Kpp* || +
+ 2120l PRI CR) (5 4 [l ) < yoes (14 Innl) p™ ) pt (17)
+ 7m0 p 4 2k 12 R CR) (5 1 12| ), 0 < s < 0.
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Theorem 4 is proved. O
By minimizing the right-hand member (17) at n, the meaning of a priori stop
moment is obtained:

749\ 2K/ (D)
e = (T ) D (5 )

_ (4k)—(s+k)/(s+1)S(2k+s)/(5+1)e—s/(s—i-l)a—lka/(s-‘rl) (5 + H{B*H n)—?k/(s—H) )
The substitution of nyy into estimation (17) allows obtaining the optimal
error estimation for the method of iterations (11)

|Zn(s.m) — x*HOpt < s (14 [Tn|) ™m0 oy

+ T (5 4 2 )Y 0 < s < oo,

where

= (31/(s+1) + st/(s+1)> ’Yi/(sﬂ)’ysl//ésﬂ) _

_ Ss(l—2k)/(2k(s+l))(s + 1)(4k>s(k—l)/(2k(s+l))e—s/(2k(s+l))_
To sum it up,
Hxn(&n) N x*Hopt < cq (1 + ‘ 1I177‘) nmin(Ls)p + 85(1—2k’)/(2k’(s+1))(3 + 1)><

< (43— k(s D) o=/ (GR41) /(1) (5 4 127 )™ D [0 < 5 < oo,
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ON THE BOUNDARY INTEGRAL EQUATIONS METHOD
FOR EXTERIOR BOUNDARY VALUE PROBLEMS
FOR INFINITE SYSTEMS OF ELLIPTIC
EQUATIONS OF SPECIAL KIND

YURIY MUZYCHUK

PE3IOME. B rpuBuMipHux obmekeHuXx 00/1aCTAX 3 JHINIUIEBOIO MEXKE POo3-
TJISHYTO 30BHINTHI TPAHWYHI 3a7a49l JJIs HECKIHYEHHUX CUCTEM eJIITUIHUX
PIBHSIHb CHeMiaJIbHOIO TPHUKYTHOTO BUIVISLAY 3i 3MiHHUME KoedimieHTaMu.
CdopmynboBano Bapiamniiiai nocranosku 3ana4 Jdipixae, Heiimana ta Pobina
Ta BCTAHOBJIEHO TXHIO KOPEKTHICTH y Bigmosimmnmx mpocropax Cobosesa. 3a
J0IIOMOTOIO BBEIEHOI'0 IIOHATTS ¢-3rOPTKY OTPUMAHO AHAJIOTH IepIIol Ta Apy-
roi dopwmyn I'pina ta mobynosano inTerpasibii 300parkeHHs PO3B’A3KiB PO3IJIs-
HYTHX 33129 y BUMIQJIKY cTamX KoedimienTis. [JocmimkeHo BIacTUBOCTI iHTer-
PaTBbHUX OIMEPATOPIB Ta KOPEKTHICTH OTPUMAHWX CHUCTEM TDAHWUIHUX iHTEr-
PaJIbHUX PIBHAHD.

ABSTRACT. Boundary value problems for infinite triangular systems of ellip-
tic equations with variable coefficients are considered in exterior 3d Lipschitz
domains. Variational formulations of Dirichlet, Neumann and Robin prob-
lems are received and their well-posedness in corresponding Sobolev spaces
is established. Via the introduced g-convolution the analogues of the first
and the second Green’s formulae are obtained and integral representations
of the generalized solutions for formulated problems in the case of constant
coefficients are built. We investigate the properties of integral operators and
well-posedness of received systems of boundary integral equations.

1. INTRODUCTION

The method of boundary integral equations (BIEs) can be applied to a wide
class of boundary value problems (BVPs) for elliptic partial differential equa-
tions (PDEs). Theoretical aspects of this method have been well investigated in
the literature, see, e.g.,[1, 2|, and the references therein. The main advantage
of the BIEs method is the reduction by one of the dimension of the prob-
lem by switching to unknown functions that are defined only on the domain’s
boundary. It is particularly suited for exterior problems in unbounded domains.
Numerous engineering applications confirm the efficiency of this method.

In the case of initial-boundary value problems for evolution equations, the
BlIEs method can be used both for the BVP investigations and for their ef-
fective numerical solution, see, e.g.,[3, 4, 5, 6]. But since the time and space
variables are intertwined in the kernel of boundary integral operators it makes
the application of this method more complicated. Therefore when solving the

Key words. Boundary value problems; boundary integral equations; elliptic equation; infi-
nite system; variational formulation.
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BIEs that depend on the time and space variables, besides the Galerkin or col-
location methods, specialized approaches for consideration of the time variable
are used. Such composite methods have been studied in the works cited above.
They have certain characteristics that define the features of the algorithm im-
plementation. For instance, usage of the so-called Convolution Quadrature
method [5] or the Laguerre transform of the time variable |7, 8] leads to solving
sequences of BIEs.

In [9] the BIEs method was used for finding solutions of interior BVPs for
infinite triangular systems which one could obtain from evolution equations by
the Laguerre transform in the time domain. The idea of this method lies in the
generalization of the concept of the potential on infinite sequences of functions
that depend only on the space variables. Herewith the convolutions of the
Cauchy data of the unknown solution with fundamental solution of the infinite
system and its normal derivative are used. Application of such convolution of
the infinite sequences to the particular problem leads to a sequence of BIEs
that has he same operator of the left-hand side and the expression in the right-
hand side contains solutions of the previous BIEs. In this paper we extend this
approach for exterior problems.

Traditionally the BIEs method is used for BVPs with constant coefficients,
since in case of variable coefficients PDE’s fundamental solutions are generally
not explicitly available. Still on the stage of investigation of the well-posedness
of BVPs we will consider a system with variable coefficients. Note that such
problems can be treated as some generalization of BVPs that arise as a result
of the application of the Laguerre transform to the non-stationary problems.

The paper is organized as follows. In Section 2 we formulate the Dirichlet,
Neumann and Robin BVPs for some kind of infinite triangular system consist-
ing of elliptic PDEs with variable coefficients. We consider these problems in
appropriate Sobolev spaces and show their well-posedness. Then we introduce
the notion of sequences and a new operation on them - the g-convolution of
sequences. In this section we also consider variational formulations of the cor-
responding BVPs and arrive at the analogues of the first and the second Green’s
formulae. In Section 4 we obtain the integral representation of the solution of
the BVPs with constant coefficients and establish a relationship between the
Cauchy data of some generalized solution and corresponding BIEs which we
study in the following Section 5.

2. FORMULATION OF THE BVPS AND BASIC RELATIONS
Let © C R? be a bounded and simply connected domain with Lipschitz
boundary I and QF := R3\ Q be an exterior domain. We consider an infinite
system in QF

PuO = fO 5
c1oug + Pup = fi,
c2,0u0 + c2,1u1 + Pus = fo, (1)

Ck,0UO + Cr UL + oo+ Cpp—1Uk—1 + Pug, = fi,
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where ug, u1, ..., ug, ... are unknown functions, ¢;; (i,j € No := N U {0}) are
some given measurable and bounded in QT functions with ¢; ; = 0 when j > i;
fi (i € Np) are given in QT functions (functionals). In a formal second order
differential operator
9
(Poe) == 3 o a0

o0x;
igj=1_""7

ou(x)
69@

] + ag(z)u(z), z€Q, (2)

the functions a; j (4,7 = 1,2, 3) and ag are measurable and bounded and satisfy
the conditions:

ai j(r) = aji(z) (i,j =1,2,3) for almost all z € QT

3 3
Z a; j(x)&& > 0‘251'2 for arbitrary &1, &2,&3 € R and almost all 2 € QF,

i,j=1 i=1
(3)
with some constant o > 0 and

ap(x) > 0 for almost all z € Q7. (4)

Let the unit normal vector v(z) = (v1(x),v2(x),v3(x)) to T’ be directed out-
wards of QF. We investigate BVPs for system (1) that consist in finding its
solutions that satisfy one of the following conditions on the boundary I'

(i) Dirichlet condition:
u|r = hi, k € N, (5)
(ii) Neumann condition:
Ipuk|r = gk, k € No, (6)
(iii) Robin condition:
(Opur, — (bgouo + bpaur + ... + b p—1ur—1 + by gur)) |r = Gk, k € No,  (7)

where h;, §; (i € Np) are given functions (functionals) on T', b; ; € L=(T) (i, €
Np) are given functions on I' with b; ; = 0 when j > > 0, b;; > Ei > 0, IN)i -
constants. In other words, we will consider the Dirichlet problem (1), (5), the
Neumann problem (1), (6) and the Robin problem (1), (7).

Note that the triangular form of system (1) allows us to consequently find the
unknown functions ug, k € Ng. This way when solving the k-th equation (k >
1) we assume that all solutions u;, 0 < i < k — 1, have been found on previous
steps and move them to the right hand side of the equation. For instance, we will
use this approach for the investigation of the well-posedness of the previously
mentioned BVPs. But it isn’t suitable for their numerical solution with usage
of potentials since it requires additional calculation of volume potentials for
combinations of functions u;, 0 < ¢ < k — 1, found on previous steps. The
method introduced in [9] regarding the interior problems for system (1) allows
us to avoid this and build an efficient algorithm for their numerical solution.

We will use the Lebesgue space L2(Q7) and Sobolev spaces H(QT) and

H} () of real-valued scalar functions and dual to them H'(QF):=
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(Hl(QJF))/ and H~ Q1) = (H&(Q“‘)),, correspondingly. Under D(Q") and
D' (1) we will understand the spaces of all test functions and distributions on
them.

The following bilinear form

5 Ou(x) Ov(x)

ag+(u,v) := a; j(x + ap(z)u(z)v(z) | dz 8
o (0,0) /QZU(% e ool | e (3
is well defined for any functions u,v € H'(QT). It is known, see, e.g.,[10] and
[3, 6] for the case of constant coefficients, one can consider ag+(+,-) as an inner
product and introduce in H'(Q2) a new norm ||Jul|| := (ag+ (u,u))*?, which
is equivalent to the usual one under the conditions (3) and (4). It is obvious

that this form is H!(QT)-elliptic.

In HY(QT) we will consider the following subspace

H' (T, P):={ ue H(QF) | Pue Ly(Q") }, (9)
equipped with the norm

1/2
lullzn@rpy = (lulBse + 1Pl @) ) - (10)

Let vd : H'(Q1) — HY2(T) be the trace operator and v, : H'(Q+, P) —
H~'/2(I") be the conormal derivative operator, which coincides with the conor-
mal derivative

3
Ou(x
Opu(x) = Z ai’j(x)(‘)a(c-)yj(x)’ zel
ij=1 v

in case of functions from H?(Q"), a sufficiently smooth boundary I' and con-
tinuous on QF coefficients a; j (4,7 = 1,2,3). It is known ([1], Theorem 4.4),
that for functions u € HY(QF, P) and v € HY(QT) the first Green’s formula
holds

(Pu,v)g+ = ag+ (u,v) + (v u, v v)r. (11)
where (-, -)q+ and (-, -)r denote the Lo(Q1) the inner product and the duality
between H~1/2(T") and HY?(T'), correspondingly. If u € H'(Q") then the form
ag+ (-, ) can also be used for the definition of Pu € Hy'(QV)

(Pu,v)q+ 10 = ag+(u,v), Yo € Hy(QT). (12)

Here (-, ")+ 1 denotes the duality between H'(Q") and Hg ().

Let X be an arbitrary linear space over the field of real numbers, Z — the set
of integers. By X we denote a linear space of mappings u : Z — X satisfying
u(k) = 0 when k < 0. For any element u € X* we have u;, = (u), = u(k), k €
7., and will write it as u := (ug, u1, ..., ug, )T Henceforth we will call elements
of X sequences.

We will use triangular matrix operators C : (La(Q27))* — (L2(27)) and
B : (La(T)™ — (Lo(T))™ that act as (Cu), = Z?:o ¢k, - (u);, k € Ny, and
(Bu), = Zfzo by - (u);, k € No, where ¢ and by are the coefficients of the
system (1) and of the Robin boundary condition (7), correspondingly.
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The following denotations of sequences are used
ag+ (u,v) := (ag+ (uo,v0), ag+(u1,v1), )", w,ve (H(QM)>,
and
(u,v)x := ((uo,v0)x, (u1,v1)x, ...)T, u,v € (X)>,

where X is some Hilbert space. In the same manner we will denote sequences
for duality pairing. For example, if u € H-Y2(I') and v € HY2(I') we will
use the notation (u,v)p := ((u, vo)r, (u1, v1)r, ...) . Analogously, linear func-
tionals on sequences will be treated as component-wise. For the sequence
u € (H(Q21))> we introduce the definition of an exterior trace as a sequence
of traces of its components, i.e. 'ya“u = ('yaruo,%*ul, ..)T will be called an
exterior trace of the sequence u on the surface I'. If u € (HY(QT, P))> the
sequence ’yf u:= (vf UuQ, yfr uq,...)" will denote an exterior conormal derivative
of the sequence u on the domain’s boundary.

Taking into account previous definitions, generalized solutions of the Dirich-
let, Neumann and Robin BVPs for system (1) can be defined in the following
way.

Definition 1. Let f € (H~'(Q))>® and h € (HY2(I))®. Sequence u €
(HY(2%))> is called a generalized solution of the Dirichlet problem (1), (5)
if it satisfies the variational equality

ag+ (u,v) =+ (CU,V)Q+ = <f> V>Q+,1,07 Vv € (Hé (Q+))Oov (13)
and the boundary condition

yyu=h onT. (14)

Definition 2. Let f € (H 1(Q))® and g € (H '/2(I"))*®. Sequence u €
(H' (%)) is called a generalized solution of the Neumann problem (1), (6) if
it satisfies the variational equality

ag+(u,v) + (Cu,v)or = (£ v)a+ 1 — (& V)r, Ve (H'(QF)*.  (15)
Here (-, )+ 1 denotes the duality between H—1(Q*+) and H!(QF).

Definition 3. Let f € (H1(Q))® and g € (H Y/2(I'))™. Sequence u €
(HY(Q7))*® is called a generalized solution of the Robin problem (1), (7) if it
satisfies the variational equality

an+ (u,v) + (CU,V)Q+ + <BVJU’VJV>F =

— EVoea — @iV, wem@yE. O

Theorem 1. The Dirichlet boundary value problem (1), (5) has a unique gen-
eralized solution.

Proof. The triangular form of the system (13) gives us opportunity to con-
sider its equations one after another and apply the same standard procedure for
investigation of variational equations (see, e.g. [2]) on each step of the proof.
Let’s start with the first equation:

an+ (UO,U) = <f0aU>Q+,1,O7 Vv € HOl(Q+)
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According to the trace theorem for each function hy € HY 2(T) there exists a
(non-unique) element iy, € H'(Q) that 77 @ = hi. Therefore, we can obtain
the following variational equation for the difference ug — iy =: w € H}(QT)

CLQ+(’U),’U) = <f~OaU>Q+,1,O = <f07U>Q+,1,O — aqg+ (’ELQ,U), Vv e H&(Q+) (17)

Due to the H'(QT)-ellipticity of the bilinear form and the boundedness of the
functional fo on H () according to the Lax-Milgram theorem this equation
has a unique solution w € Hg(QT). This proves existence of the unique function
ug € H'(QF) that is a generalized solution of the first problem.

When considering the second variational equation we move the function wug
into the right hand side of the corresponding equation and for the difference
up — i =: w € H}(Q) we arrive at the variational equation that differs from
(17) only by the right hand side. Therefore, by using the previous considerations
we prove the assertion of the theorem for the solution w;. Obviously, acting
this way on each succeeding step we will obtain the variational equation (17)
with the following right hand side

k—1
(frv)ar 10 = (fos Vv 1.0 — D (Chilli, v)o+ — ag+ (i, v),
i=0
Vo € HY(QY), ke N.
Here u; (i = 0,k — 1) are generalized solutions of the problems considered on
the previous steps. As can be seen f € H=Y(Q"). Hence, there exists a
unique generalized solution of the current BVP. Therefore, for each BVP with

an arbitrary index k € N the generalized solution u € H(QT) exists and is
unique. O

Theorem 2. The Robin boundary value problem (1), (7) has a unique gener-
alized solution.

Proof. Let’s consider the first equation of system (16):
ag+ (ug,v) + bro(uo, v) = (fo, v)a+1 — (Go, 1 v)r, Yo € HI(QF).  (18)

Here the bilinear form br (-, ) (k € No) is expressed through traces of elements
of space H'(2%) on the boundary I':

br i (u,v) = / bre i (2)7g w(2) v v(2)dSe, u,v € HH(QT).
r

As long as by x € L>®(T') and you,yov € HY/2(T') C Ly(T), such integral exists.
Expression
ag+ (u,v) := ag+ (u,v) +bro(u,v), u,ve H(QT), (19)

can be treated as some bilinear form for u,v € H'(QF). Obviously, it is
H'(QF)-elliptic.
On the other hand, taking into account the estimate

1(G0: %5 vl < ol g—120y 176 vl zr172(ry < Clldoll 12y |0l 112 0
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the functional
(fo,v)a+ 1 := (fo,v)a+1 — (90,70 V)T

is an element of H~!(Q%). Then, according to the Lax-Milgram theorem there
exists a unique solution ug € H'(QF) of the equation (18).

Next we follow the scheme, used in the proof of the previous theorem. Let’s
consider the equation with an arbitrary index & € N. After moving all items
that contain functions u; (i = 0,k — 1) into the right hand side, this equation
takes the form:

aq+ (uk,v) + bnk(uk,v) = <fk,v>g+71, Yo € HI(QJF), ke N, (20)

where

E'lT‘
—_
?lT‘
—

(fe, 0o+ 1 = (frs )+ 1 — (Ge g 0)r — Y (Criuasv)ar — Y (brivg i, g v)r-
7

Il
=)
~.
Il
o

Clearly, fr € H1(Q"). Since the obtained variational equation differs from

(18) only in the right hand side, we arrive at the conclusion that there exists

its unique solution u;, € H'(QF). Thus we’ve shown the existence and the

uniqueness of each component of the solution of variational system (16). ad
As a conclusion of the previous theorem we obtain

Theorem 3. The Neumann boundary value problem (1), (6) has a unique
generalized solution.

Note that condition (4) is a characteristic feature of PDEs obtained from the
evolution equations by means of the Laguerre transform. Without such con-
straint the bilinear form will be just coercive. In this case the existence and the
uniqueness of the solutions of BVPs for system (1) can be investigated accord-
ing to the Fredholm theory, see, e.g., [1, 2|, or by considering the variational
formulations in corresponding weighted Sobolev spaces [11].

We shall now use the well known procedure (see, e.g. |[12], chapter 7) to
transform variational problems to the equivalent ones in the operator form.
We first consider the variational equation (13) and suppose that the sequence
u € (H'(2%))> is its solution. Bearing in mind (12), we can rewrite it in the
following way:

<Pu7V>Q+,1,O + (CU,V)Q+ = <f7 V>Q+,1,07 Vv e (H(% (Q+))OO7 (21)
where the matrix operator P acts on Yu € (H(Q%))> by the rule:
(Pu)k = Pui, k€ Ng.

Taking into account the embedding of spaces Hg(Q) C Lo(QT) ¢ H~1(Q1),
the equality (21) may be presented as

(Pu,v)g+ 10+ (Cu,Vig+ 10 = (£ V)gr 10, Vv E (Hy(QM))™.
After introducing the notation

G =P+C, (22)
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the previous equality can be given in the form of the operator equation
Gu=f in (H'Y(QM)>. (23)

Thus, the generalized solution of the Dirichlet problem (1), (5) is the solution
of the operator equation (23) and satisfies the same boundary condition (5) or
its sequence analogue (14). And vice versa, it is easy to see, that the solution
of (23), (14) is a generalized solution of the Dirichlet problem (1), (5).

In order to get the operator equation for the Neumann and the Robin prob-
lems we will use the Green’s formula in the form of (11) instead of (12).
We will consider the generalized solutions in space (H'(Q*, P))* and assume
f € (La(2F))>. Thus, let the sequence u € (H*(QF, P))*® be the generalized
solution of the Robin problem (1), (7) i.e. it satisfies the variational equation
(16). If we apply the formula (11) to this equation, we get

(Pu7 V)Q+ - <7ii_u7 7(—)~_V>F+ (Cu7 V)Q+ +
+(Bg u, 7 vir = (£,v)g+ — (8,7 V)1
or
(Gu—f£,v)gs + (Byju—~u+gvir=0, vve (H Q)™ (24)

After substitution of an arbitrary element v € (D(27))> into (24) we come to
the following equality

(Gu—f,v)g+ =0,

where (-, )+ is based on the duality between D'(Q27) and D(Q1). Thus,

Gu="f in (D'(Q))>.
Since f € (L2(27))%, the previous equation can be understood as

Gu =T in (Ly(Q7))>. (25)
Therefore, after substitution of any sequence v € (H(21))* into (24) we
arrive at the relation

(Bygu—1fu+grgvir=0 vve (H ()™,

that, by taking into account that values of the trace operator ’yar cHY(QT) —
H'Y2(T) fill in the whole space HY/2(I'), is an equivalent form of the Robin
boundary condition

vfu-Byfu=g in (HV¥D))>. (26)

Thus, we have shown that the generalized solution of the Robin problem can
be characterized by the operator equation (25) and the boundary condition
(26). Analogously it can be shown that the generalized solution of the Neu-
mann problem can be characterized by the same operator equation (25) and
the Neumann boundary condition

u=g in (H V(D). (27)

Conversely, it is obvious that every solution of the problem (25), (26) (resp.
(27)) satisfies the variational problem (16) (resp. (15)).
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Note that boundary conditions (26) and (27), as in the theory of elliptic
equations, will be referred to as the natural boundary conditions.

3. BVPS IN CONVOLUTION TERMS

As we have outlined in the introduction, all theoretical and practical aspects
of the BIEs method are well known in case of its application to the BVPs for
the first equation of the system (1) considered separately as well as for this
system as a whole but with a finite number of equations. Henceforth our goal
will be to obtain a formula for the solutions of BVPs and appropriate BIEs for
the infinite system. Similarly to the previous section, we will use the fact that
system (1) is triangular and will develop a recurrent process of the calculation
of the components of the solution. To avoid additional volume potentials in the
solution representation we will move the components that were found on the
previous steps to the right-hand side of the current equation. For this purpose
we introduce the following convolution operation on sequences.

Let X, Y and Z be arbitrary linear spaces and ¢ : X XY — Z — some

mapping.
Definition 4. By the g-convolution of sequences u € X* and v € Y we
understand a sequence w € Z°° that is defined according to the following rule

W =uov, (28)
q

where w, = (uov), :=>.7" ;¢ (tup—i,v;), when n > 0, and w,, = 0 when n < 0.
q

We will simplify the notation of the g-convolution for some mappings. For

instance, in case of g¢(u,v) := (u,v)q+ 1 we will write u o Vvi=uov.
o Qt,1,0 q

Consider a sequence u € (H'(Q1))™ that satisfies the equation (23). Let’s
substitute it into this equation and, treating the result as equality of elements
from (H~1(Q%))* and taking

Q(wvv) = <w’U>Q+,l,Ov (S H&(Q+)v w e H_I(Q+)a

we apply the ¢g-convolution with an arbitrary sequence v € (H&(Q“‘))OO to both
sides of this equality. After that we arrive at the following variational equation
Gu) o v=f o v, We (HjQ))™. 29
(Gu) o v=F o v, Vv (H(h) (29)
Thus, the generalized solution of the Dirichlet problem (1), (5) can be charac-
terized by the variational equality (29) and the boundary condition (14).

Now we assume that sequence u € (Hl(QjL,P))OO satisfies the operator
equation (25). We apply the g-convolution with some arbitrary sequence v €
(HY(Q27))™ to both of its sides as elements of (La(QF))™, taking g(w,v) =
(w,v)g+, v € HY(QT), w € Ly(QF). As a result we get

_ 1))
(Gu) S V= fQO+ v, VYve (H'(QM). (30)
Thus, the generalized solution of the Robin boundary value problem can be
characterized by the variational equality (30) and the boundary condition (26).
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Obviously, this property also holds for the generalized solution of the Neumann
boundary value problem.

Let’s obtain for operator G the analogue of the first Green’s formula using
the g-convolution of sequences. At first note that the component of the ¢-
convolution in the left hand side of (30) with an arbitrary index k € INg after
application of the first Green’s formula (11) can be written as

( (Gu) oV )k = ;agﬁ (g, vp—s) +

ko fi-1
+ g g CijUj, Vk—i

i=1 \ j=0 O+

k
<’Yfruiy ’Y{)kafﬁr +
=0

(31)

Henceforth we assume that the sum expressions are equal to zero if their last
index is less than the first one i.e. in case of k = 0 the last item in the previous
formula is absent.
: + + + T
Consider a sequence (@ (u,v), ®{(u,v), ..., ®{(u,v), ...) , components
of which are such expressions:

P (u,v) = ag+ (uo, vo),

k k i—1
(32)
q)z'(u,v) = ZCLQ+ (ui, kai) + Z Zci,juj, Vk—i , k € Ny.
i=0 i=1 \ j=0 ot

Definition 5. Sequence
2t (u,v) = (¢f (u,v), ®(u,v), ..., &} (u,v), ...)T, u,v e (Hl((ﬁ))oo,
defined by the formula (32) is called a bilinear form associated with operator G.

Such notation of the bilinear form gives us ability to present the relation (31)
in the following way

(Gu) o v==a"(u,v)+ vuoyjv,
o s L (33)
Vue (H'(QF,P)™, ve (H(QM)™,

and treat it as the first Green’s formula for the operator G. Note that for
the left part of the variational equality (29) we can analogously obtain the
expression
(Gu) o v==@"(uyv), Vue (HY(QM)™, ve (HQN))™, (34)

when using the equality (12).

In general, due to the triangular structure of operator C, definition of the
second Green’s formula may be complicated. In order to apply the classical
approach, see, e.g. |2], we need an additional condition on the operator C

(Cu) ov= (Cv) o Yu,v e (Ly(2h))™, (35)
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which provides the symmetry of the operator G with regard to the operation
of g-convolution. Then applying (33) twice to the couple of sequences u,v €
(HY(QF, P))™ we arrive at the following variational equality.

Theorem 4. For sequences u, v € (Hl(Q+, P))OO the following equality holds:
_ _ At +o. At +
(Gu) o0 (Gv) O U= MUY v WU U (36)

We treat it as the second Green’s formula for the operator G. Further in
this paper we suppose the operator C satisfies (35).

4. INTEGRAL REPRESENTATION OF THE SOLUTION
Green’s formulae and fundamental solutions of the operator G are the key
ingredients of the integral representation of the solutions of the BVPs. As
~ ~ - T
usual we call the sequence E(x,y) = (Eo(x,y), Eq(x,y), ) ,z,y € R3, a
fundamental solution of the operator G, if it satisfies the equation

GE =4, in (D'(R?)™,
where 0,(z) = (0y(z), 0y(z), .)" and dy() = 6(- — y) is Dirac’s delta-

function. Henceforth we also assume this operator has constant coefficients
and particularly

P:=—A+k° (37)
The condition (35) can be rewritten in the form
n k—1 n k—1
YO ckibitk =) chimibnk, YnEN, VEnER™.  (38)
k=1 i=0 k=1 i=0

The last feature is natural for system (1) which is obtained as a result of the
Laguerre transformation with parameter o > 0 of the heat (k = /o) or the
wave (k = o) equation [8]. Note that 7;" now denotes a normal derivative
operator. We also recall the well-known fundamental solution of the operator
P:

e—hklz—yl

Eo(z,y) = e pe—k z,y € R, (39)

In [13] and references therein the construction of such solutions for the operator
G with constant coefficients has been considered. For instance, if system (1)
corresponds to the wave equation, then the fundamental solution’s components
for the operator G have the following presentation
~ e hlz—yl » 5

where £; denotes the Laguerre polynomial [16].

By using the g-convolution we build sequences that in analogy to the theory
of elliptic equations can be also called potentials. For that we use a sequence

T

E(l’,y) = (EO(‘:Cay)? El(%,y), ) ) where

El(xvy) = El(xvy) - Ei—l(m7y)? i €N, Eo(x,y) = Eo(l’,y), T,y € RS? (41)
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It was shown in [9] that E is the solution of the equation
GE =4, in (D'(R?))™, (42)
where 8, (z) = (8,(z), 0, 0, ...)".
Definition 6. Let A € (HI/Q(F))OO and p € (H_I/Q(F))OO. Sequences
Vi) = (Vi) () = u() o Blw — ), x € QF, (43)

and
WA(z) := (WA)(z) = 05 E(x — )lg)\(), reQt, (44)

are called the single and the double layer potentials of the operator G on the
surface I', correspondingly.

Lemma 1. For arbitrary sequences X € (Hl/Q(F))OO and p € (H_1/2(F))OO
the layer potentials u= Vp and u = WX are the solutions of the homogeneous
equalion

Gu=0 (in R®\T). (45)

Proof. Proof of the lemma regarding the domain {2 can be found in lemma
5.3 |7] and in case of the domain Q" can be done analogously. O

Similarly to the layer potentials V and W, by means of the g-convolution
we can define the volume potential for the domain QT and use it to obtain a
partial solution of the system (1). Since in this case the difference from the
interior problems discussed in [9] is minor we will consider only problems for
the homogeneous system (45).

Let vy : H'(Q) — H'Y2(T') be a trace operator, v, : H'(Q, P) — H~'/2(T)
be a normal derivative operator and [you] := vgu — vy u, [y1u] == 77 u — v u
are their jumps across the boundary I'.

Theorem 5. For the sequence u € (H'(R3\ T, P))* which satisfies the equa-
tion (45) in R3\ T the following representation takes place

u(zr) = WA(z) — Vu(z), z € R3\T, (46)
where A := [you] and p := [y14].
Proof. As we can see, the layer potentials consist of the components
(Viw) (2) = (u(), Bj(x —-) )r, p€ HVA(D);
(WA () := (0p)Ej(x — ), M))r, A€ HY2(T), j € No.

Let some function ug € H'(R3\ T, P) satisfy the equation Pu = 0 in R3\T.
Then the third Green’s formula holds

uo(w) = (Woko) (z) — (Vopo) (z), = € RP\ T, (48)

where Ao := [Youo] and po := [y1uo]. Note that this formula can be derived
from the first equality in (36) if we take vo(-) = Ep(z,-). For the explanation
of the corresponding procedure and some aspects of usage of this formula see,
e.g. [1, 14] and [3, 4] for the case of operator (37).

(47)
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We can use this approach for the following components of the sequence u
as well. Let us assume we also have a function vy € HY(R3 \ T, P) provided
the pair up and u, satisfies the second equation in (45). Then from the second
equality in (36) we obtain:

— (c1,0v0 + Pvi,ug)gr — (Pvo,u1)gr =
= (M w1, Y9 v )r + (7 wo, g o1 )t — (i vns 5w )r— (49)
— (71 o, Y9 w1 )1

If we take vo(-) = Eo(z,-) and vi(-) = E1(z,-) and keep in mind the first two
equalities of (42) we obtain for Vz € Q7:

—ui(z) = (v ur, 7§ Eo )r + (v wo, g E1 )r—
— (v E1, v uo )r — (7 Eo, 5w )r.

If we use the second Green’s formula for the interior domain € [9] we will have

0=—{(v; u1, 7§ Eo )r — (7 wo, 7 E1 )r + (1 Er, 7o wo )r + (i Eo, 7o w1 )r.

Therefore, by adding the last two formulae we obtain the representation formula
for the component u; for Vo € QF:

ui () = (Woki) (z) + (Wio) () — (Vop) () = (Vipo) (). (50)

It is straightforward to see that there is the same representation formula for
Vo € Q.

Now we consider the equality in (36) with index £ > 1. After the substitution
vo() = Eo(x,-), v1() = E1(x, ), ..., and vg(-) = Eg(z,-) all components in it’s
left hand side will disappear except (Pvg,uy)q+. As in previous cases from
(Puo, ug) o+ we get ug(z) for Vo € QF and 0 for Vo € Q. The rest of the proof
repeats the same operations as for k = 1. O

Main properties of the potentials V and W have been studied in the afore-
mentioned work [9]. Here we recall some of them. Let us consider the boundary
operators

Vi (HTVAD)® — (HYPD)®, K (HVP0)* — (1),
K: (H'2D)™ — (H'2I)>*,  D:(HD)™ — (HA(D))>,

defined by means of g-convolution in the following way:
(Vi) =Y Vipiojs  (KX); =Y Kjhiy,
Jj=0 j=0

% A
(K'p), :=> Kjpij, (DX);:=> D\, i € Ny,
§=0 j=0
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for arbitrary sequences A € (H1/2(F))OO and p € (H‘1/2(F))OO. Components
of these operators are defined as follows:

Vin =y Vip, Dih == WX, j € No,

1 .
Ko = 7" Vo = 5 Kjpi=~"Vip, jEN,

1

Hence, according to the theorem 5 the generalized solution of the homoge-
neous system (45) can be given by its trace and the normal derivative on the
boundary — the Cauchy data. As it can be seen from the boundary conditions
(5) and (7), in each of the boundary problems these data are incomplete. To
get the complete Cauchy data we need to consider corresponding BIEs that can
be obtained by means of the presentation (46). Note that this is the so-called
direct approach [2]| to replacement of BVPs by BIEs and in our case it could
be implemented taking into account the results obtained in [14, 8]. As a result,
the following theorem defines the relation between the Cauchy data of some
generalized solution of the homogeneous system and BlEs.

Theorem 6. (i) If a pair of sequences (A, ) € (HI/Q(F))OO X (H_I/Q(F))OO
are the Cauchy data of some generalized solution of the equation (45), then they
satisfy both equations

<;I— K) A+ V=0 in (H/2I)> (51)

and
1
DX + (21+ K’> pw=0 in (H Y2(I))>. (52)
(ii) If a pair of sequences (A, p) € (1'-1'1/2(F))oo X (H’l/z(l"))oo satisfy one of
the equations (51) or (52), then they satisfy the second one and are the Cauchy
data of some generalized solution of the equation (45).

Note that for the integral representation of the solution of the PDEs with
variable coefficients it is possible to use a parametrix (Levi function) associ-
ated with a fundamental solution of corresponding operator with frozen coeffi-
cients [11].

5. BOUNDARY INTEGRAL EQUATIONS

Theorem 6 gives us reason for the replacement of boundary value problems
with corresponding boundary integral equations in regards to the Cauchy da-
tum that is not given explicitly in the formulation of the problem. Due to the
similarity of the boundary integral equations that are obtained for interior and
exterior problems we will demonstrate this procedure for the Dirichlet problem
(1), (5) only. In this case the boundary condition contains the given sequence
X =h e (H'2(T"))*®. Then, taking into account the equation (51), after sub-
stitution of the given trace into it we will obtain the following boundary integral
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equation of the first kind in regards to the sequence pu:
1 -
Vi = <—2I + K) h in (HY?T))>. (53)

If we substitute the known trace into the equation (52), we will come to the
following boundary integral equation of the second kind

<;1 N K> p=-Dh in (HY2T)>, (54)

Theorem 7. The normal derivative of the generalized solution u €
(HY(Q, P))>® of the Dirichlet problem (1), (5) satisfies both boundary integral
equations (53) and (54). Conversely, if a sequence pu € (H-Y2(I)> is a
solution of one of the boundary integral equations (53) or (54) then it will
satisfy the other one and the function built by formula (46) with X = h will be
the generalized solution of the Dirichlet problem (1), (5).

Proof. Since boundary integral equations (53) and (54) are only modifications
of the relations (51) and (52), then the validity of the direct and the inverse
statements of this theorem is granted by the theorem 6. O

Obtained sequences of BIEs have some important recurrent properties. Con-
sider the BIEs (53). It can be reduced to a sequence of equations

k k—1
1- . .
Vor = —5hi + § OK,Hh,» - E’ 0: Vi_ipi in HY2(I), ke No.
1= 1=

Applying the same approach for equations (54) we get the following sequences
of BIEs of the second kind

k k—1

1 - A

Hk + Kopk = — > Dy_ihi — > Kj_ui in HVA(T), ke N,
i=0 =0

As we see, after the application of g-convolution to the BVPs in the opera-
tor form, all of the obtained sequences of BIEs will have the same important
property. It consists in the fact that their boundary operators in the left hand
sides remain the same for each k € Ng. Solvability of such integral equations
and numerical methods for their solution are well studied in the literature. At
the other point of view, the structure of the obtained BIEs allows us to build
efficient algorithms for their numerical solution. The same applies for BIEs
that correspond to other BVPs. Such equations are discussed in details in [13].

Thus, variational problems for infinite triangular systems, which consist of
elliptic equations with variable coefficients, have been formulated and their
well-posedness has been shown. By using the g-convolution of sequences, in
the case of constant coefficients the representation of generalized solutions in
the form of potentials has been obtained, with which variational problems have
been reduced to triangular systems of BIEs. Components of the solution of the
system of BIEs can consistently be found from the relevant equations which
differ only in the right hand side. In this case the right hand side consists
of the components of the solutions, found on previous steps, besides of the
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given Cauchy data. A numerical method for the solution of such systems,
developed on the basis of the boundary elements method in [15], gives us ability
to efficiently solve the considered boundary problems.
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MATRIX CONTINUED FRACTIONS FOR SOLVING
THE POLYNOMIAL MATRIX EQUATIONS

ANASTASIYA NEDASHKOVSKA

PE3IOME. PosrusimyTo asroputM po3s’a3yBaHHS HOJIIHOMIAIBHAX MATPATHIX
piBHsIHB. 3amIpPONOHOBAHA pPEKypeHTHAa (HOpMyJsia PO3BHHEHHS DO3B’SI3KY B
JaHIoroBuit Mmarpuanawmii api6. Josememno 36ixkuicTs MeTomy. Hasemeno pesy-
JIbTaTU YUCEJIbHUX EKCIEPUMEHTIB, 110 HiATBEPIRKYIOTH CIPABEJIUBICTD TEO-
PETUYHUX BUKJIAIOK..

ABsTrACT. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formula for decomposition solution by the ma-
trix continued fractions is proposed. The convergence of the method is proved
and results of the numerical experiments that confirm the validity of the cal-
culations are provided.

1. INTRODUCTION
The most simple matrix equations were being solved in the second half of the
nineteenth century [1]. In default of a common approach polynomial matrix
equations were resolved for a specific partial case.
A new approach for solving equations of the form

Ap X"+ Ay X" L AIX + A =0, (1)

is proposed in this paper. Here the coeflicients A; € RP*P (z = 1,m) and un-
knowns X € RP*P are set on the ring of no commutative matrices.
For example we can consider quadratic equation

XAX +X +B=0, (2)

where A and B are nonzero square matrices of order n with constant coefficients
and X is unknown square matrix of order n.
The equation can be written in the form

(XA+E)X = -B.

Or, assuming the existence of the inverse matrix, in form (XA + E)_1 )

X=—-(XA+E)'B.

For convenience here this notation will be used:
B

(XA+E)'B=—-_—___|
(XA+E) E+ XA

Key words. Polynomial matrix equations; The matrix continued fractions; The convergence
of the method.
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Then, using the insertion method to solve equation (2), the following expansion
of X into a continued fraction is written:
B
X = —E BA (3)
B BA

E —
g B4

Using the similar transformations to solve the matrix equation

AX+XB+XFX+C=0 (4)

we obtain formal expansion of X into the following continued fraction

AF~'B —
X—_F-1B4 —c (5)
AF~'BF — CF
A—-F-IBF+ AFB_C
—F-1BF+
AF~'BF-CF
A-F~'BF+ ¢

Or using the Prinhcheym’s notation for continued fractions
AF~'B — C\ AF~'BF — CF)| Ly AFT 'B - cy
|A— F- 1BF |-F-1BF |A— F~ 1BF

It is known [1] that the problem of optimal control for discrete stationary
control system is reduced to a discrete Riccati equation

ATXA—X - A"XB(R+B"XB) 'B"XA+Q=0. (6)

X=-F"'B+

Here matrices A with dimension n X n and B with dimension n x m describes
the state of the system

x(k+1) = Az (k) + Bu (k).

And symmetric matrices @ and R defines quality criteria
J = Z ) +u” (k) Ru (k)] .

Herewith R is positive deﬁned and @ is positive semi defined.
It turns out that the matrix continued fractions can be used for solving the
discrete Riccati equation (6). After regrouping its members obtain

ATX (A-E-B(R+B"XB) ' BTXA)+Q =0,
or
ATX (A—E-B(R+B"XB)"' B'XBB'4) +Q =0,
From this we obtain

ATX [A— E-B(R+B"XB)" (R+B"XB - R) B‘lA} +Q=0
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and
ATX[A-E-BB'A+B(R+B"XB) RB'A]+Q =0,
So,
X=-(4)'Q[A-E-BB'A+B(R+B"XB)  RB'A] o
Thus, the following recurrent formula can be written for the Riccati equation:
(4" q|

X =-
‘E—I—BBlA—A—B

. 7
RB~1A @
R+ BTXB

Using composition (7) for equation (6) with numerical or symbolic elements,
the following expansion of X into a continued fraction can be written:

e @ael epa () ep
T |E+BBlA-A IR 7 |[E+BBlA-A ®)
R4 . (A7) @B
a IR 7 |E+BB'A-A

It is easy to see, comparing the expansions in continued fractions for equa-
tions (2), (4) and (6), that all of them are derived from a certain kind of schemes
that does not fit into the framework of a single method. Moreover, algorithms
for expansions of solutions in continued fractions are not known for algebraic
numeric equations with two higher orders too.

2. THE COMPUTATIONAL SCHEME OF THE METHOD
The algorithm of expansions into the periodic branched continued fraction

n—1 ) n—1 ‘ n—1 |
x:p0+z|_’ +Z|_"+...+Z oy (9)
i=1 i=1 v =1

|
a q |~
for polynomial numerical equations
"4 a " P+ a2+ . Hap1x+a, =0 (10)

was proposed in [2]. Unknown coefficients p; and ¢; of the fraction (10) are
defined as solutions of systems of linear algebraic equations. However, this
scheme cannot be trivially moved in case of solving matrix polynomial equations
because non commutative multiplication of matrices. But a similar algorithm
can be constructed.

Theorem 1. A solution to equation (1) of the n th order can be represented in
the form of an infinite periodic continued fraction with (n — 1) branches.

Proof. Suppose that matrices (X — Qk)_l (k: =1n— 1) are invertibles and
consider the equality

n—1
X=P+Y (X-Qn " P (11)
k=1
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were P, € RP*P(k=0,1,...,n—1) and Qp € RP*P(k=1,2,...,n—1) are
square matrices with unknown elements. To define them, the method of un-
determined coefficients can be used. We will look for such items py; ; (z =
1,2,...,p;i=1,2,...,p) and qr;; (i=1,2,...,p; j =1,2,...,p) of matrices
Py, and Q) accordingly, that equations (1) and (11) will be equivalent.

Put additional,

Qr=ar E, (12)
where E' identity matrices and their dimensions are equal p. Easy to see that

in this case

n—1

X—Qr X =Q) X ... x (X =Qp—) X =Qp) X ... x X =Qn-1) = [[&X — Q0.

k=1

We reduce fractions in (11) to a common denominator and get

n—1 -1 n—1 n—1
X = [H (X—Qk)] : {H (X = Qi) o+ [ (X —Qk) Pt

k=1 k=1 k=2
n—1 -1 n—1
X =-Q) [ X=Qp)Po+...+ [ (X =Q) ] X-Qx)P+...+
k=3 o k=1 k=l+1
+ kljl (X - Qk:) Pn1:| .
) (13)
Whence we obtain the following equation:
n—1 n—1 n—1
T or-ou|x - T -on+ T - Qure
:n—l - -1 :n—l
X - X-Qu)Po+..+[[(X-Qr) [I X—-Qu)P+...+
k=3 ., k=l+1
=1

For each of the products we can write:
n—1
~JIx-Qu)=—|X"+ X" (-1)" ' Q1Q2... Qu1+
k=1

+ X" 1) H(Q1Q2 - Qo2+ Q1Q2 . Qu3Quo1+. . +Q2Q5 .. Quo1)+
o+ X (Q1Q2+ Q1Qs+ .+ Qne2Qno1) = X (Q1+ Q2+ ... + Qu_1)];
n—1

[IX =@k =X""P+X"?(=1)""QQ2...Qu-1Po+

k=1

+ X" 31D (Q1Q2 - QuatQ1Q2 ... Qu3Qu1+. . +Q2Qs ... Qu_1)Po
+o A X(Q1Q2+Q1Q3+. . A+ Qn2Qn 1) Po— (Q1+Q2+. . . +Qn_1)Fo;
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n—1

[[ X —Q)P=X"2P+ X" (-1)"Q2Qs5... Qu-2Py + X" (=1)" %
k=2

(Q2Q3 ... Qna+Q2Q3...Qn3Qn_1+...+Q3Qs...Qn_1) P+ ...+
+(Q2Q3+ Q2Qs + ... Qn—2Qn_1)P1 — (Q2+ Q3+ ...+ Qn_1) Pi;

-1 n—1

H (X—Qk) H (X Qk) = X" QB —f—X” 3( )n72'

k=2 k=141

Q1Q2 . QuaQrir - Quoa X" (1) X Q1Q2 - Qi Quyr -+ Quoat

+ Q1Q2... Qi-1Qi41 ... Qn3Qn1+...+Q2Q3...Q1_1Qi41 ... Qn_2Qn_1) P,

+ .+ X (QQ3+Q2Qu+. . +Qi1Qi1 +Qi—1Qiy2+. . +Qn—2Qn_1)P—

—(Qi+Q+.. Q1+ Qi+ ... +Qun1) P

n—2

[[X=Qu) Pt = X" PP + X" (1) Qi Q2 - Qu2Qur Par +

k=1

+X"74(— D" HQ1Q2. - .Qu3+Q1Q2...Qpn-a4Qn-a+...+Q2Qs...Qn_2)P,
X (Q1Q2+Q2Q3+. . A+ Qn—3Qn—2)P1—(Q1+Q2+. . . +Qn_2)P,

We now sum up the right sides of the equalities above, with 81multaneously
grouping the coefficients of identical powers of X. Equating coefficients of
identical powers of X, we obtain the following system of equations for the
determination of Py (k=0,1,2,...,n—1) and Qx (k=1,2,...,n —1):

(-1 )”*1621@2 Qn1+P0:A1;

—1k-1 n— —1
(=)™ H IT @ H Q- ZPk+
k=1 =1 1=kt =1

+ (1) Q1Q2. .. Quo1Py = As;
n—3 n—2 n—2 k-1 [-1 n—2
(_1) Z Z (1_5kl)HQT‘ HQT H Qr+

k=11=k+1 r=1 r=k+1 T*l-l—l
n—1k—1 n—1 —1k—-1
+ 3 M@ TQPet (1™ ' Z 1 QP = As;
=1r=1 r=k+1 =1r=1
.. (14)
Z Qr + Z Z QP+ ...+ Z Z (1 = 0pr) QrpQiPr+
k=2 1=k+1 =11=k+1
-2 n—2
+...+ Z Yo QrQiPn—1 = Ap_1;
k=11=k+1
n—1 n—1 n—2
Y QkPiA A Y (1= 0k) QrPr 4 4 Y QP+
k=1 k=1 k=1

n—1
+ Z QrPy=A
k=1

Lif k=1,
where 5’“:{ O;fk:;él.
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If all the chosen (@i are pairwise different, then the latter system
of n equations in n unknowns (14) will become linear relatively unknown
P (k=0,1,2, ...,n—1) and will have a unique solution. Using composition
law (11) for X, we obtain the following expansion in terms of matrix branched
continued fractions. If the left matrix multiplication (X — Q)" P, is denoted

P,
s ———— the recurrent formula for X will look as such:
X — Qg
n—1
X=FP+ E 15
! « X - Qk: (15)

Applying now the composition (14), we obtain the expanse of matrix bran-
ched continued fraction

Py
X=PF, 1 16
O+Z n—1 Pk2 ( )
M= Py —Qpy + 3 P
2= B — Qe+ Y

k’;l.__|_

n—1 Pk
> 0,
ka1 20— Qk,, +

which is what had to be proved. O

To calculate the solution on the computer systems the recurrent formula (15)
is sufficient. But for analytical writing solution and research of its existence
and convergence approaching fractions shall use the theory of branched con-
tinued fraction for expanse (16). But solving equations (1) and (2), (4) and
(6) requires a detailed study of convergence and computational stability of the
matrix branched continued fraction.

Some sufficient signs of convergence for matrix branched continued fractions
have been proposed in [3].

But the convergence of the branched fraction does not necessarily mean the
convergence to the solution of the corresponding equation (1), (3) or (5). So
we will focus on this aspect in more detail and consider the branched continued
fraction

Z ’C;)k:l Z akle Z akleks i Z Ok koks...k; | k’ (17)
ky

‘ bkl ko |bk1 koks |bk1 koks...k;

Here Ay koks.. k; and bk1k2k3,_ki are square matrices of dimension p x p. In [2]
and [3] the following sufficient signs have been obtained.

Theorem 2. If the solution of polynomial matriz equation exists and belongs
to the interval [—N, N, then the expansion by some iterative procedure into the
matriz branched continued fraction (17) with elements that satisfy the conditions
1
Hb < = (k(s)€[1,N];5=1,2,3,...)
&+~

converges to this solution.
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Theorem 3. If the solution of polynomial matriz equation exists and belongs to

N N
the interval |— > Hak(s) Y Hak(s)H , then the expansion by some iter-
k(s)=1 s)=1

ative procedure into the matriz branched continued fraction (17) with elements
that satisfy the conditions

o | < 1

(s=1,2,3,...)

N
1+ 3 larey])
k(s+1)=1

converges to this solution.

These signs can be used to analyze the convergence of matrix continued
fractions (3), (5), (8) and (16). Also, they are simple and easy to use. The
theorems 2 and 3 can be used in practice, particularly in computer algebra
systems, and serve as a basis for other sufficient signs for matrix branched
continued fraction.

Note also, that if signs of convergence are valid, the iterative process (16)
can finish if the inequality

HXkH - XkH <e€

is valid. Here € — given calculation accuracy. This follows from the fact that
in conditions of the theorem 2 and the theorem 3 the absolutely convergent
numerical majorizing branched fractions build for matrix branched continued
fractions (16). And its approach fractions form a monotone sequence.

Estimate the complexity of the algorithm. To obtain Py (k =0,n— 1) and
Qr (k = 1,7) for the system of equations (14) we need to specify the pair-
wise different values for all matrix elements of (Qx. Then, doing generally up
to the principal term n°p? operations of multiplication and n°p?® operations of
addition, we obtain the block system of linear algebraic equations with order
n to determine Pj,. For its solution need to complete an additional n3p3 oper-
ations of multiplication and n3p3 operations of addition. One iteration using
the recurrent formula (11) requires the implementation of 2np® operations of
multiplication and np? operations of addition.

3. NUMERICAL EXPERIMENTS
To verify the practical effectiveness of this approach, a series of numerical
experiments were done in Mat Lab environment. In particular matrix equation

X3+A2X2+A1X—|—A0:O,

was being solved. Here matrix coefficients were equal

2.0000 —3.0000 —5.0000 1.0000  6.0000 —5.0000
As=1 0.2200 0.2510  0.2500 |; A;={ 0.2500  0.2200  0.2510 [;
0.2200 —-0.2340 —0.1300 0.2340 —0.1300  0.2200
136.0000  139.0000  134.0000
Ag=| —272.0240 —-269.0270 —282.0490

—350.2980 —358.7900 —336.5740
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The recurrent formula X = Py + (Q1 + X) ' P14+ (Q2 + X) ' P, was being
used to calculate X.
The matrix coefficients were set as

0.96 0 0 1.92 0 0
Q1= 0 0.96 0], Q1= 0 1.92 0
0 0 0.96 0 0 1.92

Then from equations (15) the following values were calculated
139.9739 121.2717  130.3833

Py = [—285.0969 —287.0854 —293.3430 |;
—364.5170 —374.3781 —358.9099
—141.6651 —135.9117 —139.7833 0.8800 3.0000  5.0000
P = 2854805 281.1371  293.8120 |; Po={—0.2200 2.6290 —0.2500 [;
364.9166  373.8342  351.8643 —0.2200 0.2340  3.0100

For the initial approximation Xy was chosen zero matrix and the following
approximate value of the unknown matrix was received

12.3600 147.9411 -107.2121
X =1 —28.9221 -—-290.3746  224.4685
—36.9221 —363.6585  282.0369

with the following results

Number

S 30 10 50 60 70
of iteration
Norm of ) 5015 | 6.1725E—04 | 9.0636E—06 | 4.9470E—08 | 6.9768E—09
difference

Thus, this approach can be applied to solve scientific and technical problems
in generalized models of V.Leontyev and so on. However, the task of build-
ing a more subtle signs of convergence for periodic matrix branched continued
fractions with broader areas of convergence is still open.
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A GRADIENT METHOD OF SOLVING
INVERSE EIGENVALUE PROBLEM

BoOHDAN PODLEVSKYI, OKSANA YAROSHKO

PE3IOME. Posrisimaerbcst 06epHeHa 3a/1a4a Ha, BJIaCHI 3HAYEHHS, STKa, BKJIIOYAE
KJ/IACUYHI aJUTUBHI Ta MY/JIbTUILIKATUBHI crekTpasbHi 3amadi. Ilokazano
crocib 3BejieHas 06epHEeHol 3a1a4i 0 baraTonapaMeTpuyHOl 3a/1a4i Ha BJIACHL
3HAYEHHS. 3AIPOITOHOBAHO YMCEIBHUI METO BiAITYKAHHS HAOINKEHOTO PO3-
B’S3KY CHEKTPAJIbHOI 33/1a49l MIJISXOM PO3B’sI3aHHS €KBIBAJIEHTHOI i Bapiartiii-
Hol 3aza4i. IIpoBemeno unciiosi ekcriepumenTu Ajid LrrocTparnii poboTu MmeTomy.
ABSTRACT. It is investigated the inverse eigenvalue problem that includes
classic additive and multiplicative spectral problems. It is presented the
method of transformation of the inverse eigenvalue problem to the direct
multi-parameter one. It is proposed the numerical method of calculating the
approximate solution of the spectral problem by solving the equivalent varia-
tion problem. There are several numerical experiments presented in order to
illustrate the behavior of the method.

1. INTRODUCTION

The problem of reconstruction of the matrix of some given structure based
on the given spectral data is well known as the inverse eigenvalue problem, or
in other words, the inverse spectral problem.

Such problems arise in a wide area of analysis investigations and mathemati-
cal physics, namely in the systems of control and identifications, the structural
analysis, the modeling of mechanical systems and so on.

The major common point of all these applications is the fact that the physi-
cal parameters of some system should be restored based on the given dynamical
parameters of the same system. If we describe the physical parameters mathe-
matically and present them in a form of a matrix, we get an inverse eigenvalue
problem.

As it was mentioned above, the needed matrix should have some given struc-
ture. Such structural constraints are not unsubstantial — they add sense to the
spectral problem. Beside that, they define the different types of inverse spectral
problem: additive, multiplicative, multi-parameter, structural etc.

There are two main questions regarding the eigenvalue problem: theoretical
one, concerning the existence of the solution, and practical one, about the nu-
merical method of finding this solution. There is provided a lot of literature
concerning the conditions of solubility and uniqueness of the solution for dif-
ferent types of inverse spectral problem. A variety of methods of calculating
the approximate solution of the mentioned problem is also listed in different

Key words. Eigenvalue problem, inverse problem, variation problem, functional, iterative
procedure.
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sources. See, for example, [1] - [11] and the cited literature). In this article
we will discuss another numerical algorithm of solving the inverse eigenvalue
problem, assuming that the solution exists.

2. INVERSE EIGENVALUE PROBLEM
Let’s consider the following inverse spectral problem.
Problem GIEP (General Inverse Eignevalue Problem).
Provided it is given the complex maltrices of dimensions n x n: Ag, A1, ...,
Ay, € C™ and the collection of numbers X = {\,...,\,,} € C™.
Find such parameters p = {p1,...,pm} € C™ that the eigenvalues of the
matriz

A(p) = Ao +p1Ai + ... + Pl (1)

coincide with the given set of numbers X\ = {1, ..., Ay} € C™.

This problem involves classic partial cases of additive and multiplicative in-
verse spectral problems:

Problem AIEP (Additive Inverse Eigenvalue Problem).

Let A be a given matriz and A = {1, ..., A} € C™ be a given set of numbers.

Find the diagonal matriz D = diag (p1,...,Pm), P1,02,---,Pm € C™, such
that the matrix A+ D has the eigenvalues A\, Aa, ..., A

Problem MIEP (Multiplicative Inverse Eigenvalue Problem).

Let A be a given matriz and X = {1, ..., Ay} € C™ be a given set of numbers.

Find the diagonal matriz D = diag (p1,...,Pm), P1,02,---,Pm € C™, such
that the matrix AD has the eigenvalues A1, A2, ..., Apy.

The question of solvability of such kind of problems, namely AIEP, is widely
explored in the literature (see, for example, [2], [4], [L1]). Beside the theoretical
results there is a lot of numerical methods constructed for solving the additive
inverse eigenvalue problem (see, for example, 1], [3], [5], [7] - [9])-

In this survey we propose another method of finding the approximate solution
of the problem (2.1) in the real Euclidian space. This method is based on a
gradient procedure.

3. PRELIMINARY
Consider the multi-parameter spectral problem in the Euclidian space E™:

TANzx=Ax—\Bix—... = ApBpz =0 (2)

where A = {\1, ..., A\, } € E™ are spectral parameters, z = (x1, ..., zp) € E",
A, By, ..., By, are some linear operators that act in the real Euclidian space E™.

The multi-parameter eigenvalue problem, linear towards the spectral parame-
ters, consists in finding a vector of spectral parameters A = {\1, ... ;A\, } € E™
such that there exists a non-trivial solution z € E™\{0} of the equation (3.1).

Let’s put the variation problem of minimization of the following functional
in correspondence to the spectral problem (3.1):

F(u) = % 1T (N 23y, Yu={z,A\} € H=(E"\{0}) ® E™ (3)
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The problem of minimization of the functional (3.2) consists in finding such
set of parameters A = {\1,..., A\, } € E™ and corresponding vector x € E™\{0}
that the functional F'(u) reaches its minimum value:

F(u) - min, weUCH, (4)

where U is the set with points u = {z, A} that satisfy the equation (3.1),
H is an Euclidian space with the scalar product and the norm defined in a
standard way:

(u0) 1 = (1, 02) g + (o1, v2) s [l gy = 2/t B+ 01 B

u={uy,v1},v={ug,va},us,ug € E™, v1,v9 € E™.

In the article [8] it is shown that the spectral problem (3.1) and the variation
problem (3.3) are equivalent. This means that each eigen pair {z, A} of the
problem (3.1) is the point of minimum u = {z, A} of the functional (3.2), and
vice-versa.

This result lets us construct the gradient procedure of numerical solving of
the problem (3.3) and thus, of the problem (3.1), in the following form:

U1 = up — Y(uk)VF(ug) , k=0,1, 2, .. (5)

The relation (3.4) describes the whole class of methods that differ only by
the choice of the step value ~y(uy).

In this article we will calculate the value v, = 7y(uy) at each step of the
process by using the formula:

= % (6)
IVF (w3
From this point here, in order to make the formulas more easy to read, we
will omit the index H in the denotation of the scalar product and the norm.
So, the iteration process can be written as following:
Uiy = 1y — )
IV E (ur) |12

where the gradient of the functional has the structure

Yk

VF(u) , (7)

VE (u) = {(T*Tx,el) oo (T7T, ), <Tx7 g)j\;x) (Tx, ;Ame)} (8)

Here T = T (X), and e; € E™ is the vector, the i-th co-ordinate of which is
equal to 1 and all the others co-ordinates are 0.

If the starting approximation is chosen in some sense close enough to the
eigenvector and the vector of eigenvalues, then the iteration process (3.6) con-
verges to the stationary point of the functional (3.2) u* = {z*,A*}. In this
point the minimum of the functional is reached. Note, this means that the
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process converges to the eigenvector z* and the vector of eigenvalues A* of the
problem (3.1).

Thus, for the iteration process, described above, the following theorem is
true:

Theorem 1. [8] Let the gradient of the functional (3.6) satisfies the Lipchitz
condition

IVF(u) ~ VEE| < Lllu—2|, Vu,z€U, L>0 (9)

where U is a closed convex set that contains the solution u*. If for some starting
approximation uy = (o, )\(0)) € U the following condition is true

0 <0 =7(u) <1/2L, (10)

then the iteration process (3.6) converges to the point of minimum of the func-
tional (8.2) vw* = {x*,\*} and, thus, to the eigenvector x* and the vector of
eigenvalues X* of the problem (8.1). Which means that the relations below are
true:

klim plug,Uy) = klim plug,u™) =0 (11)
klim F(ug) =F(u*)=0 (12)

4. ALGORITHM OF SOLVING AN INVERSE SPECTRAL PROBLEM
Consider an inverse eigenvalue problem of type (2.1) with the real matrices
Ag, A1, .oy Ay, € E™ and where the pairs {)\k,xk}zlzl are the eigen pairs
of the matrix A(p). Here A = {\1,..,\n} € E™, 2F € H = E"\{0}, k =
1,2,...,m, E is the real Euclidian space.
By using the definition of an eigen value and a corresponding eigen vector,
we can write as following:

Ale) " = \2F, FeH, k=1,...m
Thus, we get the system of m equations to find the parameters p1, ..., pm:
(Ao = MI) + prAs + ... + pmAp) 2! =0,

(13)
((AO - )\mI) +p1Ar + .. "‘pmAm) ™ =0,

Let’s transform this system so that it has the structure (3.1). For this reason
consider the matrix operators A, B, : H—H, H = % EYN i =1,..,m:

k=1
(Ao — M) 0
A= (14)
(AO - )‘mI)
—A; 0
B; = (15)
0 —A;
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In case x = (2!, 22, ..., 2™)T € H, we get
Ax = ((AO — Ml xla (AO - )\21)1‘2, X (AO - )\m-[)mm)7

B,L‘X = (—Ai.l‘l, —AiJEQ, cee —Azxm)

Now we can proceed from the problem (4.1) to the problem of type (3.1) in
the space H.

T(p)=Ax—p1Bix— ... — p,Bpx =0 (16)

So, we configured the problem of finding such set of parameters py, ..., Pm,
that the equation (4.4) has a non-trivial solution x € H\{0}.
Now let’s put a variation problem in correspondence to the problem (4.4):

F(u) - min, ueUCH,

where

Fw) =3 IT(0)xly, Yu=(xp} e A=He " a7

The task is to find the set of parameters p = {p1,....,pm} € E™ and the
corresponding vector x € H\{0}, for which the functional F (u) reaches its
minimum value. For this variation problem we will apply the iteration process
(3.6).

So, the algorithm consists of the following steps:

Step 1. Select the starting approximation.

Step 2. Build the matrices A, B;, i = 1,...,m by using the formulas (4.2),
(4.3).

Step 3. for £ =0,1,2,... until the exactness is reached do:

Step 4. Calculate T'(py) by using the formula (4.4).

Step 5. Calculate F(uy) by using the formula (4.5).

Step 6. Calculate VF(ug) by using the formula (3.7).

Step 7. Calculate the next approximation w1 of the solution by using the
formula (3.6).

end for k

Step 8. Extract the pgpi1 components of the vector ugi1 = {Tr+1,Pkr1}
which is the needed approximate solution.

Step 9. End.

5. NUMERICAL EXPERIMENTS
Let’s demonstrate how the algorithm works on two examples below.
Example 1. [7]. Consider the following inverse eigenvalue problem:

15 0 0 0 05 0 0 0 0100

0 100 0 000 1 100
Ado=1"9g og92 0= 0000|2000 0]

0 0 0 1 0 000 0000
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A3: 1A4:

O =R OO
OO OO
SO OO
OO OO
_ o O O
_ oo O O
— = = O

1
0
0
0

A(p) = Ao+ p1A1 + paAa + p3Az + psAa.

Where n = m = 4, the eigen values are given: A\ = {0,2,2,4}. The exact
solution of the problem is also known p* = {1,1,1, 1}.

Let’s choose the starting approximation of the parametrs p;,7 = 1,2, 3, 4.

a) p© = {1.1,0.9,1.1,0.9} , as it is proposed in [7], which is quite close to
the exact solution;

b) p® ={0.1,0.2,0.3,0.4}, which strongly differs from the exact solution.

Note, that in [7] the starting approximation is given only for the parameters.
However, to apply the method proposed in this article we also need to select
the approximation of the eigen vectors 2@ In order to choose the correct
values :E(O), we did the following calculations: for the given parameters p0 =
{pgo), ...,pgg)} we built the matrix A (p(o)) = Ay + pgo)Al + o+ pgg)Am and
found the eigen values and the corresponding eigen vectors of this matrix by
using the software application Matlab. Then we accepted these eigen vectors
as the starting approximation z(©) for the method (3.6).

There were used two different stop conditions for the iteration process:

1. The value of the functional becomes zero, which means that F' (u(kﬂ)) <
e, &=10"? where uwktl) = {x(k+1),p(k+1)} is the k-th approximation of the
solution of the problem, k = 0,1, ....

2. The norm of deviation between the values of the parameters on two
iterations p*) and p**+1) becomes sufficiently small: Hp(k) - p(k+1)“ <eg €=
1079, k=0,1,....

The results received in the cases a) and b) of starting approximations are
presented in the Table 1 and the Table 2 respectively. Note, that each table
contains two approximate solutions that correspond to two stop conditions of
the iteration process.

TaBL. 1. Approximate solutions of Example 1, case a

p* p©@ | pm+1) Stop cond 1 | p™+)| Stop cond 2
1 1.1 1.0000403787 1.0000000123
1 0.9 1.0000199351 1.0000000061
1 1.1 1.0000266736 1.0000000081
1 0.9 0.9999747545 0.9999999923
F 9.37e-31 | 0.02 | 8.4065983153e-11 9.2005057095e-18
lp —p*|l 0 0.2 5.8109138139%e-5 1.7748612738e-8

In the tables it is also given the value of the functional in the point of starting
approximation, F* = F (u(o)), the point of approximate solution, F' = F (u),
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TABL. 2. Approximate solutions of Example 1, case b

p* p© | p(m+D) Stop cond 1 | p™*Y), Stop cond 2
1 0.1 0.9999582549 0.9999999786
1 0.2 0.9999782404 0.99999998838
1 0.3 0.9999714938 0.9999999854
1 0.4 1.0000265629 1.0000000135
F 9.37¢-31 | 1.89 | 7.1596842832¢-11 | 1.9824859739¢-17
lp —p*|| 0 1.52 | 6.1109094783¢-5 3.1269595091¢-8

and the point of exact solution, F* = F (u*). In this way it can be seen that
the value of the functional decreases, as it was expected.

Example 2. Consider the given inverse spectral problem, where the matrices
A; are the Toeplitz matrices. Note, that similarly to the previous example here
n=m.

A (p) = AO +p1Al + ... +pnAn

Ao=0,A, =1,
0 1 o --- 0 o o0 --- 0 1
1 0 1 0 0
AQ_ 0 1 0 ) 7An—
: . .0 1 0o - . .0
O --- 0 1 0 1 0 --- 0 O

Let’s solve this problem for n = 5. In this case the exact values of the
parameters are p* = {—1.8, 1.9, 2.5,0.08, 1.2}.

The chosen starting approximations of the parameters p;,2 = 1,...,5 are the
following: a) p©® = {1, 1, 1, =1, 1} ; b) p® = {0, 1, 1, 0, 1} .

In order to select the starting approximations of the eigen vectors (9 we
did the same calculations as it was explained in the Example 1. The received
results are presented in the Table 3 and the Table 4 for two cases of starting
approximations.

Similarly to the Example 1, there were used two conditions to stop the iter-
ation process. By analyzing the received values of the functional in the points
of starting approximation, approximate solution and exact solution it can be
seen that they go down to the minimum (zero) value, as expected.

Let us also note, that the analyzed examples had been solved by using two
variants of the Newton method presented in the articles [1] and [3]. This ex-
periment showed that the iteration processes of the Newton methods [1| and
[3] do not converge to the exact solution if the selected starting approximation
strongly differs from the exact values. The method presented in this survey, on
the contrary, does converge to the exact solution in case of the same starting
approximations.
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TABL. 3. Approximate solutions of Example 2, case a

p* p©@ | pm+D) Stop cond 1 | p™*+Y), Stop cond 2
-1.8 -1 -1.8000000001 -1.8000000001
1.9 1 1.9000000048 1.9000000184
2.5 1 2.4999999976 2.4999999865
0.08 -1 0.0800000037 0.0799999959
1.2 1 1.1999999837 1.1999999674
F 1.94e-29 | 12.62 | 3.7755871274e-10 1.1228316897e-9
lp — p|| 0 2.22 | 1.7159808703¢-8 3.9948275161e-8
TABL. 4. Approximate solutions of Example 2, case b
p* p@ | p(m+D) Stop cond 1 | p(™*Y, Stop cond 2
-1.8 0 -1.8000048843 -1.8000048843
1.9 1 1.9000646818 1.9000646818
2.5 1 2.4999533405 2.4999533404
0.08 0 0.0799945432 0.0799945431
1.2 1 1.1998789745 1.1998789744
F 1.94e-29 | 17.56 3.5156195443e-6 3.5156195443e-6
lp — p*|| 0 2.52 1.4512640324e-4 1.4512640324e-4
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TWO-STEP COMBINED METHOD FOR
SOLVING NONLINEAR OPERATOR EQUATIONS

STEPAN SHAKHNO, HALYNA YARMOLA

PE3IOME. V¥ crarTi BUBUEHO HAMIBIOKAJIbHY 3012KHICTH JBOKPOKOBOrO KOMOI-
HOBAHOTO METO/Y JJIsT PO3B’SI3yBaHHs HETIHIHUX OTIEPATOPHUX PIBHSIHB, T00Y-
JOBAaHOTO Ha 0a3i BOX METO/IB 3 mMOpsakaMu 30ixKHOCTI 1 + V2. Amamnis
3012KHOCTI IIPOBEIEHO 32 y3araJibHEHUX YMOB JIIMIIAIS [UTs HePIuX 1 APyrux
MIOXITHUX Ta MOILTEHUX DI3HUIH MEPIIOTO MOPAIKY.

ABsTRACT. In this paper we study a semilocal convergence of the two-step
combined method for solving nonlinear operator equations. It method is based
on two methods of convergence orders 1 + /2. Convergence analysis is pro-
vided for generalized Lipschits condition for Frechet derivates of the first and
second orders and for divided differences of the first order.

1. INTRODUCTION
Consider the equation

H(z) = F(z) + G(z) =0, (1)

where F' and G are nonlinear operators, defined on a convex subset D of a
Banach space X with values in a Banach space Y. F'is a Fréchet-differentiable
operator, G is a continuous operator, differentiability of which is not required.

The well-known Newton’s method cannot be applied, as differentiability of
operator H is required. For solving nonlinear equation (1) very often use the
two-point iterative process [1]

o1 = Tn — AN (Fan) + Glzn)), n=0,1,..., 2)

where A, = A(xp_1,2,) € L(X,Y). The convergence analysis of the
method (2) in general and for A, = F'(x,), A, = F'(zn) + G(xn_1;24),
A, = H(xp—1;2y) and its modifications was provided by authors [1, 2, 3, 4, 5,
6, 18]. Here G(z;y) (H(x;y)) is a first order divided difference of the operator
G(H) at the points x and y [13, 14, 15|. In papers |7, 11] we researched a
semilocal convergence of the method (2) for A, = F'(x,) + G(xp—1;xy,) and
A, =F'(xp) + G2z, — xp—1;Tn—1).

In works [10, 12] we proposed a two-step method that is based on the methods
with the convergence orders 1+ /2 [9, 17]. Its iterative formula is:

Tp4+1 = Tn — |:F/<W) + G(ﬂﬁmyn)} _IH(x'fL)v ( )
3
Yn+1 = Tp4+1 — [F,(%T_'_yn> + G(Sﬂn, yn)} 71H(:Cn+1), n=0,1,....

Key words. Generalized Lipschitz condition, nondifferentiable operator, semilocal con-
vergence.
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We provided a local and a semilocal convergence analysis for method (3) under
classical Lipschitz conditions for the first and second order derivatives and
divided differences of the first order and established the convergence order.
Also we showed results of the numerical solving of the nonlinear equations and
systems of nonlinear equations by this iterative process. In paper [8] we proved
the local convergence theorem of the (3) under generalized Lipschitz conditions.

In this paper, we study the semilocal convergence of the method (3) under
generalized Lipschitz conditions for the first and second order derivatives and
divided differences of the first order. These conditions are more general and
include classical Lipschitz conditions. Therefore our results have the theoretical
interest.

2. PRELIMINARIES
We will need the following definition and lemmas |8, 16].

Definition 7. Let G be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y and let z, y be two points of D. A
linear operator from X into Y, denoted as G(z;y), which satisfies the condition

G(z;y)(z —y) = G(z) — G(y)
is called a divided difference of the first order of G at the points x and y.

In the study of iterative methods very often use the Lipschitz conditions with
constant L. Parameter L under Lipschitz conditions does not necessarily has
to be a constant, but may also be a positive integrable function. In work [16]
Wang suggested generalized Lipschitz conditions for the derivative operator in
which instead of constant there was used a certain positive integrable function.
In the work [9] we introduce analogous generalized Lipschitz conditions for the
divided difference of the first order operator.

Let us denote as Uy = {z : ||z — o] < 70} a closed ball of radius rg with
center at the point zg. If L in Lipschitz conditions is a positive integrable
function, we consider the conditions

|lz—yl|
IF'(@) — Fy)] < / L(u)du, 2,y € Up 4)
0
and
|z—ul|+[|y—vl|
1G(a:) — Glusv)| < / M(2)dz, 2y, u0€Uss  (5)
0

where L and M are positive integrable functions. Lipschitz conditions (4) and
(5) we will call generalized Lipschitz conditions or Lipschitz conditions with
the L (or M) average. Note that in the case of constants L and M we obtain
from (4) and (5) the classical Lipschitz conditions.

1 t
Lemma 1. [16]. Let h(t) = t/ L(u)du, 0 <t <r, where L(u) is a positive
0

integrable function that is nondecreasing monotonically in [0,7]. Then h(t) is
nondecreasing monotonically with respect to t.
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1 t
Lemma 2. [8]. Let g(t) = t3/ N(u)(t —u)?du, 0 <t <r, where N(u) is a
0

positive integrable function that is nondecreasing monotonically in [0,7]. Then
g(t) is a nondecreasing monotonically with respect to t.

3. SEMILOCAL CONVERGENCE ANALYSIS OF THE TWO-STEP
ITERATIVE PROCESS (3)
We can show the following semilocal convergence theorem for the method
(3). Imposed terms guarantee the convergence of the iterative process (3) to
the solution x* and its uniqueness.

Theorem 1. Let F' and G be nonlinear operators, defined on an open convex
subset D of a Banach space X with values in a Banach spaceY . F 1is a Fréchet-
differentiable operator, G is a continuous operator, differentiability of which is

M) + G(x0; yo),

where xo, yo € D, is invertible and in Uy = {z : ||z — x| < ro} C D the
Lipschitz conditions are fulfilled

le—yl
1A (F" () = F' ()] </ L(z)dz, (6)

not required. Assume that the linear operator Ag = F’

lz—y H
1A (F" (@)h — F"(y)h)|| < Hh!/ , heX, (7)
. lz—ull+lly—vll
145 (G(z;y) — Gu; 0))] S/O M(z)dz, (8)
where L, M, and N are positive integrable and nondecreasing monotonically
functions.
Let a, ¢ (¢ > a), 7o be nonnegative numbers such that
lzo = woll < a,  [|AG (F(=0) + G(wo))|| < ¢ (9)
c (2ro—a)/2 2ro—a
ro > 1 , / L(z )dz+/ M(z)dz < 1, (10)
-7 0

;c/OCN()(lc)dz+/(ca dz+/ M(z
1_f02r0 V2 L()dz — 2070 1(2)

Then the iterative process (3) is well—deﬁned and sequences {xn tn>0, {Yn}n>0
generated by it remain in Uy and converge to the solution x* of equation (1)
and, for alln > 0, the following inequalities are satisfied

vy = , 0~y <1

[Zn — Tng1ll < tn =ttty Yn — g1l < sp — o, (11)
[n — 2% <t — 1% lyn — 27| < sp — 17, (12)
where sequences {t, }n>0 and {sp}n>0 defined by the formulas

to=ro, so=ro—a, t1=ry9—c,
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tnt1 = lng2 =
_1 Jo N(2)(c = 2)*d2(ty, — tns1)? N
— ]¢3 1— (tO_tn+1+SO—Sn+1)/2 ( )ClZ t0—tnt1+50—Snt1 M(Z)dz
fo(c—a)/Q h (13)
[fo 2)dz+ [y ° )dz} (tn = tnt1)(sn — tnt1)
c—aq_ fo(to—tn+1+so—sn+1)/2 L( )dz fto tnt1+50—Snt1 M(Z)dz’
n >0,
tpy1 — Spt1 =
= 1 fOCN(Z)(C - Z)2dz(tn —ta1)? I
8c3 1— (t()*tn+80*8n)/2 to—tn+50—5sn M( A=
Jo - Jo ) 1)

[fo(c_a)/QL z dz—i—fc aM z)dz} (t —tn+1)(3n _tn+1)

+C—a 1— O(to tn+so— Sn)/2 ( )dZ fto tn+s0—sn M( )d
n>0

)

are nonincreasing nonnegative and converge to certain t* such that

C
To—ligt*<t0.

Proof. Let us show by the mathematical induction method that, for all £ > 0

Bept > ka1 > trsa > 70 — ﬁ >0, (15)
te1 — ter2 < (e — the1)s e — Sk1 < V(k — tht1) (16)
are satisfied. For k = 0, from (13) and (14), we get
o 1 foc N(2)(c— 2)%dz(ty — t1)?
1—te=—=
1 fo(to—t1+80—81)/2 L(Z dZ . fgo_tl+30_31 M(z)dz
[fc V2 L()dz + f50 M(2)d2] (to — t1)(s0 — 1)
+
c—al_— f0t07t1+80781)/2 L(z)dz _ f507t1+80*81 M(z)dz
and
c 1—72d+ (c=a)/2 z)dz + dz
ta=ro—c— [ fo (2ro a)/2 f 2r0 anr f ) }CZ
11—/ L(z)dz — M(z)dz
(1-~%)ec

C
> g — —— > 0.

>rg— (1 =17y —
> m = (1o =m— o g -

Similarly, we have

1 C
t1 — s = 803/ N(z)(c— z)de(to — t1)3—|-
0

+ 1 [/0(ca)/2 L(z)dz + /Oca M(z)dz} (to —t1)(s0 — t1)

c—a

133



STEPAN SHAKHNO, HALYNA YARMOA

and

s1=rg—c— [éc/oc N(z) <1 — E)de + /O(C_a)/2 L(z)dz + /Oc—a M(z)dz} c.

Cc

From the last equalities it follows that

C
t1 = t2, s1 2 to, t12812t227’0—1720-
-

Assume that that inequalities (15) and (16) are satisfied for k = 0,n — 1.
Then, for k = n, we obtain

lnt1 —tny2 =
i N (e - 2)Pda(ty — o)
8c3 1 _ fo(toftn+1+8078n+1)/2 L(z)dz — 50*t7b+1+5075"+1 M(z)dz
5" 1) + f5" M=] tn — ) o — i)
c—aq_ fo(to*tn+1+50*5n+1)/2 L(z)dz — fgoftnﬂ“ofs*”“ M(z)dz

- %c foc N(2)(1 - %)de + focfa)/Q L(z)dz + focfa M(z)dz

_|_

(tn —tn 1) —
1-— f()(2m_a)/2 L(z)dz — f;ro_a M (z)dz i
=Y(tn — tnt1),
1 Jo N(2)(c = 2)%dz(tn — tns1)?

tnt1 — Spi1 = +

8?1 _ fo(tofthrsofsn)/Q L(z)dz — f(;fofthrsofsn M(2)dz
LT L+ f M)zt~ ) (50— tas)

c—a 1_ f()(to_t"+so_8")/2L(z)dz _ fgo—tn+so—sn M(2)dz <

_ Sy N1~ 2)%dz + Jlem O L)z + [0 M(2)d2

N 1-— fO(QTO*a)/Q L(z)dz — fosza M(z)dz

=7(tn — tnt1)

+

(tn - thrl) —

and

tnt1l = Snt1 2 tngo 2ty — Y(tn — thy1) 2
1— n+2 c
> > —— >0
11— 1—7
So, we prove, that {t,}n>0 and {s,}n>0 are nonincreasing, nonnegative se-
quences and converge to t* > 0.
Let us prove, by mathematical induction, that the iterative process (3) is
well-defined and inequalities (11) are satisfied for all n > 0.

Taking into account (9) and that ¢ty — t; = ¢, we establish that x1 € Uy and
(11) are satisfied for n = 0.
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Denote A,, = F’(

and (8), we have

T ‘21‘ yn) + G(2n; yn). Using the Lipschitz conditions (6)

I — A" Anal| = 145 [Ao — Ana]l| <

< HAal[F'(xOTW) - F’(M) + G(z03y0) — G($n+1;yn+1)]H =

2
(lzo=zn+1ll+llyo—yn+1ll)/2 lzo—@nt1ll+yo—yn+1ll
§/ L(z)dz—l—/ M(z)dz <
0 0
(t07t7L+1+3073n+1)/2 t07t7L+1+3073n+1
§/ L(z)dz—l—/ M(z)dz <
0 0

(to+s0)/2 to+so
< / L(z)dz +/ M(z)dz < 1.
0 0

According to the Banach lemma on the invertible operator, 4,41 is invertible
and

[Ani Aol <
< (1 _ fo(llxo—xn+1||+||yo—yn+1||)/2 L(z)dz — fono—In+1H+Hyo—yn+1H M(z)dz)

Let us prove that iterative process (3) is well-defined for k = n 4 1. Taking
into account the definition of the first order divided difference, conditions (6),
(8) and identity [17]

Fw) - F) - P e -n =1 [a-0[F (S b -v)-
e +y+t@—xDLMx—mm—yx

2 2
we obtain
|Ag  H (z011)]| =
_ Tpn + X
~ 145" [Fanin) = Fla) = /(205050 (00— )+
Tn + @ +
+ Fl( = 2 n+1>(xn+1 _xn) - Fl(xn 9 yn>($n+1 _xn)+

(xn-‘,-l) (xn) - G(xn;yn)(xn-&-l - xn)] H <
1 flen—znll )
i/ N0 = sl = )Pdz+
lyn—xn+1ll/2
+/’ L(2)dz e — wosa |+
0

lyn—2n+1l|
+/ M (2)dz||xn — zpi1 |-
0

<

135



STEPAN SHAKHNO, HALYNA YARMOA

Denote

1

[
A, = 8/0 N (|2 — 2nsa || — 2)%dz,

B, = fOHyn*In+1”/2 L(2)dz, Cp = fOHyn*In+1“ M(z)dz,
Qni1=1-— fO(HIO_$n+1H+Hy0—yn+1H)/2 L(z)dz — follﬂﬁo—wn+1\|+|ly0—yn+1ll M (2)dz.

Hence, taking into account lemmas 1, 2 and inequalities (11), we have

|Zn+1 = @nsall = 1A H (@)l < A7 Aol A5 H (s || <
< Ap + [Bn + Colllen — zpa || _
N Qn+1
_ Apllzn — $n+1||3 [Bn + Chlllzn — Znt1llllyn — Tl <
Qniillzn — Tnya]? Qn+1llyn — Tnsa | N

Aollzn = znia|l> | [Bo+ Colllen = zniallllyn = zniall _
~ Qnitllwo — 1|3 Qnt1llyo — 21 -
< 1 fg()ih N(z)(to — t1 — Z)de(tn - tn+1)3
< 8(t0 — t1)3 1_ fo(tgftn+1+sofsn+1)/2 L(z)dz . fgoftn+1+sofsn+1 M(z)dz
) [ O(so—tl)/2 L(z)dz + fOSO—tl L(Z)dZ:| (tn — tn+1)(sn — tn+1)
so—1t11— f()(toftn+1+5075n+1)/2 L(z)dz - ng*tn-l»l‘i’SO*Sn-ﬁ-l M(z)dz =
1 foc N(2)(c— 2)%dz(tn — tni1)?
T 83 1_ f()(to—tn+1+80—8n+1)/2 L(z)dz _ go_t”+1+80_8”+1 M(z)dz
[focfa)m L(z)dz+ [;° M(z)dz} (tn, — tnt1)(Sn — tnt1)

c—aq_ fo(tO_tn+1+50_5n+1)/2 L(z)dz _ [to—tnt+1+S0—Sn+1 M(z)dz -

+

+

0
=1tpt+1 — tnt2
and
[Znt2 — Yntall = 1A, L H(zng2) || < 14,1 Aol AG H (2 42) || <
< Apy1 + [Bpyr + Cogall|zn — 2paa| _
o Qn—H
_ Aptal|Tn — $n+2||3 [Brt1+ CoialllTnit — znrallllyny1 — o2l <
Qni1llTn — Tpir]3 Qnt1lYn+1 — Tnt2|| -
Aollzni1 — zni2ll® | [Bo+ Colllznis — zniolllynt1 — Tniol]
= Qnyillzo — 21 ? Qn+1llyo — 1] -
1 Jo' T NE) (o = 1) = 2)%d2(tatr — taga)?

—+

S8(75 —75)3 _ r(to—tnt1+so—snt+1)/2 _ [to—tnt1+S0—Sn+1
0= h)"1— ) L(z)dz — [, M (z)dz
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1 {f()(swtl)/z L(z)dz + f(fo*tl M(z)dz} (tn1 — tnt2)(tng2 — Snt1)
%—SU T 47Jgto—tn+1+so—sn+1wﬂ_L(Z)dz 4—jg°_¢”+1+6°_5”*‘.ﬂl(z)dz
1 Jo N(2)(c = 2)°dz(tns1 — tnr2)®
831 _ fo(to—tn+1+so—sn+1)/2 L(z)dz — [lo~tmsFo=sni Np()d,
LR L)z + [ M) (it — o) (Smi1 — tuse)

c—a 1_ fo(to—tn+1+so—8n+1)/2 L(z)dz . OtO_tn+1+SO_Sn+l M(z)dz

+

=tpi2 — Spi2.
Thus, the iterative process (3) is well-defined for all n > 0. Hence it follows
that
HZEn—l‘kH < tp =g, ||yn_xl€|| < Sp— 1k, ”yn_ka <sp—sk, 0<n< k? (17)

i.e., the sequence {zy}n>0 and {y,}n>0 are fundamental in a Banach space X
and convergence to x*. From (17) for k — oo it follows inequalities (12). Let
us show that z* is the solution of the equation (1). Indeed,

1 1 |7 —2nt1ll 9
45 Hen)l < 5 [ N()(lan — wniall - 2)2dz+
_|_f0||yn—xn+1H/2 L(2)dz||zn — o || + follyn—anH M(2)dz||zn — Tns| <
1 5 lyn—antall/2
< 3N Ulen = zasilDllen = enall+ [ L(2)del|n — nsa |+
0

[Yn =2t
—|—/ M(z)dz||xyn — pt1]| — 0, when n — oo.
0

Thus, H(z*) = 0. The theorem is proven. O

Theorem 2. Let F' and G be nonlinear operators, defined on an open convez
subset D of a Banach space X with values in a Banach space Y. F is a Fréchet-
differentiable operator, G is a continuous operator, differentiability of which is
not required. Assume that:

1) conditions of Theorem 1 are satisfied;

2) ro from Theorem 1 additionally satisfies condition

1 T 27\ 2 (ro—a)/2 ro—a
7“0/ N(z)(l - —) dz—l—/ L(z)dz—l—/ M(z)dz
8 " Jo 0 0

"= "0 < 1.

1— [Prom®2 L) dz — [2707 M(2)dz

(18)

Then the iterative process (3) is well-defined and generated by it {xn}n>0

belongs to Uy and converges to the unique solution x* of the equation F(z) =0
mn U().

Proof. To show the uniqueness, we assume that there exists a second solution

.
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Using the approximation

Tpy1 — o =2, — 2% — AV H () — H(2*)] =

n

_ A w(@) (n — ) — F(zn) + F(z*)] +

+ A, G (n; yn) — Glan; )] (2n — 2*%),

we obtain
lonss — 2l < [| 45" [F(W) (20— 2™) = F(an) + F@™)] |+
A G (@ns yn) — Glan; x* )] (@n —2™)| <
<[l [P () Fon) +Fa™)| |+
)-
) —

"11

) (5

+||A [ (%0} Yn G(zp; x* )](w —$**)H§

< 1451 Aol 45 [ @)~ F@) = P (P o)+

2
_ Ty + Ty + 2" sk
tagtad g [ (2) < (5 -1
+HA_1A0H||A*1[ (@3 Yn) = G(zn; )] [[l|lzn — 2| <
tllxn x|
1 N(z)dzdt e
Q@n
||yn*95**||/2 L(z)dz llyn—a™|| M( )d
+=0 Ty — |+ 20 T, — | =
. |2 | on £ |
B 4 0||xn | N(z )fz/”mn I**“( t)dzdt”xn—x**”2+
Qn
j‘”yn—z**H/ZL dZ—i—nyn_z |l M( )d
+=0 [an — 2™ <
Q@n
B 8 0||9cn—m || N( )( m)2d2|’xn_x**”2
Qn
||yn*95**“/2 d lyn—a* ”M dz
+h Ll O 2 <
Q@n
<yl — 2| < o < APl — 27,
which implies 2** = lim x,, = «*. The theorem is proven. a
n—oo

Let L(z) = L = const, N(z) = N = const and M(z) = M = const. Then
we get the following result.

Theorem 3. Let F' and G be nonlinear operators, defined on an open convex
subset D of a Banach space X with values in a Banach spaceY . F is a Fréchet-
differentiable operator, G is a continuous operator, differentiability of which is
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o + Yo

not required. Assume that the linear operator Ag = F’ ) + G(x0;90),

where xo, yo € D, is invertible and in Uy = {z : ||x — x| < ro} C D the
Lipschitz conditions are fulfilled

1A (F" () = F' ()l < Lz — yll,
1A (F"(2)h — F"(y)h)|l < Nz = yllAl, b€ X,
145 (G(z3y) = G(w )|l < M(Jlz —ull + |y — l)),

where L, M and N are positive numbers.
Let a, ¢ (¢ > a), 7o be nonnegative numbers such that

lzo — yoll < a, || Ay (Fwo) + G(x0))|| < ¢,
ro > ﬁ (L/2 + M)(2ro —a) < 1,

_ AENJ24+ (L)24 M)(c— a)

- 1—(L/24+ M)(2rg—a)

Then the iterative process (3) is well-defined and sequences {xy }n>0, {yn}n>0
generated by it remain in Uy and converge to the solution x* of equation (1)
and, for all n > 0, the following inequalilies are satisfied

0<~y<1.

Hxn - xn—l—l” <tn— tn+1, Hyn - xn—l—lH < sy — tn+1;
[wn —2*|| <tn =t |lyn — 2" < 50—t

where sequences {ty}n>0 and {sp}tn>0 defined by the formulas

to=ro, So=r9—a, t1=ry9—c,

tnt1 —tpt2 =
N(tn — tn+1)3/24 + (L/2 + M)(tn — tn+1)(3n — tn+1) n>0
1—(L/24 M)(to — tnt1 + S0 — Sn+1) ’ -7 (19)
lnt1 — Snt1 =
N(tn - tn+1)3/24 + (L/2 + M)(tn - tn+1)(3n - tn—H) n>0

1—(L/2+M)(to—tn+80—8n) ’
c
are nonincreasing nonnegative and converge to certain t* such that ro—li <
-
<t < 1.

Remark 1. If F(z) =0, L =0 and N = 0 then the sequences {t,}n>0 and
{sn}n>0, defined by the formulas (19), reduce to similar ones in [9] for the case
a=1.
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NUMERICAL ANALYSIS OF THE GIRKMANN
PROBLEM WITH FEM/BEM COUPLING
USING DOMAIN DECOMPOSITION

ANDRIY STYAHAR

PE3IOME. Mwu posrisimaemo moemnany mojenb s 3agadi [ipkmana. s
3a7a9a [0JIAra€ B O09HUC/IeHH] II0CKOro 1edOpPMOBAHOTO CTAHY I TijIa, IO
CKJIQJIAETHCS 3 OCHOBHOI YACTWHYW Ta TOHKOI YACTWHU, IO MPUKPIMJIEHA 10
ocHOBHOI dacTuram. s mo0y/10Br HAGIMKEHOTO PO3B’s3Ky ITi€l 3a/adi Mu
BHUKOPUCTOBYEMO MeTof, rpanunanux enementis (MI'E) ta meron cxinuennmx
enementis (MCE), noemnani 3a I0MOMOTOI0 aJTOPUTMY JEKOMIO3HITT 00J1ac-
Teii. HaBesmeno pesynbrartu dmcioBux ekcrepuMeHTiB. IlopiBHsSIHO Hampyxe-
HO-71eDOPMOBAHMI CTAaH KOHCTPYKIIM 1 Pi3HUX HGOPM 0OOJIOHOK.

ABsTrRACT. We consider a coupled model for the Girkmann problem. The
problem involves computation of the plane strain state for the body which
consists of a massive part and a thin part, which is attached to the massive
part. For the numerical solution of this problem we use boundary element
method (BEM) and finite element method (FEM) for different parts of the
body, which are coupled using domain decomposition. We provide the re-
sults of some numerical simulations. The stress-strain state for the structures
having shells of different shapes are compared.

1. INTRODUCTION

A lot of structures, that occur in engineering, are inhomogeneous and contain
thin parts and massive parts. Therefore, it is important to develop both ana-
lytical methods and numerical algorithms for the analysis of the stress-strain
state of such structures. Different aspects of such problems were discussed in
[3, 6, 8, 2| (in [8] the case of the bodies with thin inclusions is considered; in
[2] the bodies with thin covers are considered). Papers [3] and [6] are devoted
to the numerical solution of the Girkmann problem.

In this article, we solve numerically the Girkmann problem which involves
computation of a plane strain state for the body consisting of a massive part
and a thin part, which is attached to the massive part. The thin part is modeled
using Timoshenko shell theory equations and its stress-strain state is numer-
ically computed using FEM with bubble shape functions. The massive part
is modeled using the theory of linear elasticity and the numerical solution is
obtained using boundary element method (BEM). The approximate solutions
in both parts are connected using domain decomposition algorithm.

The application of domain decomposition method allows us to decouple prob-
lems in both parts and solve the problems independently in each part. As a

Key words. Girkmann problem, elasticity theory, Timoshenko shell theory, finite element
method, boundary element method, domain decomposition.
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result, it is possible to compute the stress-strain state accurately even for small
shell thicknesses without having problems with stability issues of the coupled
problem.

We compare the stress-strain state for different shapes of the middle line of
the shells: circular, parabolic and of the form of chain curve. Although the
curves lie close to each other, the stress-strain states in these cases are very
different from each other.

2. PROBLEM STATEMENT
Let us consider a problem of plane strain of an elastic body which consists
of a massive part €21 with the thin part in 9 attached to €21 by its end face
(Fig. 1). Let us denote by I'; the outer boundary of the bodies in €;, i = 1,2
and by I'y the common boundary between bodies in €21 and Qs.

X1

e

X9 Xf
A c
* %9

Fic. 1. Elastic Body

The plane strain stress of the body in ; can be described by

Ooi11 0012 _f
81‘1 8%’2 -

dog1 | Ooga f
o0x1 Ors 2
that holds for x € Q1, © = (1, z2).

Here f = (f1, f2) denotes the volume forces that act on the body in €.
From the Hook’s law it follows that the components of the stress tensor can

be written as
Uz] 2 1 (axj + 8CU1,> 1) 1,] <y
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where u(xz) = (u1(x),uz(x)) is the displacement vector with u; being the dis-
placements in the directions z; for ¢« = 1,2; Fj is the Young’s modulus of the
body in ;. In the following we assume that no volume forces act on the body
in Q4.

Let us denote by n the outer normal vector to €21, and by 7 — the tangent
vector.

Equations (1) are considered together with the boundary conditions

up =0,ur =0,z €'p

and

Onn = 0,0nr =0,z € 'y,

where I'y = Tp Uy, Tp NIy = 0; u, and u, are the components of the
displacement vector in the coordinate system n, 7. Similarly, o,, and o, are
the components of the stress tensor in the n, 7 coordinate system.

For the description of the thin part in 29 we use the equations of Timoshenko
shell theory of the form [4]

1 dT1,
et L U
A, &, 1113 = p1,
1 dTis
_ 3 LT — 2
A, e, + k1T = ps, (2)
1 dMy;

_ Tha = o< <1
A, de, +T13=m1,0 <& <1,

where vi, w, 71 are the displacements and angle of revolution in the shell; 771,
T3, Mi; are the forces and momentum in the shell; A1 = Ay (&), k1 = k1 (&1)
correspond to Lame parameter and middle line curvature parameter; py, ps,
my are given functions; it holds

Esh Esh3
Ty = T 511, Ti3 = k'G'hers, My = lela
1 dvy 1 dw L dm
k k = A de
T g TR ST g TR XS g e

pi=(1+k%)ofy— (1-kb)op,
b3 = (1 + k1 %) ‘733 (1 - kl%) 033,

my =5 ((1+k5)ofy — (1 - k%) o).
Here Ej5 is the Young’s modulus for the shell, vs is the Poisson’s ratio; ajj', i_j,
i,7 = 1,3 are the components of the stress tensor on the outer ({3 = %) and
inner ({3 = —%) boundaries of the shell It is known, that in the case of

isotropic bodies we have k' = 5 , G =

(1+vz)

143



ANDRIY STYAHAR

At the free end of the thin part we impose boundary conditions either on the
displacements vy, w and 7; or on the forces 771, T13 and momentum M;; in
the shell (if the end is subjected to load or free). At the top and bottom outer
boundaries of the shell we prescribe to afg and U;)% sonie given stresses.

Remark. The choice of 2D curvilinear coordinate system for the shell as
€1, &3 (instead of &1, &2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the body being infinite in the direction of &;.

On the boundary I';, common to both € and €5 we prescribe the following
coupling conditions:

Up = V1 +&371, Ur = W,

: : ®)
/ N O'nndf?) =Ti1, / N O'an&S = T3, / O'nn€3d£3 = M.
—h —h _

[N

3. NUMERICAL APPROXIMATION OF THE MODEL
For the numerical solution of the model domain decomposition algorithm
is used. Inside the main part we construct the approximate solution using
boundary element method (BEM) applied to the integral equations based on
the Green’s representation formula for the solution of the following form [1]

1
iu]'(l’o) /F(tz(a?)G”(CC, 1?0) — Fij(:L', mo)uz(x))dl“(x), (4)
where I' =T UT'y, 29 € T '

Gij(x,() = C1(Cadijlogr — ¥41) is the matrix Green’s function;

Fij(z,¢) = %(04(5ikyj + Oryi — Oijyk) + ZL%M) is a co-normal derivative
of the matrix Green’s function;

= yiyi;

Yi = xi — G

1= 2(1%”) is a shear modulus of the body in €y;
— 1

Cr = —gt=my

02 =3- 41/17
— 1

Cs = —ma=n)

C4 =1- 21/17

In order to apply BEM we divide the boundary I'y U I'; of €1 into the
elements and then choose the appropriate shape functions ¢;(§), 7 = 1,2,...,m,
to construct the approximation.

The approximate solution can be written in the form

ui(§) =27 uige(§), =12,

ti(&) = 20t ti¢(8), i=1,2,£ €1 UTy,

where u;; and t;; are the unknown coefficients that are found by applying
Galerkin method to the integral equation (4) (see [1]).
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The approximate solution of the boundary value problem inside 25 is found
using finite element method with bubble shape functions. On each element the
shape functions are given by

2

2j—1 (¢ ,
(&) =1/ 5 /1Pj_1(t)dt, i=23,..,

where £ € [—1,1] is the local coordinate, obtained by mapping each element
onto the inverval [-1,1]; Pj(t) are the Legendre polynomials.

In order to find the approximate solution of the boundary-value problem (2),
we apply to the system (2) Galerkin approach.

The approximate solutions in both domains are connected using domain
decomposition algorithm (Dirichlet-Neumann scheme) [5]. The domain decom-
position algorithm has the following form:

1) set an initial guess A\ for the unknown displacements on the interface 'y,
set € > 0;

2) for k=0,1,... solve the boundary value problem in s with the displace-
ments equal to A* to obtain the apporimation for the loads in €21 using (3);

3) solve the corresponding integral equations in €21 to find the displacements
u} and ul on T'y;

4) update the displacements \* on T'j:

AT = Ak + ful,
ML= \E 4 oul,

where 6 > 0 is a relaxation parameter;

5) if |A*+1 — A¥|| > € then go to step 2, otherwise the algorithm ends.

It is known, that the Steklov-Poincare equation that corresponds to our
problem, possesses a unique solution [7]. Moreover, domain decomposition al-
gorithm converges for appropriately chosen (empirically) relaxation parameter
0 (0 <0 <0ma) |7]-

4. NUMERICAL EXPERIMENTS

Let ©; be a polygon with x? = -1, xg = —1,z{ =1, 2§ = 1. To the main
part in 1 a thin body in s is attached on its edge. The thickness of the body
in Qs is h =0.01 (Fig. 1).

On the boundaries AC and AB the structure is fixed (the displacements are
equal to zero); we prescribe a load of p = 1Pa/m on the outer boundary of the
body in Q9 (Fig. 1); on the edge with the point E the symmetry conditions are
set; all the other parts of the outer boundary are traction-free.

We consider the following physical parameters of the bodies: Young’s mod-
ulus of the main part in €y is equal to E7; = 25000 MPa, which corresponds to
concrete; the Young’s modulus of the thin part in s is equal to Fy = 20580
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MPa, which corresponds to cork. Poisson’s ratio of the body in 21 is equal to
vy = 0.33, n QQ — V9 = 0.

For the numerical solution we use FEM in the shell with bubble shape func-
tions. For the main part we use boundary element method with quadratic shape
functions. Problems in both parts are connected using domain decomposition
algorithm (Dirichlet-Neumann scheme) [5].

In all the cases under consideration the convergence is obtained in around 5
iterations. The results correspond to a case of 202 boundary elements, 32 finite
elements of the fourth order. We find, that the mesh refinement or the change
of the order of the shape functions don’t change the solution significantly.

Let us consider different cases of the curve shapes, that describe middle line of
the body in s: circle arc, parabola and chain curve. The unknown coefficients
of the parametric representation of the curves are chosen in such a way, that
all the curves have the same endpoints D and E. Moreover, all the curves are
symmetric with respect to the axis, which passes through the point E and is
colinear to AB.

In the case of the circle arc the parametric representation has the form

z1(a) = Rsina,

ra(a) = Reosa, § <a<

Let us choose R = 5.005.
In the case of parabola parametric representation has the form

B

() = —252a3 + R,

ra(a) = Reosa, 7§ <a<

B

In the case of chain curve parametric representation has the form

21(a) = =247 (exdr 4 ¢~ wibT) 4 9.502,

ra(a) = Reosa, G <a<

vl

The graphs of three curves are shown on Fig. 2

We can conclude from Fig. 2, that the graphs of the curves lie close to each
other.

Formulae for the calculation of Lame parameter A; and curvatures ky of the
middle line of the shells have the form

N 2
Ay =z + 25,

"o ron
ki = Zy x2_3x15'32
Ay

Let us calculate the stress-strain state for the body depicted on the Fig. 1.

146



NUMERICAL ANALYSIS OF THE GIRKMANN PROBLEM ...

Shape of the curves in the case of diffierent curvatures

25

——=
e

F1G. 2. Middle Line of Different Curves

Fig. 3, 4 show the displacements in the case of different shapes of middle
lines, Fig. 5-7 show the momenta that arise on the middle line of €23 in the
case of different shapes of middle lines.

Curve 1 on Fig. 3 corresponds to the case of the middle line having the shape
of part of the parabola, curve 2 — middle line being the chain curve.

% m'ﬁ Displacements w on the middle line of the circle shell

Fia. 3. Displacements w on the middle line of the shell in the
case of the circle-shaped shell

On the interface 0 < 9 < h, 1 = z{ we have to set the Neumann condition
for the problem in main part, and Dirichlet condition for the problem in the
shell. The displacements on the interface for the shell are found using the
conditions

Up = V1 + 5371)

Ur = W.
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%10 Displacements w on the middle line of the shell

= S

Fia. 4. Displacements w on the middle line of the shell in the
case of parabola and chain curve

7 toment M, , on the middle line of the circle shell

Fic. 5. Momentum mq; on the middle line of the shell in the
case of the circle-shaped shell

Applying the first condition at the points {3 = 0 and £3 = h/2, we find that
v1|51=0 = _un‘€3=07

2
71’5120 = E(un‘&:% - un‘£3=0)‘

Applying the second condition at the point £3 = 0, we find that

Wlg, =0 = Ur|ez=0-

Let us consider the conditions on the loads, that need to be imposed on the
interface for the problem in the main part. In order to express o, we use
conditions
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Fia. 6. Momentum mi; on the middle line of the shell in the
case of parabola

05

05+

Fia. 7. Momentum mi; on the middle line of the shell in the
case of chain curve

2
/ . onrd€s =Thg,  0nr(€3) = 03le=0,  Onr(&3) = —0 56,0

2

In order to express o,, we use conditions

h h
2 2
/ N Onnd&s = Th1, / , Tnné3d§s = M.
—2 —2
Let us assume that on the interface o, = a&? +bé3+c, opnn = ef3+ f, where
a,b,c,e, f are the unknown coefficients. These assumptions are based on the
fact, that we have three conditions for o, and two conditions on o,,,.
The computations yield
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T

12
onn(§3) = Mllﬁf?» + 7

3 6
Inr = (33 (013le1=0 = 3le1=0) — ﬁTw)&%—
1 N 1 1, N
=5 (01slei=0 + oT3le1=0)€s + 7 (T3 — 7 (A(op3le1=0 — o13le1=0) — 2T13).

From Fig. 3-4 we can conclude, that the smallest displacement in the normal
direction is achieved when the middle line of the thin part of the body is a chain
curve. The largest displacement in the normal direction arises when the middle
line of the thin part is a circle segment.

Fig. 5-7 show, that the smallest momentum is achieved when the middle line
of the thin part of the body is a chain curve. The largest momentum arises
when the middle line of the thin part is a circle segment.

Therefore, the stress-strain state of the bodies inside the thin part in the
case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature).

5. CONCLUSIONS

We conclude, that the stress-strain state of the bodies inside the shell in the
case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature). The elastic body where the
shell has the shape of the chain curve, is the best since almost no momentum
arises in this case.

The convergence of our algorithm is obtained in around 5 iterations. There-
fore, the proposed algorithm can be efficiently applied for the numerical solution
of the Girkmann problem.
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NUMERICAL MODELLING OF SHALLOW-WATER
FLOW IN HYDRODYNAMIC APPROXIMATIONS

PETRO VENHERSKYI, VALERII TRUSHEVSKYI

PE3IOME. CdopMynp0BaHO IBOBUMIPDHY MOYATKOBO-KPANOBY 3a7ady DPYyXy
BO/M HA TepuTOpii Bom0o360py. st BUBOMY PIBHSHB PyXy ITPOBOJIMJINCS yCe-
DPeJHEHHSI TOJAHKIB 33 IIMOMHOIO IOTOKY Ta BPAXOBYBAJIACH YMOBU MIJIKOCTI
noTokiB. ITobymoBamo BiamOBiAHY BapialliifiHy 3a0aty, [1JIs SIKOT IIPY JUCKPETH-
3ariii 3a TPOCTOPOBUMYU 3MIHHUMU BUKOPHUCTAHO METO CKIHYeHHUX eJIEMEHTIB 1
3a 4acOM — OJHOKPOKOBY PeKypeHTHy cxemy. s Benukux uuces Peitnosbaca
nobymoBaHO cTabimizarmiiiHy cxeMy, mo 6a3yeThes Ha GYHKIiaX-0yap0amkax i3
BUKOPUCTAHHIM METOy HafiMeHNuX KBa/paTiB. UucaoBi pe3yibTatu ampobo-
BAHO HA TECTOBUX IIPUKJ/IAJAX /I PI3HUX HOYATKOBUX Ta KPAHOBHUX yMOB, y
pi3Hi MOMeHTH Yacy i mpu BrOOpi BeJMKHUX 3HAUeHDb umnces PeitHoabaca.

ABSTRACT. Formulated a two-dimensional initial-boundary value problem
of movement of water in the watershed. To derive the equations of motion
were carried averaging summands in the depth flow and conditions of shallow
flows were taken into account. The variational problem was built for it in
discretization for spatial variables used finite element method and time - one-
step recurrent scheme. For large Reynolds numbers built stabilization scheme
based on functional bubbles by the method of least squares. Numerical re-
sults tested on test examples for different initial and boundary conditions, at
different times and in selecting high values of Reynolds numbers.

1. INTRODUCTION

One of the most important processes of a hydrological cycle concerns to a
shallow water flows to which belong rain and channels flows, water flow from a
watershed surface, motion of water in ocean, etc. Processes which underlie of
this model have wave nature, with wave length is much greater then the ver-
tical dimensions. To describe these processes is possible outgoing from general
equations of Navier-Stokes or from equations of Reynolds. From supposition,
that the horizontal scales of fluid motion are much more vertical, the average
on vertical component of a flow is realized. The detailed derivation of average
equations of shallow water from equations of the Reynolds can be found in
works [3],[6]. Equations looks like following:

TKey words. Variational problem, initial-boundary value problem, Galerkin approxima-
tions, shallow-water flow, Navier-Stokes equations, hydrodynamic approximations.
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2
94; 8 (494 ON; AN,
BT 2 o (1) = Zax]J—JJrBz,
j=1 Jj=1
e~ (09 04y
Nij = i (axj dz; ) (1)
2
9(ph) dq; .
(at +Z]-7]7_ ) 273_1727
J:

where €;; - vortex viscosity coefﬁcient, q; = hu; — unknowns of value flows,
B; = 7| — 7, +pa by pgh (i=12),N,= pg%2 + hpa, pa - atmospheric
pressure, £ - free surface of ﬂow7 - bottom contour, h - flow depth, 7;|¢ Ta 7,
- stresses on free surface and bottom contour accordingly.

Average equations of shallow water deduced from general Navier-Stokes equa-
tions in the works [1,2],[4],]7]. It looks like

ou, ou; on , (wi—u))R—wil 95 F 9(RA)
+Zu] g T = Ya T R T am

at + (I’LU]) R_I, i:1727

(2)

where u; - unknowns of speed value, h - unknown flow depth, u;, - velocity
on a free surface, g - acceleration of gravity, I - speed of fluid infiltration into
the ground, R - rain inflow velocity, n - bottom contour, A - speed of falling of
rain drops, F; - items which allow for tangential stresses on the bottom and on
the free surface of a flow.

In motion equations from viscous terms there are only tangential stresses on
a free surface and at the bottom, others are rejected in conditions of shallow
water. In a result of averaging system of equations set by depth of a flow
and allowing conditions of shallow water, the third equation of motion will be
converted to the hydrostatic law of pressure, which is characteristic for shallow
water equations

p(z) =p&)—pfs(§—2).

For completion of problem formulation equation of shallow-water supplement
by an initial and boundary conditions. The boundary conditions in the litera-
ture partition on two kinds: those which are set on hard boundary of flow and
on opened boundary. On each of boundaries it is necessary to set two condi-
tions: normal and tangent components of stresses or speeds. For model (2) are
set only normal components [2]:

on hard boundary

Gn =001 gn = qp;
on opened boundary

It is explained to those that in model (1) the terms that take into account votex
viscosity are discarded, therefore tangent components of stresses or flows are
not set.
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Let’s consider one more version of assigning of a boundary conditions. Let
Q - projection of a fluid flow on a two-dimension plane. The boundary of area
Q is partitioned on following parts: I'p - fixed boundary of a watershed, I'g-
boundary of a channel (the fluid inflows), I's - opened sea border (the fluid can
both inflow and outflow, see Fig. 1).

Is

FiG. 1. Projection of a fluid flow on a two-dimension plane

More often boundary conditions for two-dimension problem of shallow water
write down [2,4,9-13]:
— on fixed boundary I'p of a flow set
U.v=0, VU, -v=0,

where v and 7 - units normal and tangent to bound of domain, U, -
tangential components of velocity;
— on boundary of fluid inflow:

- oU
Uv=U v, p— -7=0,
ov
where p - coefficient of viscosity;
— on opened sea border the boundary conditions it is possible to set as

ov
In considered above shallow water models all items which contain component
of stresses are skipped. Component of stresses are saved only on a free surface
and on the bottom of flow. Scientific approach, which is submitted in this work
saves all components of stresses in motion equations. For solving of shallow

water problem the finite element method was selected.

2. FORMULATION OF INITIAL-BOUNDARY PROBLEM
Suppose that flow of viscous incompressible fluid in each point of time ¢ &
[0,7],0 < T < 400, forms on an immovable surface x3 = n(x1, x2) of watershed
some fluid layer D = D(t) (Fig.2).
Let’s designate through £(x,t) a free surface of this flow, which contacts to
atmosphere, where = (71,22, 73) € R3 v - unit outward normal of domain
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F1G. 2. Model of shallow water flow

D = D(t). Lateral (vertical) surface of this flow, if such exists we shall designate
through S. Let’s mark, that the part of a surface S can be degenerated in
boundary I' of watershed river. So dD(t) = nU&(t) U S.

Projection of a fluid layer D(t) on a horizontal plane we will denote as .
Assume, that boundary v of domain continuous by Lipschitz.

Let’s guess, that a fluid state under the influence of mass forces F = {f;(z)?_,
in each point of time t € [0,77,0 < ¢t < +00 is described by of the Navier-Stokes
equations

( Ou; > o) 3 do;
P<a{ + 2 azk(uiuk)_fi> - > =0,
k=1 k=1
ij = —Pdij + Tij
Tij = 2peij, (3)

1 (0w | Oy
674] -2 <(9.Z’j + axb) ’

divi=0, i,j=1,23,

3
where div @ = kzl g—z’;,ﬁ = {u; (z,t)}2_, and p = p(z,t) - velocity vector
and hydrostatic pressure accordingly, F' = fz'(a:,t)?zl - vector of mass forces,
p = const > 0 and p = const > 0- density and viscosity, {eij}?,j:h {aij}ij:l -
velocity and stresses tensors, d;; - Kroneker symbol.
Let in an initial time water flow described by conditions

uil,_o = u in D(0),i = 1,2,3. (4)

Except of initial conditions, the equations are necessary supplement by the
applicable boundary conditions, which determine interaction of flow water with
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atmosphere, surface of ground, groundwater etc.The main factors which influ-
ence on a fluid state:

— intensive rain precipitations, evaporation of water;

— replenishing of water from channel;

— infiltration of water in soil(groundwater replenishment);
— atmospheric wind, etc.

Attempts to describe characteristic modes of shallow-water flows result in
simplification of equations (3) and respective to them boundary conditions and
will be reviewed later. At the given stage we will limit by a typical boundary
conditions for this equations [2,5,7,9-13]:

u=uon By, x (0,T],mes(B,) > 0,B, C 0D(t), (5

TijVj = T;0n B; X (O,T],BT - 8D(t)\Bu, 1,5 =1,2,3, (6

where u = {ui}?zl,u = {Vi}?zl - unit outward normal of bound 90D(t),v;
cos(v, x;).

Generally free surface of a flow £(z,t) is unknown, therefore it is necessary
to set conditions for definition of its position in space in each point time. For
finding of a free surface x3 = {(x1, 22,t) we shall use a kinematic condition [16]:

o€ 0 0¢ 0 0¢
ug+ R=—+tuj— +ug—, 7
3 ot Yoz, 2019 (7)
where R — rain velocity, u?,u9 - horizontal components of velocity on a free
surface and initial condition

€li=o = 50 in Q. (8)
On the bottom of flow the fluid can flow in a soil in a direction of an axis x3
ug = —1on[0,T], (9)

where I - velocity of seepage water in soil. If I = 0 does it mean that surface is
impermeable ; I > 0 - fluid particles seepage in a soil with a preset speed; I <
0 - the groundwaters rise on a back surface of ground.

On a base surface for velocity we shall allow for a condition of adhesion

Ul = U = 0. (10)

The initial-boundary problem (3)-(10) is difficult to applying for a nature wa-
tersheds and requires simplifications. At the first stage (3) we will reduce equa-
tion to a undimensional kind. Such form will give a chance to receive numbers,
which characterize motion of water (Reynold’s number), and also the parame-
ters of equations are such normalized that their values will change in definite
limits. At the second stage, allowing conditions of shallow water, neglect terms
order of smallness € = /L (the maximum thickness of a flow does not exceed
the size ¢, and characteristic horizontal dimensions value L,and(d/L << 1)).

All components of stresses in two first equations of motion remain saved after
simplification. The following step of simplifications is reduction of a problem
dimension at the expense of a depth averaging of equations. After an average
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is received a two-dimension problem of a water flow in hydrodynamic approxi-
mation concerning three unknowns - two components of flow and depth:

2
dq; 3 (.94 Oh | On o(rizh) _ _glalai  _
ot T Zl Ox; (QZ h) +Gh (Bzi ) pRe Z oz ReC?h2 0,
]:
oh 2. 9,
9% _ p_
ot + Z Ox; — R I’

riy = p (S 4 B g,
(11)

where h - unknown depth, ¢ = (¢1,¢2) - unknown vector of flow, 7 - bottom
contour,p - density of water, Re - Reynolds number, 7;; - stresses tensor W -
V2 , L -
typical spatial size, Vi - typical velocity, R - rain inflow, I - water seepage in
a soil.

The first two equations of system are averaged equations of motion, which are
parabolic type. Their novelty consists in preservation of addend with internal
stresses of a flow, which are essential on surfaces with considerably change
gradients. In the literature the hyperbolic equations of a shallow water flow
are considered where the stresses only on the bottom and on a free surface of
a flow are taking into consideration. In this case it is supposed that the wind
stresses are negligible. The third equation of a system is an averaged equation
of continuity, which describes a free surface of a flow.

Let’s consider a water flow from a surface watershed in a projection on a
horizontal plane. Here ) - two-dimension domain which restricted by curve I'p
(watershed line) and I'p (outflow line), n, ¢ - normal and tangent to boundary
of area accordingly.

viscosity of water, C' - Shezi factor,g - gravitational acceleration, G =

FiG. 3. Water flow projection on a horizontal plane

Equations of system (11) are added by boundary conditions

TC‘FB:(’)?qnh—‘B:O’ qC’l—‘p:()’qn‘Fp:q\ (12)
and initial conditions
hli—o = ho, qli_g = qoB inQ, (13)
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where ¢ — known water outflow.

In outcome we received a system of three equations (11) for searching com-
ponents of vector of a flow and depth with boundary (12) and initial (13)
conditions. We will decide a problem (11)-(13) by a finite element method
(FEM)|8,12-13].

3. ApPLYING OF A FEM TO THE PROBLEM SOLUTION
According to a procedure of a FEM it is necessary to make a variational
formulation. For formulation of variational initial-boundary target setting (11)
— (13) we will enter set of allowed functions for flows

Qi) = {a="{aY, € B (%|q-nly, =d ¢ nlp, = 0.4 Clp, =0}

and space Qo = Q(0). Space of allowed(permissible) functions for depth - ¢ :=
L%*(Q). Let’s search a flow as ¢ = g« + ¢ with unknown ¢, € Qo,q.n = GonT),.
Further, for simplicity of identifications we will use instead of ¢. identification
q.

Let’s enter the following forms

a@m)=fq0ﬂ% b(w;q,p) = ggi%mé%@mwd%
1,)=

c(h;w, p) —-1fiz§:1n] w) p?dx, d(z; h,p) = QJY?zh (V- p)dz,

7-7 14
L(nihp) = [ GV - (hp) dz, R (h,q,p) = fg‘g‘Zfdm (14)

Q

Vp, ¢, w € Qo,
m(q,0) = [(V-q)0dz, (s,0)= [(R—1I)0dz, Vb, ze€ P.
\ Q Q

Then, take into 3, the variational initial-boundary target setting to become

Given gy € Qo, hg € ;

Find g € Qg, h € ® such that

a(q (t),p) +b(q(t)/h(t);q(t),p) —d(h(t); -

4@M%M+ﬁ“()ﬂ“ﬁm R(h(t);q(t),p)]+ (15)
+a (F(g),p) =0,

a(h'(t),0) +m(q(t),0)+a(V(g),0) = (s(t),0)vt € [0,T7,

a(q(0) — qo,p) =0, a(h(0) = ho,0) =0 Vp € Qo, V0 € P,

where F(¢) and V() — items accordingly of first and second equations of a
system, which are formed by a flow components q.

We will decide the variational problem with usage of a projective-net scheme
of FEM. Let’s conduct a discretization of a problem in time. Interval of time
[0,T] we will divide into N7 + 1 identical parts [tg,tx+1] by length At and we
will select approximations for depth and flows as

h(z,t) ~ hay(z,t) = hF () + H" 2 (2) Atw (1), (16)
a(z,t) ~ qae(z,t) = ¢" (2) + UM2 (2) Atw (1) (17)
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hk—l—l _ hk

N JHMY2 €@, Vo eQ, Ve [tetin], k=0, ...,Np.

It is known, that if we approximate a function by an interpolation polynomial
of the first order, the precision greater than At? cannot be obtained. Therefore
at the given stage (phase) we can conduct a linearization of a problem by
throwing off terms of the order. By substituting (16) — (17) in a variational
problem (15) and ignore terms of the order At?, we receive a linearized problem
as the one-step recurrent scheme of integrating in time

( Given ¢° € Qo, hY € such that X € (0, 1] ;
Find U3 € Qy, H*2 € Phi , such that
a(Uk'%,p)—l-
FAAL (g /HR UM p) 4+ B(UR 3 gF 0¥, p) = 2d(HM 55 0%, p)
—U(n; H*3,p) + 4 <C(H’“+%;q’“/h’“,p) +C(h’“;U’“+%/h’“,p)>} = (18)
=d (h*; h*,p) + 1 (n:h*, p) — b (¢"/h*; ¢",p) —
— [ (hF5d%/h* . p) — R (B*;¢%,p)] — a(Fyt1/2:p),
a(H*"2,0) + MAtm(U 2, 0) =
=< Spy1/2,0 > —m(q¥,0) — a(Viy1/2,9),
[ "l = gF + AtURS ) BFH = BB 4 AtHY 3, b =0,..., Ny,

where Fyy 10 = F(ti + At/2), Vip1o = V(s + At/2), spy1/2 = s(te + At/2).

At a discretization of a problem (18) according to space variables are utilised
piecewise linear approximatings on triangular elements for flows and piecewise
constant approximatings of depthes. Such selection of approximatings allows
to eliminate depth of a flow and to receive a system of simple equations only
concerning vector of a flow.

For a discretization of a problem according space variables the domain €2 is
divided into triangular finite elements. Let’s enter the spaces for flows Qf C
Qo,dim Qg = N, < oo and for depthes d" C &, dim P! = N, < oco. Let’s
select piecewise linear approximatings for flows

) _ Li($1,$2),Pj€Qe,
pi(on,m) = | Ll

and piecewise constant for depthes

1,P € Q.,
Ve (o1,2) = { 0,P ¢ Q,.

Further using a procedure of a Galorkin method, we will obtain a system of
simple equations concerning unknowns of vector of a low W in nodal values of
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a grid and vector of depths S in center of gravity of triangles:
Given ¢° € Qp, W€ ® and )€ (0,1] ;

. iy Mo gyl 0 [ O\ R i h

i=1 e=1
1
such, that CL(U;+2 P+
koik. pritE k3 ook MY

+AAL|b(q" /R U, ", p) + b(Uy, 757 /R, p) — 2d(H), *, b, p)—

kt+d

0., p) + (el bk p) + C(hk;U£+%/h’“,p)>] = (19
= d (h*,h¥,p) +1(n, k", p) — b (¢"/1¥; ¢",p) —
— i [e (WF5q5/h% p) = R (W¥:6F,p)] — a(Fyy1,p) Wb € Qu,

kt+ 3 k+3
a(Hy, =,0) + A\Atm(U, °,0) =
=< sk+%,9 > —m(q*,0) — a(V,H%ﬁ) Vo € ©,

k41 _ ok bt k+1 _ pk k3 —
¢ =q" + AU, 7, h*Th = h" + AtH, ~, k=0,...,Np.
On a Fig. 4 completely sampled equations are sketched on one finite element
- - e -
.:-'Lk: _'-'1"'11 < | o T FLD

Fia. 4. Diagrammatic representation of a system of simple equations

Agg — diagonal matrix. At the expense of condensation of internal parameters
we can eliminate depth on one finite element by using a ratio

1 _ 1
SEFE = AR (FE - AR W, (20)

In outcome we will obtain a system of simple equations concerning two un-
knowns — flow components

_ k+l _
(Alﬁ - Alf2AI§2 lAgl)We ? = Fk - Alf2Al2€2 1Fé€~

4. STABILIZATION SCHEME FEM
At large values of Reynold’s numbers (Re>100) flows and their gradients
change sharply. As outcome the obtained solution of a shallow water problem
loses the stability and appears oscillations. On this case, stabilization scheme
is obtained, which is based on bubble functions with usage of a least-squares
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method. As the depth of a fluid is considered as a constant on one finite
element, it does not influence behaviour of the solution. In a system (18) the
stabilization addend is added to equations of flows in the next view

S(U*z, HE 2 p) = M, /Uk+% - pdz+

e

2
0 ket 1 k+3
+ AtA /E (((%j((quj 2) + (4} 2))/hk)pdx+
j=1

2 o

b+ 9 by qprdn _ _gldla
- / U, +;3x] ) O~ e (b
Qe -

(21)

1 0n
k k+2
Z o o)+ (ahp) | o [ Gt P -
Qe

2
g‘qk‘quz 8 / k0N
7}2@02 e /El ((gFq))/hF)pda + | Gh mzpdfc ;

where M, — stabilization factor on each finite element.
For stabilization factor M, using the upper-bound estimate po obtained in
the work [6] for approximating scheme of Navier-Stokes equations

7 1
Ho =3 <7l<:d2/A2—> 7 (22)

where A - square of finite triangle element, d? = 3413 +13,1; - length of triangle
side (i=1, 2, 3), e = div w, w - know velocity from previous step, k - kinematic
viscosity of a fluid.

5. TEST EXAMPLES

Example 1. Let’s consider a problem of shallow water flow from a surface
some watershed. All parameters of a problem are set in a dimensionless view.
Let’s select a test surface watershed n(x,y) as Fig. 5, where x, y change from 0
to 2. In an initial time we will enable that hg =0.01, ¢;=0 (i=1,2). Concerning
boundary conditions, we enable, that the water does not outflow and normal
component of flow velocities on boundary of domain is equal zero gn=0. We
enable, that constant rain influx R=1, infiltration of a fluid in a ground I=0,
coefficient factor Shezi C=60, Reynold’s number Re=0.1. Quantity of splitting
points of domain 60x60. For the solution of a problem we apply the numeric
scheme (19), in which parameters A = 0.5, At = 0.005. Let’s consider result in
a point of time t = 0.195 (quantity of steps in time tt=40).

In a Fig. 5 the depth of a flow H (quantity of water is figured, which collects
at the bottom surface with constant rain influx). As the water does not outflow,
cavities are filled by the water. From results apparently, that the maximum
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value of depth is reached in the middle of a bottom surface, where there is a
greatest cavity. In the highest points of surface watershed values of depth are
approaches to zero, as the water flows down.

The law of conservation of mass for the given example is tested. The con-
ducted calculations have shown, that the volume of the fall out precipitations
approximately coincides with water volume on a given surface in the given point
of time 0.78105.

In Fig.7 and Fig.8 are figured values components of a fluid flow accordingly
on axes x and y. In a Fig.9 the module of a flow is figured. From results it is
possible to see, that the flow has zero values in those points of a bottom surface,
where the fluid collects and whence the water flows off, in these extreme points
water is not gone. The maximum values of a flow are reached in currents, where
there is a maximum slope of a bottom surface to horizont.

Pt
g
DE
AN
o

i

S
]
i R
e,
R

:
R
EnER
R
Chn
R

R
froan
St
PEEE R
it
(i

SOl
e
A
HEAEE

e
1

S,
2hia
e
22

u

-
o
e

ok

7
R
fA. )
s v
R, TN
e
A
AR
L

T

Iy

et Sy o

1,,':,,'«;-2,:;?,,1’ i
A LI 3

2o

i

it
A R
e iy
e | L

e
e,
Sl
i ey
A
iy

A

3
e
e
s

ma
ey

Heety

oyl i,

I

FiGg. 7. Flow component Qx FiGg. 8. Flow component Qy

Example 2. By important point at problem solving of shallow water is
selection of a Reynold’s number values. When parameter receives large values
(Re>100), solution obtained with the help of the numeric scheme (19), loses
the stability, values of flows and their gradients are very large, as a result of
it there are oscillations. In the Fig. 10 the values of depthes of a problem
with parameters by given in an example 1 and Reynold’s number Re = 150
are figured. On Fig. 11 the values of component flows accordingly on axis x
are figured. The results are displayed in a point of time t = 0.073 (quantity of
steps in time tt = 15, At = 0.005).

For the solution of this problem the stabilization scheme of a finite element
method with stabilization factor (21) was obtained. We apply the stabilization
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F1G. 9. Module of flow

Fig. 11. Flow com-

Fic. 10. Flow depth H ponent QX

scheme to the solution of our problem with a Reynold’s number Re=150 and
stabilization factor M, = —0.5. Let’s consider computing results in a point of
time t = 0.586 (quantity of steps in time tt=60), quantity of splitting points of
domain 30x30. In a Fig. 12 the values of depth are figured, the Fig. 13, Fig.
14, Fig. 15 - represent values components and module of a flow accordingly.

From results it is possible to see, that the problem, which has arisen, at
applying the numeric scheme (19) to the solution of a problem, is decided
positively

The results are smoothed at the expense of the introducing of a stabilization
factor. The computing results have shown, that the problems of a shallow
water flow can be decided with any values of Reynold’s numbers, applying the
stabilization scheme of a finite element method.

The law of conservation of mass for the obtained outcomes is executed. The
volume of the fall out precipitations coincides with a volume of a fluid on a
surface watershed 2.34314.

Example 3. Let’s consider a water flow from a surface watershed Fig. 16
(part of Perespil countryside in the Lvov area). Boundary and initial conditions
we will select similarly to the previous example, quantity of splitting points of
domain 60x60, stabilization a factor M. = -0.5. Let’s consider the results in
a point of time t = 0.146 (quantity of steps in time tt=30) with a Reynold’s
number Re=150. In a Fig. 17 the depth H of a water flow is displayed. For
the greater visualization we compare isolines of a watershed surface (Fig. 18)
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and depth (Fig. 19). As the water does not outflow, cavities are filled by
water. From results we can see, that the filling of a watershed surface by water
implements according to isolines.In Fig. 20 is displayed module of flow.

7. CONCLUSIONS

For a selected example with stabilization factor is the laws of conservation
of mass and flow of fluids are fair. The obtained model enables to conduct
calculations of values of depth and speeds of fluid flows on columbines with
rain and lateral influxes for different initial and boundary conditions in different
point of time with large values of a Reynold’s number.

The above examples indicate that significant influence on the solution of
the problem of shallow water on the surface of a watershed has a choice of
Reynolds number. For small values of this number of problem can be solved
by using numerical scheme (19). Choosing Re> 100, the solution loses its
stability (Fig. 10 — Fig. 13). This is because for large values of the Reynolds
number solutions of problems may have internal and boundary layers - a very
narrow area where most solutions and their gradients change sharply. As a
result, numerical solutions, built on the Galerkin scheme, where the parameter
discretization is too large to consider all these layers can ostcillate throughout
the domain.

Considering it was built stabilization scheme FEM. Applying this scheme to
solving problems of shallow water on the surface of a watershed above men-
tioned problem disappears (Fig.14 - Fig.20).
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Thus, based stabilization scheme FEM can be effective in solving the problem
of shallow water from any surface water catchment for large Reynolds numbers.
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EXTENSION OF A CLASS OF NONLINEAR
HAMMERSTAIN INTEGRAL EQUATIONS
WITH SOLUTIONS REPRESENTED
BY COMPLEX POLYNOMIALS

OLENA BULATSYK

PE3IOME. B poborti po3risimaerscst HesiHiiiHe iHTerpasibHe DIBHSHHS THILY
lammepriTeiina 3 AOBIIPHOIO 3aJI€KHICTIO Bif MOIy/Ist HeBimOMOl (yHKII.
Po3B’s13k1 PIBHSIHB TAKOTO THUITY ITOIAIOTHCS UI€Pe3 MOJIHOMY CKiHYIEHUX CTere-
HIB, TTapaMeTpy SKUX BU3HAYUAIOTHCI 13 CUCTEMHU, IO CKJIQTAETHCI 13 OTHOTO
IHTErpaJIbHOIO 1 CKIHYEHHOrO YHCJIa TPAHCIEHIEHTHUX PiBHSAHD. BCTaHOBJIEHO
ICHYBaHHS €KBIBAJIEHTHNUX TPYT PO3B’SI3KiB HETIHIHHUX IHTETPAIHLHIX PIBHSIHb,
mo po3rasaaoTbesa. (Omep:kaHO HEOOXiTHI YMOBH JjIs TOYOK TaJIy’KeHHS i
cucTeMu PIBHAHB i ix obumciennsi. HapemeHo wmcioBi pesymbrartw Iist
KOHKPETHOI 3a/ai.

ABsTRACT. An approach, developed before for nonlinear integral Hammer-
stein equations with the linear dependence on the modulus of unknown func-
tion, is generalized to the case of arbitrary differentiable dependency. The
approach is based on presentation of the solutions via a complex polynomials
of finite degrees. The problem is reduced to a system of integro-transcendental
equations. The systems of linear homogeneous equations for the branching
points and integro-transcendental equations for the parameters of the solu-
tion branches are obtained. Numerical results for a concrete problem are
presented.

1. INTRODUCTION
Let us consider the nonlinear integral equation of the Hammerstein type

b

af(€) = BIW(|f])e' ] E/K(&&’)W(\f(é’)l)exp(iargf(f’))dﬁ’ (1)

a

with the kernel

oy @) — s(€)q(S)
HE89 =" @) 2

generated by the linear positive defined integral operator B : Ls(a,b) —
LZ(av b)7

(Bg,g) >0 (3)
for any g € La(a,b);

Key words. Nonlinear integral equation of Hammerstein type, finite-parametric solutions,
branching of solutions, phase optimization problem.
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s(&), q(§), 7(&) are real continuous functions such that the function sets
{7(&)s(§)}, {7™(&)q(&)} (n=10,1,...) are linearly independent;

W (|f(€)] € La(a,b) is a given real piecewise differentiated function.

The general theory of nonlinear integral equations and numerical methods
for their solving was intensively developed in recent years (see e.g. [1], [7], [9].
[10] and the literature cited there). In previous papers we have considered the
nonlinear integral Hammerstein equations without any dependency of the in-
tegrand on the modulus of unknown function [11] or with a linear dependency
on the modulus [6]. Such types of equations arise in different applications,
in particular, in the phase optimization problems of antennas or quasioptical
transmitting lines with different restrictions on the solution phase. It was es-
tablished that the solutions to such equations depend on the finite number of
complex parameters which are inverse zeros of polynomials of appropriate de-
grees (generating polynomials). These parameters are calculated from a system
of transcendental equations.

In this paper the approach is generalized to equations with a nonlinear de-
pendence of the integrand on the modulus of unknown function. The results
presented here were particularly annonced in [5] and [4].

2. FINITE-PARAMETRIC REPRESENTATION OF THE SOLUTIONS
We confine ourselves to the case when the solutions to (1) have no zeros at
¢ € (a,b), and assume that they can be represented in the form

EINGILNG
O =85 (4)

where (3 is any complex constant with |3| = 1 (without loss of generality, we

further put g = 1);
r=7(e), 7' = 7€)

N

Py(7) =[] @=nww7) (5)
k=1
is a polynomial of a finite degree N with complex pairwise non-conjugated zeros
1

NNE:

NINE — INm #0, km=1,2, ... N. (6)
We call Py(7) as the generating polynomial.
It follows from (4) that

, _ L, Pr(r)
exp(iarg f(€)) = B|PN(7)\'

Introduce the symmetrical polynomial of two real variables

. = N
RNfl(T, 7_/) _ QZ[PN(T )SJ)V(T)] _ Z dann—l(T/)m—l (8)

(7- o n,m=1
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and denote the matrix of its coefficients by D = {dp,}. The determinant of D

equals
N

det D = (_1)[N/2} H (ﬁNm - 77Nk:>a (9)
km=1
where the square brackets mean the integer part of the value. This fact follows
from the condition 4° of the Bezudiant from [8]. Its immediate proof is given
in [11]. Due to condition (6), det D # 0.
The conditions for the function f(§) of the form (4) to be a solution to
equation (1) are stated by the following theorem.

Theorem 1. Let a function f(&) of the form (4) have no zeros at £ € [a,b]. In
order that it is a solution to equation (1), it is necessary and sufficient that the
parameters Ny satisfy the following system of the transcendental equations:

b _

- [KeemwarenTpg e o
(I)Nn(‘f(g)‘77]N1,77N2,...77NN) = 0, n = 1, 2, ceny N, (10b)
qan(’f(ﬁ)’;77N1,77N2,...77NN) = 0, n = 1, 2, veey N, (10(3)

where
b
o= [0 L e (11a)
b
v, = [ T e (a1b)

Proof. Necessity. Let function (4) be a solution to equation (1). Substituting
(4) into (1) and multiplying the both sides of this equality by Px(7), we have

[f P (T / Pn(T)
T - v K(& W) dg’. (12)
| Pr (T ) [P (7')]

After dividing both its sides by | Py (7 )| this equation becomes of the form (10a).
On the other hand, after taking the imaginary part from the same result, we

have

jb@«@—xw«MRm«nﬂ
) |Pn(T")]

Then, substituting (8) into (13) with interchanging the variables £ and &', we
have

W(lFEh =0 (13)

169



OLENA BULATSYK

N b —1
n [T s@OWFE))
S don [q@ )| e e
| . (14)
n [T QWD nm-1 _
—5(5)/ Py (7)) ¢ | (") =0.
Since the functions {7"s}, {r"q}, n = 0,..., N — 1, are linearly independent,

(14) gives

N b 1
™ s(OWAFOD L. . )
Zd”‘/ Py 6 = 0 n=L2..N, (15

N b n—1
Zdnm/T q’(]i])vz)(’!f(ﬁ)!)dg = 0, n=12..,N. (15b)
n=1 a

Equalities (15) can be considered as two independent systems of linear algebraic
equations with respect to the unknown integrals. The determinant of their
common matrix D does not equal zero owing to conditions (6), so that the
systems have only zero solutions, that is, the transcendental equations (10) are
satisfied.

Sufficiency. Let (10) hold at a certain integer N and complex nyg, k =
1,2,..., N, satisfying conditions (6). Then, of course, equalities (15) are satis-
fied, too, and, hence, the identities (14) and (13) hold as well. With the aid of
(8), we obtain from (13)

b
5 W&
Im | Py(r) [ K(¢,¢) 2N pocnger| = o 16
w | Patr) [ (&) LE P (e (16
or, after adding the real function a|f(€)||Pn(7)| under the imaginary sign,

W&
[Py ()]

Dividing the both sides of (17) by the real positive function |Px(7)|, we obtain

b
Im Oélf(f)lIPN(T)|+PN(T)/K(£7£') Py(r)dg| = 0. (17)

Im | o f(§)] +

_ b
Pu(r) WUSED b ger|
VPN(T)|G/K(£’£) Pa ()] Pyn(r)de'| =0.  (18)

On the other hand, integral equation (10a) can be written in the form

Re | a|f(€)| +

_ b
Py(r) SWUREN o]
N(T)|G/K(€’£)|PN(PN(T)(ZE =0. (19)

P )|
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Equalities (18) and (19) together imply that the expression in their square
brackets equals zero, that is, function (4) solves integral equation (1).
End of proof.

Theorem 2. If the function f(&) of the form (4) with = 1 solves equation
(1), then the functions

_ f©IPN(T) 1 = finaT
fn(g) - ‘PN(T)| 1_77Nn7_7

solve this equation, too.

n=12..,N,

Proof. The proof of this theorem is analogous to the proof of the Theorem
2.2 in [6] with substitution W (|f(¢)|) = F(&) — |f(&)].
In the simplest case, the theorem is complitely adjusted with the obvious

property that if the function f(§) solves equation (1), then f(§) solves this
equation, too.

Corollary 1. The solutions to integral equation (10a) and the system of tran-
scendental equations (10b,10c) make up the equivalent groups inside which the
function | f(§)| remains the same and the polynomials Pn(7) differ only by sub-
stitution of any number s < N of the parameters ny by the complex conjugated
ones:

S N
Py =TI =) [T @),
m=1 m=s+1

where Ny, 7# Numy, 4f M1 # ma. Such polynomials generate the solutions to (1)
with the same | f(£)].

Corollary 2. If there is a solution to equation (1) with two parameters n; =
—no in the polynomial Py, which give an even polynomial argument addend,
then a solution exists in the same equivalent group, which has an odd argument.
In particular, if all parameters of the polynomial Py can be devided into such
symmetrical pairs, what means that the polynomial argument is an even func-
tion, then another solution exists in the same equivalent group, which have an
odd argument.

This corollary is justyfied by the following logical considerations. The argu-
ment of the factor p1(7) = (1 —m7)(1 —m27) = 1 — 372 is obviously the even
function of 7. Substituting 12 with 7, according to above theorem gives the
factor po(7) = (1 —mr) (1 +7,7) = 1 — |m|* 72 — (n — 7;)7. Tts argument is :

2Immy 7

arg pp = arctan 5
1 — |m]

T2
N/2
If N is even integer and Py (7) = [] (1 —n272), then
n=1
N/2
Py(r) =[] @ =lml*7* = (90 — 7,)7)

n=1
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and its argument is

N/2
I
arg Py (1) = Z arctan mnn; 5
n=1 - |77 | T

which is the odd function of .

3. BRANCHING OF SOLUTIONS

For N = 0 (real positive solutions) the transcendental equations (10b, 10c)
disappear and the only integral equation (10a) remains, which coincides with
(1), in which f(£) must be substituted by |f(£)|. This equation has the non-
trivial solution but not for all values c and N.

The number of solutions to (1) may change at some values ¢ = ¢;. Such
values are called the branching points. The branching points of solutions to
equation (1) are found from the condition that the system of the homogeneous
integral equations

wulil = B |wiig) D, (200)
+W’(If!)lfﬁjg(l?v(”‘)PN(())R ]

alf] = B | WD e 200
WD wﬂ]

has multiple eigenvalues A, = 1.  Here {wn,v,} are vector-functions;

W' =dW/d(|f]). Tt is easy to check that Ay = 1, {v1 = 1, w; = 0} is always
the eigenpair of (20). These equations are obtained by application of usual
pertrubations technique to equation (1) (see e.g. [6]).

There is an obvious way to obtain the transcendental equation system for
calculation of the branching points and the polynomial parameters in them.
As a rule, the branching of solutions to equation (1) is caused by changing the
degree N of the polynomial Py by one. At the branching points the parame-
ters nny of the initial polynomial Py and parameters 1y of the branched
polynomial P41 are connected by the equalities

Py(t) _ Pyny(7)
= s TINE = TIN+1,k> k:1727"'7N7
|Pn(T)] |PNa(7)] " (21)
Im?’]N_;'_LN_Fl = O

At the branching points two new unknown ¢y and Renn1,n+1 occur. Besides
(10), system
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b

- ’ sy Re[Pyi1 (7)) Pyia(7)]
(€)= / K& WS TR (2a)
/T”—ls(g)mczgz 0, n=1,2,..,N+1, (22b)
/T"—ls(g)mclg: 0, n=12,..,N+1 (22¢)

a

should hold. Since the new parameter ny1 n+1 is real, the integral equation
(22a) coincides with (10a) and the kth equation of system (22b) (22c) k =
1,2,..., N, is a linear combination of the corresponding equation of system
(10b), (10c) and (k + 1)th equation of (22b) (22c). Hence, at the branching
point, besides system (10) only two additional equations

b

|Pn(T)|(1 = nng1,n417)

a

b

F(§) = Blf )] dé =0 (23b)
\

N
/T a©) |Pn(T)[(1 = Ny1,N417)

a

should hold. On the whole, we have one real integral equation and 2N + 2 tran-
scendental ones for determining the real function |f(£)|, N complex parameters
NNk, k=1,2,..., N and real nyy1,n4+1 and c;.

At the branching points where the polynomial degree changes by two, the
equalities

nNk:nN—i-Q,kak: 1,...,N (24)

are valid. Besides (10), the four additional equations

/b AW
J |PN(T)[(1 = nngo,N+17) (1 — nngo,N42T)
b

dé=0,n=N—+1,N +2;

(25)
k—1 w
/ g W(SE) KOm N LN+
[P (T)[(1 = nv42,v417) (1 — NN 42,N42T)
a
should be fulfilled with ny42 N+1, IN+2,N+2 satisfying the conditions
NIN+2,N+1 = TIN+2,N+2 (26)
or
Imnyi2,n+1 = Imny 42, N42 = 0. (27)
Hence, we have 2N + 5 equation for 2N + 4 real unknown: N complex nyg,
n = 1,2,...,N, one real ¢;, one complex nny2 N1 Or two real N2 N41,
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nNN+t2,N+2, and [f(€)]. As it was mentioned in the preceding subsection, the
existence of solutions to such a system is low-probable in general case. However,
they may exist in the case when

W) = W(lF (=& (28)

Then the solutions are possible, which generate the polynomials with the even
modulus

|Pn(T)| = [Pn(=7)|,  [Pn42(7)] = [Pnga(=T7)]. (29)
This equality decreases the number of unknowns twice: the parameters ny42
become imaginary or appear by couples with opposite signs and nn42.,, 7 =
N + 1, N 4+ 2 are always imaginary with opposite signs:

Rennianv+1 = Rennyani2 =0, (30a)
NN4+2,N+1 = T7TNt2,N+2- (30b)

On the other hand, conditions (29) decrease the number of equations twice,
as well: N equations of system (10b), (10c¢) and two additional equations (25)
become identities, because they have odd integrands in the left-hand side.

Finally, at fulfilling (28), (29) the solution branching is possible with de-
creasing the polynomial degree by two if the following transcendental equation
system holds:

b
/TQn—ls(g)Wdfz 0, n=12,...[N/2], (31a)

a

b
/Tzn—Qq(g)dez 0, n=1,2,...[(N+1)/2], (31b)
|Pn(7)]

a

b

2[(N42)/2]-1
|PN(T)I(1 = nn42,v417) (1 — N 42,N42T)
’ 2A(N+1)/2] o £\ 77
e COWUFED 4o g
|PN(T)|(1 = nn42,v417) (1 — N 42,N42T)
where nyk, k= 1,..., N, are either imaginary or appear by couples with alter-

native signs, and nn42%, k = N + 1, N 4 2 are subject to conditions (30). As
a result, we have N + 3 real equations with respect to N + 3 real unknowns.

4. NUMERICAL RESULTS
As an example, we show the numerical results obtained for W (|f(£)]) =
1/2 — |f(€)]? and a = 0.5. This problem arises in the case when the linear
antenna should create the uniform power pattern F? = 1/2. The calculations
were carried out by the Newton method.
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The real and imaginary parts of nyy are shown in Fig. 1. The real parts of
solutions are drawn by the dashed lines, the imaginary ones — by the solid lines.
The curve numbering corresponds to the indexes Nk at these parameters.

4 Remy, Immy,

L = 21%22_\ _______ :
. 0 22 ,,/\;;
\\\/\\‘§
26 » Al - 4
-4 | | | | | | C
€1 2 36 4 €5 €5 6Cac, 7

Fia. 1. Real and imag parts of parametrs nyy;

W(f© ) =1/2=1f(&I* a=05

For ¢ < ¢y = 0.84 there are no nontrivial solutions to equation (1) at this
a. At ¢ = ¢ the solution fy(§) with N = 0 arises (curve 0). It starts from
fol€) =o0.

At the point ¢; = 3.05 two complex conjugate solutions f1(£), fi/(§) with
N =1 and imaginary 111, n1/1 respectively, branch off from fy(£) (curves 11,
1'1). At the point co = 4.95, two solutions with N = 2 branch off from each
solution with NV = 1. All they make up an equivalent group; we analyze only
one of them denoted by f2(§). The solutions f1(§), fi/(§) continue to exist.
Two more characteristic points, related to them, are ¢4 and cs.

The solution f2(€), arising at ¢ = ¢ has two imaginary parameters 721, 722
(curves 21,22). At ¢3 = 5.16 the solution fo(€) transforms into for(€), which
has two complex parameters 1%, 75 with Renh, = —Renby, Imnh, = Imnbh,.
Curves 21, 2”1, correspond to Renh, Imnb, and curves 2'2, 2”72, — to Renb,,
Imn,, respectively.

When c increases, the solutions with larger N appear, similarly as in the
problem of antenna synthesis according to the amplitude pattern [3].
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