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MODIFIED NEWTON METHOD FOR ANTENNA
POWER SYNTHESIS PROBLEM WITH FIXED

NORM OF THE PATTERN

Mykhaylo Andriychuk, Mykola Voytovych

Ðåçþìå. Ïîñòàíîâêà çàäà÷i ñèíòåçó àíòåí çà ïîòóæíiñòþ äîïîâíåíà
ñóòò¹âîþ ôiçè÷íîþ óìîâîþ ðiâíîñòi íîðì çàäàíî¨ i îäåðæàíî¨ äiàãðàì. Çà
äîïîìîãîþ ìåòîäó Ëàãðàíæà çàäà÷à çâåäåíà äî áåçóìîâíî¨ ìiíiìiçàöi¨ ç
íåâiäîìèì ïàðàìåòðîì (ìíîæíèêîì Ëàãðàíæà), ÿêèé âiäïîâiäà¹ çà âèêî-
íàííÿ çãàäàíî¨ óìîâè. Ðiâíÿííÿì Åéëåðà äëÿ öi¹¨ çàäà÷i ¹ íåëiíiéíå
iíòåíàëüíå ðiâíÿííÿ òèïó Ãàììåðøòåéíà ç êóái÷íîþ çàëåæíiñòþ ïiäiíòåã-
ðàëüíî¨ ôóíêöi¨ âiä ìîäóëÿ øóêàíî¨ ôóíêöi¨ i ëiíiéíî¨ çàëåæíiñòþ âiä ¨¨
àðãóìåíòà (ôàçîâîãî ìíîæíèêà). Ðiâíÿííÿ ðîçâ'ÿçó¹òüñÿ ìîäèôiêîâàíèì
ìåòîäîì Íüþòîíà. ×èñëîâi ðåçóëüòàòè ïðîäåìîíñòðîâàíi íà ïðèêëàäi
ëiíiéíî¨ àíòåíè, ÿêà îïèñó¹òüñÿ iíòåãðàëüíèì ïåðåòâîðåííÿì Ôóð'¹ ôiíiò-
íî¨ ôóíêöi¨. Âèÿâëåíî i ïðîàíàëiçîâàíî ÷èñåëüíî ïðîöåñ ãàëóæåííÿ ðîç-
â'ÿçêiâ çàäà÷i.
Abstract. The problem formulation of the antenna synthesis according to
the prescribed power radiation pattern is generalized by taking into account
the important physical restriction on the norm of the synthesized pattern. By
the Lagrange method, the problem is reduced to an unconditional variational
problem with unknown parameter (Lagrange multiplier), which provides the
condition of the norm equality. The Lagrange�Euler equation for this problem
is a nonlinear integral equation of the Hammerstein type with cubic depen-
dence of the integrand on modulus of the unknown function. The argument
(phase) factor of this function is involved in the integrand linearly. The mod-
i�ed Newton method is used to solve this nonlinear equation. Numerical
results are demonstrated on the example of the linear antenna. The solution
branching is observed numerically and analyzed.

1. Introduction
The antenna power synthesis problem [1] belongs to the phase optimization

problems in which the argument (phase) of a desired complex function is not
the given function, but it is an additional parameter to be optimized. In con-
trast to the more usual synthesis problem according to the prescribed amplitude
pattern [2], the main term in the functional of the power problem to be min-
imized, is the mean square di�erence between not the modulus (amplitudes)
of obtained and desired radiation patterns, but between their squared values
(powers). Increasing the algebraic degree of the unknown function leads to the
higher nonlinearity of the problem and causes new theoretical and computa-
tional complications.

Key words. Antenna power synthesis problem, Nonlinear integral equation, Modi�ed New-
ton method, Branching of solutions
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The possibility to provide the local irregularities in the desired pattern more
precisely than in the synthesis problem by the given amplitude radiation pattern
is one of the advantages of the power synthesis.

In its earlier formulation the power synthesis had some disadvantage con-
nected with absence of any restriction onto the norm of radiation pattern. In
this case the radiation pattern is involved in all terms of nonlinear integral
equation as an linear multiplier, what admits, in particular, the existence of
zero solution. Moreover, it is turned out that this solution is unique at certain
combinations of parameters.

To avoid the above disadvantage, and to take into account some physical re-
quirements on the synthesized radiation pattern, we supplement the functional
to be optimized by additional condition describing the norm equality of the
desired and obtained radiation patterns. Some modi�cations of this condition
were used in [3]�[5] in other formulations of the antenna synthesis problems.
Such conditional minimization problem can be reduced to the unconditional
one by the Lagrange multipliers method.

The Lagrange-Euler equation for resulting functional is an nonlinear integral
equation of the Hammerstein type. It contains the unknown function in the
integrand as a cubic algebraic term.

The equation is numerically solved by the modi�ed Newton method. Since
the problem has nonunique solutions, they can be separated only by the ap-
propriate choice of the initial approximations. Di�erent types of solutions were
found and analyzed. Their branching points were observed numerically as well.
Of course, such an approach does not investigate the branching process com-
pletely. This question is a subject of special studies. For this purpose the
approach based on the complex polynomial presentation of the solutions [6]
can be appied.

Some results of this paper were announced in [7].

2. Problem formulation
The current u on the antenna and radiation pattern f generated by it, are

connected by the relation
f = Au, (1)

where A is a linear bounded operator. The antenna synthesis problem according
to the prescribed power radiation pattern F 2 consists in minimization of the
functional [1]

σα(u) = ||F 2 − |f |2||22 + α||u||21, (2)

where ‖ ·‖1, ‖ ·‖2 are the mean square norms in the spaces of the currents and
radiation patterns, respectively, α > 0 is a given positive coe�cient (weight
factor); further we assume ‖F‖2

2 = 1. We supplement this functional by the
condition

||f ||22 = 1. (3)

4
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Using the Lagrange multipliers method, we reduce the problem (2)-(3) to
minimization of the functional

σα,µ(u) = ||F 2 − |f |2||22 + α||u||21 − µ||f ||22 (4)
with unde�ned coe�cient (Lagrange multiplier) µ. Fixing µ, we denote by uµ

and fµ the current u minimizing σα,µ(u) and radiation pattern f generated by
it, respectively. Then the condition (3) may be considered as the transcendental
equation for determining µ. Another way to solve the problem is to �nd u, f
and µ simultaneously.

The Lagrange-Euler equation for the functional (4) can be written in the
form

αf − 2AA∗[(F 2 − |f |2)f ]− µAA∗f = 0. (5)
Here A∗ is the operator adjoint to A. After f and µ is found from (5), (3),

the desired �eld distribution u is calculated as

u =
1
α

(
2A∗[(F 2 − |f |2)f ] + µA∗f

)
. (6)

Equation (3) may be supplemented to (5), and they together may be con-
sidered as the equation system for determining f and µ. The modi�ed Newton
method described in [9] in the context of similar systems of equation, can be
applied to system (5), (3). In order to use it, we convert equations (5), (3) to
the convenient form

Φ(f, µ) ≡ αf − 2AA∗[(F 2 − |f |2)f ]− µAA∗f = 0, (7)

Ψ(f) ≡ ||f ||2 − 1 = 0. (8)
The next approximation to the unknown f and µ is calculated in the used

method as

fp+1 = fp + δf ′p + iδf ′′p, (9)

µp+1 = µp + δµp, (10)
where δf ′p, δf ′′p, δµp are found from the linear equation system




[α− µpAA∗ − 2AA∗(F 2

−|fp|2) + 4AA∗(f ′p)]
4AA∗(f ′0f

′′
0 ) −AA∗(f ′0)

4AA∗(f ′pf
′′
p )

[α− µpAA∗ − 2AA∗(F 2−
|fp|2) + 4AA∗(f ′′p )]

−AA∗(f ′′0 )

2f
′
p −2f

′′
p 0



×

×



δf ′p
δf ′′p
δµp


 =



−Φ

′
p

−Φ
′′
p

−Ψp


. (11)
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In the case when the parameter µ is �xed, equation (8) does not participate in
the system, then the last row in system (11), as well as the last column in its
matrix are omitted.

3. Numerical results
The proposed approach has been tested on the example of the synthesis

problem for the linear antenna of limited length, which is described by the
Fourier transform operator mapping on the compactly bounded functions. The
desired power pattern F 2 is assumed to be given also as a compactly bounded
function. In this case the operators A, A∗, and the kernel K(ξ1, ξ2) of the
operator AA∗ have the forms

f(ξ) = Au ≡
1∫

−1

u(x)eicxξdx, (12)

A∗g =
c

2π

1∫

−1

g(ξ)e−icxξdξ, (13)

K(ξ, ξ′) =
sin c(ξ − ξ′)
π(ξ − ξ′) , (14)

where x is the normalized coordinate on the antenna, ξ = sinϑ/ sinϑ0 is the
generalized angular coordinate in the far zone, 2ϑ0 is the angle where the pre-
scribed power pattern F 2 di�ers from zero, c = ka sinϑ0 is the characteristic
physical parameter, 2a is the antenna length.

The Lagrange-Euler equation for the functional (4) for this example has the
form

αf(ξ′)− 2
π

∫ 1

−1

sin c(ξ − ξ′)
π(ξ − ξ′) [(F 2(ξ)− |f(ξ)|2)f(ξ)]dξ−

−µ

∫ 1

−1

sin c(ξ − ξ′)
π(ξ − ξ′) f(ξ)dξ = 0. (15)

The numerical results are presented for the prescribed power patterns
F 2(ξ) ≡ 1/2 and F 2(ξ) ≡ cos(πx/2), |x| ≤ 1; for |x| > 1 these functions equal
zero.

The main result of the optimization is the mean-square deviation σ0 = ||F 2−
|f |2||22 of the power patterns (the �rst term in functional (4)), two other terms
have the auxiliary sense. Dependencies of σ0 on the parameter c are shown
for these two prescribed patterns in Fig.1, respectively, for di�erent solutions
of equation (15). The results depend essentially on the parameter α (weight
factor in functional (4)); its values are given in the �gures. The solutions branch
at some values of c; these values are denoted by cn1 (the index n values relate
to di�erent α).

The real solutions to (15) exist for two given F 2(ξ) and all values of c (dashed
lines in the �gures). Di�erent behaviour of σ0 for di�erent F 2 at small c is

6
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Fig. 1. The mean-square deviation of power patterns for di�er-
ent solutions to (15); (A) F 2(ξ) ≡ 0.5; (B) F 2(ξ) = cos2(πξ/2)

explained by the fact, that the real solution to (15) is asymptotically constant
at c → 0. Therefore, the function F 2(ξ) ≡ const can be easily approximated at
small c. This property is inherent only to this given F 2.

Note, that at µ = 0 and �xed α equation (15) has only zero solution at
small c. This is explained by the fact that the second term in functional (4) is
dominant at small c.

At the points c = cn1 the complex solutions with odd phase functions
arg f(−ξ) = − arg f(ξ) (solid lines) branch o� from the real solutions. The
branching points approximately coincide with the �rst maximums of σ0 as a
function of c for the real solution. It is easy to check from (6) that the current
distribution on the antenna, which generates the pattern with odd arg f(ξ), is
real, but it has zero points in the interval x ∈ [−1, 1]. This fact is important
from the practical point of view, because in this case no phase transformer
device is needed for its creation.

The next characteristic points in Fig.1 are the points c = cn2 where two new
complex solutions simultaneously arise with odd and even phases, respectively.
They have the same |f(ξ| and hence the same σ0(u). However, the current
u(x) is di�erent for these solutions. One of them, corresponding the the odd
arg f(ξ), is real and has zero points in x ∈ [−1, 1], whereas the second one,
with the even phase (arg f(−ξ) = arg f(ξ)) is even complex function (in some
cases it also can have zeros on the antenna). The solutions with odd phase
branch o� from one of the same type (that is, with the odd phase), whereas
the solution with even phase branch o� from the real one; both them arise at
the same point cn2. Consequently, at least four solutions exist at c > cn2: one
real (that is, with zero phase), one with even phase, and two with odd phases.
In Fig. 1 the results only for one solution with odd phase are presented.

Note that the evenness of the phase distributions arg f(ξ) and arg u(x) is
caused by the symmetry of the given function F 2(ξ) and both intervals x ∈
[−1, 1] and ξ ∈ [−1, 1].

7
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As it is investigated so far, the solution behavior for the considered problem
is qualitatively similar to that for the synthesis problem according to the am-
plitude radiation pattern (the rigorous solutions to this problem see in [8], [9]).
However, this analogy can be not complete: the problem considered here has
nonlinearity of the higher degree and can have additional solutions di�erent in
the behavior from those of the mentioned problem.

At �xed c the current norm almost does not depend on α for the solutions
of all types. This is caused by the fact that this norm is hardly a�ected by the
radiation pattern norm, which is �xed in our formulation.

Fig. 2. Power (a)
and phase (b) ob-
tained patterns;
F 2(ξ) ≡ 0.5;
α = 0.4; c = 5

Fig. 3. Amplitude
(a) and phase (b)
distributions of the
currents; F 2(ξ) ≡
0.5; α = 0.4; c = 5

The optimal directivity patterns f(ξ) and the currents u(x) which create
them, corresponding to the solutions of di�erent type for the desired function
F 2(ξ) ≡ const, are presented in Figs. 2, 3; the parameters are shown in the
captions. The curves are labeled as follows: (1) � real solution; (2) � �rst
solution with odd phase; (3) � second solution with odd phase; (4) � solution
with even phase. Analogous results for the case F 2(ξ) ≡ cos(πx/2) are shown
in Figs. 4, 5. In this case the amplitude of power pattern in all solutions almost
coincides with the desired one.

8
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Fig. 4. Power (a)
and phase (b) ob-
tained patterns;
F 2(ξ) = cos2(πξ/2);
α = 0.9;
c = 7

Fig. 5. Amplitude
(a) and phase (b)
distributions of the
currents; F 2(ξ) =
cos2(πξ/2); α = 0.9;
c = 7

Bibliography
1. SavenkoP.O. Nonlinear Problems of Radiating Systems /P.O. Savenko � Lviv: IAPMM

NASU, 2002 (In Ukrainian).
2. AndriychukM. I. Synthesis of Antennas according to Amplitude Radiation Pattern:

Numerical Methods and Algorithms /M. I. Andriychuk, N.N.Voitovich, P.A. Savenko,
V. P.Tkachuk. � Kiev: Naukova Dumka, 1993 (In Russian).

3. VoitovichN.N. Antenna design for given pattern of amplitude of radiation (Semenov's
method) /N.N.Voitovich //Radio Eng. and Electron. Phys. � 1972. � Vol. 17., No 12. �
P. 2000-2005.

4. BakhrakhL.D. Synthesis of Radiating Systems (Theory and Methods of Design)
/ L.D.Bakhrakh, S.D.Kremenetskiy � Moscow: Sov. Radio, 1974 (In Russian).

5. KatsenelenbaumB. Z. Optimal current synthesis on a circle /B. Z.Katsenelenbaum,
M.Y. Shalukhin // J. Comm. Tech. Electron. � 1989. � Vol. 34., No 5. � P. 25-33.

6. BulatsykO.O. A complex polynomial representation of solution to the antenna synthe-
sis problem by the power pattern /O.O.Bulatsyk //Direct and Inverse Problems in
Electrodynamic and Acoustic Wave Theory (DIPED-2013). � Lviv. � 2013. � P. 166-170.

7. AndriychukM. I. Antenna synthesis according to power radiation pattern with condition
of norm equality /M. I. Andriychuk, N.N.Voitovich //Direct and Inverse Problems in
Electrodynamic and Acoustic Wave Theory (DIPED-2013). � Lviv. � 2013. � P. 137-140.

9



MYKHAYLO ANDRIYCHUK, MYKOLA VOYTOVYCH

8. VoitovichN.N. Antenna synthesis by amplitude radiation pattern and modi�ed phase
problem. Appendix in: B. Z. Katsenelenbaum. Electromagnetic Fields � Restrictions and
Approximation /N.N.Voitovich. � Weinheim: WILEY-VCH. � 2003. � P. 191-234.

9. BulatsykO.O. Phase Optimization Problems /O.O.Bulatsyk, B. Z.Katsenelenbaum,
Yu.P.Topolyuk, N.N.Voitovich. � Weinheim: WILEY-VCH, 2010.

Mykhaylo Andriychuk, Mykola Voytovych,
Pidstrygach Institute for Applide Problems of Mechanics and
Mathematics, 3b Naukova Str., Lviv, 79060, Ukraine

Received 20.05.2014

10



Æóðíàë îá÷èñëþâàëüíî¨ 2014
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (116)

Journal of Computational
& Applied Mathematics

UDC 519.6

THE ALTERNATING METHOD APPLIED
TO TWO-POINT BOUNDARY VALUE PROBLEMS

George Baravdish, B. Tomas Johansson

Ðåçþìå. Àëüòåðíóþ÷èé iòåðàöiéíèé ìåòîä Êîçëîâà-Ìàçü¨, ùî áóâ çàïðî-
ïîíîâàíèé äëÿ îáåðíåíèõ êðàéîâèõ çàäà÷ äëÿ ðiâíÿíü â ÷àñòèííèõ ïîõiä-
íèõ, çàñòîñîâàíî äî äâî-òî÷êîâî¨ êðàéîâî¨ çàäà÷i äëÿ çâè÷àéíîãî äèôåðåí-
öiàëüíîãî ðiâíÿííÿ äðóãîãî ïîðÿäêó. Äîñëiäæåíî âèïàäîê ëiíiéíîãî äè-
ôåðåíöiàëüíîãî îïåðàòîðà äðóãîãî ïîðÿäêó. Çîêðåìà, ïîäàíî êðèòåðié
çáiæíîñòi ÿê çâ'ÿçîê ìiæ êîåôiöi¹íòàìè äèôåðåíöiàëüíîãî îïåðàòîðà i
êiíöåâèì ìîìåíòîì ÷àñó iíòåðâàëó. Äëÿ íåëiíiéíîãî äèôåðåíöiàëüíîãî
îïåðàòîðà âèâåäåíî äåÿêi ôîðìóëè, çà äîïîìîãîþ ÿêèõ ìîæíà äîâåñòè
çáiæíiñòü. Îäíàê, ÿê ïîêàçàëè ÷èñåëüíi åêñïåðèìåíòè, çíàõîäæåííÿ êðè-
òåðiþ çáiæíîñòi â íåëiíiéíîìó âèïàäêó ¹ íåòðèâiàëüíîþ çàäà÷åþ.
Abstract. The alternating iterative method of Kozlov and Maz'ya, originally
proposed for inverse boundary value problems for partial di�erential opera-
tors, is applied to a two-point boundary value problem for a second-order
ordinary di�erential operator. The case of a linear second-order operator is
investigated in detail. In particular, a criteria for convergence expressing a
relationship between the coe�cients of this operator and the �nal time of the
interval is given. For nonlinear operators some formulas are derived on which
a proof of convergence can be obtained. However, as is highlighted by a nu-
merical example, �nding criteria on the problem to guarantee convergence of
the alternating method in the nonlinear case is nontrivial.

1. Introduction
The alternating iterative method was proposed in 1989 by V. A. Kozlov and

V. G. Maz'ya [33] to solve some inverse ill-posed problems such as the Cauchy
problem for a self-adjoint and strongly elliptic operator and data reconstruction
for hyperbolic operators. An advantage with the alternating method is that one
solves well-posed problems for the same type of governing partial di�erential
operator in the solution domain as in the ill-posed problem and there is no pa-
rameter involved in the procedure. These properties have made the alternating
method a popular choice in engineering applications and we give a brief survey
on some of these results and applications before introducing the problem to be
studied.

For general applications and implementation of the alternating method for
Cauchy problems for time-independent operators (typically the Laplace oper-
ator), see [35, 23, 8, 16, 42, 40, 29, 24]. Relaxation to speed up the conver-
gence has been introduced and examined in [29, 30, 25, 27]. Generalization
of the alternating method to the Stokes system was undertaken in [7] and to

Key words. Heat equation, mixed problem, Rothe's method, boundary integral equation
method, trigonometrical quadrature method.
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the Helmholtz operator in [26], see also [10]. The alternating method for the
Laplace equation was extended to unbounded domains in [13]. Convergence for
some nonlinear operators was shown in [41, 4]. The various numerical imple-
mentations have mainly been performed using the boundary element method
or integral equations, which is natural when only boundary data is updated.
Implementation using the �nite element method and error estimates suitable
for adaptive methods were given in [5]. In that work it was also shown that the
alternating method for elliptic problems can be interpreted as the minimization
of a certain functional.

The aim of the present study is to show that the alternating method can
be applied also to some two-point boundary value problems for a second-order
operator. Speci�cally, we study





u′′(t) + f(t, u) = 0, in I,

u(0) = ϕ,

u(T ) = ψ.

(1)

Here, I = [0, T ], where T > 0 is a real number, and f : I × X → X. We
do not strive after the most general situation nor to have a method that can
be compared with the many advanced numerical methods already presented in
the literature for ordinary di�erential operators of the form (1). Instead, as
pointed out above, we are interested solely in the alternating method and to
add some more knowledge around this procedure, in particular, to give some
classes of functions f for which the iterative method converges and to give some
f for which there is no convergence. Thus, for simplicity, we concentrate on (1)
when f is a continuous function, and where the space X is Rn or a Hilbert
space; potentially X can be a Banach space. In fact, the main part of this
study is devoted to the linear case when f = Q(t)u with Q(t) = A + B(t)
being a smooth positive self-adjoint operator on X, and to show convergence
of the alternating method in this case thereby generalizing the similar situation
in [33] to time-dependent operators. One can of course have a higher order
di�erential operator as well as di�erent type of boundary conditions but we do
not investigate that further here.

There are many applications leading to a model of the form (1), for example,
de�ection of cantilever beams under certain load [11], plate de�ection theory [2],
con�nement of a plasma column using radiation pressure [47], heat transfer in
�ns [32], the study of tumour growth [1, 52], cell oxygen uptake [36, 39] and in
modelling the distribution of heat sources in the human head [19, 44] to only
mention a few.

Partly due to its many applications, there is an overwhelming literature on
two-point boundary value problems and it is not within the scope of this study
to give a general overview; instead below we point towards some references
for (1) and within these the reader can �nd further references.

Existence and uniqueness of a solution to (1) is nontrivial. In the case X =
Rn, existence of a solution was settled in [48, 49]. For existence of a solution
when X is a Banach space, see [12, 51, 43]. General references for second-order

12
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di�erential equations in Banach spaces are [18, Chapter 2], [21, Chapter 2
Section 7] and [46, Chapter 5 Section 3].

For general ideas on the numerical solution of (1), see [3, Chapter 11] and [31].
An excellent overview of both theoretical and numerical �ndings for (1), starting
with the seminal paper of E. Picard [45], is given in the introduction in [14].

Let us then describe the method that we shall use to obtain a numerical ap-
proximation to (1). Following the original paper on the alternating method [33],
the algorithm is:

(i) Make an initial guess η0 of u′(0). Then the �rst approximation u0 is
obtained by solving





u′′0(t) + f(t, u0) = 0, in I,

u0(0) = ϕ,

u′0(0) = η0.

(2)

(ii) Having obtained u2k, the approximation u2k+1 for k ≥ 0, is obtained by
solving 




u′′2k+1(t) + f(t, u2k+1) = 0, in I,

u2k+1(T ) = ψ,

u′2k+1(T ) = u′2k(T ).
(3)

(iii) Then u2k+2 is obtained by solving




u′′2k+2(t) + f(t, u2k+2) = 0, in I,

u2k+2(0) = ψ,

u′2k+2(0) = u′2k+1(0).
(4)

The procedure then continues by iterating in the last two steps. Clearly, the
initial value problems solved in each step are well-posed.

As mentioned above, we shall mainly concentrate on the linear case and
in Section 2, we investigate the situation when f(t, u) = Q(t)u, with Q(t) =
A + B(t) being a self-adjoint linear smooth operator generating a (vector) sine
and cosine function. Convergence of the alternating procedure is shown under a
restriction on the �nal time T , see Theorem 2.2. We remark that the conditions
on Q(t) can be relaxed such that Q can be a di�erential operator on the space X,
thus the results obtained can be applied to time-dependent hyperbolic problems
as well. The results in Section 2 builds on Chapter 5 in [6], where the setting
was Rn.

To gain more insight and to be able to state a condition that is more easy
to check for convergence of the alternating method, in Section 3 a linear and
scalar equation is examined when X = R and f(t, u) = q(t)u. It is shown
that provided that the smallest eigenvalue for some two-point boundary value
problems in the interval I is greater than one then the method converges for
0 < T1 < T , see Theorem 3.4. In Section 3.1, we describe a class of functions f
for which the alternating method diverges. In Section 4, we brie�y investigate
the nonlinear case. We derive some formulas for the iterates on which a proof of
convergence can be based. However, this needs some monotonicity results for
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the solution and the function f . As is highlighted by a numerical example in
Section 4.1, the alternating method can converge in the nonlinear case without
the iterates being monotonically increasing (decreasing) towards the analytical
solution. Thus, a full proof of the convergence in the nonlinear case seems
intricate and beyond the scope of this study. In Section 4.1, we also suggest and
brie�y investigate a modi�cation in the sense of linearization in the alternating
procedure. This modi�cation appears to converge for classes of functions where
the original alternating method diverges. This merit further investigations of
this linearization but it is not pursued here but deferred to future work.

2. The alternating procedure for second order linear equations
We start by �rst introducing some notation. The space C(I;X) is the set

of all continuous functions v : I → X and endowed with the usual supremum
norm

‖v‖∞ = max
0≤t≤T

|v(t)|.

Similarly, Ck(I; X) is the space of k-times di�erentiable functions with the k-
th derivative being continuous (supremum norm) and k ≥ 1 an integer. The
spectral radius of an operator Q is de�ned as usual,

r(Q) = sup{|λ|; λ ∈ σ(Q)}.
We are interested in solving (1) in the case when f(t, u) = Q(t)u. We assume

that
Q(t) = A + B(t), (5)

where A is a linear operator generating a cosine function, i.e. a function c(t)
mapping into the space of bounded operators on X and satisfying c(t + s) +
c(t− s) = c(t)c(s), where t, s ≥ 0, and c(0) = I, see further [18, Section 2] for
criteria on A to guarantee existence of such a function c(t). Moreover, B(t)
maps into the space of bounded linear operators on X and is twice strongly
continuously di�erentiable and the domain of B(t) has to contain the domain
of A. Furthermore, Q(t) is assumed to be self-adjoint and positive. This latter
condition will in particular guarantee that in the case of Rn, the initial value
problems used in the alternating method will not be sti�.

We study the linear second-order di�erential equation with two-point bound-
ary value conditions:





u′′ + Q(t)u = 0, in I,
u(0) = ϕ,
u(T ) = ψ,

(6)

where u ∈ C2([0, T ]; X) and Q as above; for the boundary data ϕ, ψ ∈ X.
It is known, see [38], that for problem (6) there exists functions S(t) and

C(t), commonly denoted the (vector) sine and cosine function respectively,
that satisfy

S(0) = C ′(0) = 0, S′(0) = C(0) = I.

14



THE ALTERNATING METHOD APPLIED TO TWO-POINT ...

Provided that the spectral radius r(C∗(T )S′(T )) < 1, then S(T ) has an inverse
and the solution to (6) can be given as

u(t) = S(t)S(T )−1(ψ − C(T )ϕ) + C(t)ϕ. (7)
This will be veri�ed in the next section.

For simplicity, we shall assume that X is a Hilbert space mainly to simplify
the use of adjoint operators; most of the derivations can be justi�ed also in a
Banach space.

1. Properties of the sine and cosine functions. The solutions S(t) and
C(t) need not be self-adjoint although Q(t) is. By C∗ and S∗ we mean the
adjoint of C and S respectively, i.e. the adjoint of C(t) and S(t) for t ∈ I. For
the sake of completeness we include a proof of the following.

Lemma 1. The solutions S(t) and C(t) to problem (6) satisfy the identities:
S′∗(t)C(t)− S∗(t)C ′(t) = I, (8)

and
S′(t)C∗(t)− C ′(t)S∗(t) = I. (9)

The elements S∗(t) and C∗(t) are the adjoint operators of S(t) and C(t), and
I is the identity.

Proof. Due to the smoothness assumption on Q, we can di�erentiate the left-
hand side of equality (8) to formally obtain

d

dt
(S′∗(t)C(t)− S∗(t)C ′(t)) =

= S′′∗(t)C(t) + S′∗(t)C ′(t)− S′∗(t)C ′(t)− S∗(t)C ′′(t) =
= S′′∗(t)C(t)− S∗(t)C ′′(t) =
= −(Q(t)S(t))∗C(t) + S∗(t)Q(t)C(t) =
= −S∗(t)Q(t)C(t) + S∗(t)Q(t)C(t) = 0.

The equality (8) then follows by formally integrating this using the initial con-
ditions for the S(t) and C(t) and their derivatives.

To prove (9), we �rst show that S∗S′ and C∗C ′ are self-adjoint We have
d

dt
(S∗S′ − S′∗S) = S∗S′′ − S′′∗S = S∗QS − S∗QS = 0.

Again, formally integrating using that S(0) = 0, it follows that S∗S′ = S′∗S.
Similarly, one can show that C∗C ′ = C ′∗C.

De�ne the following operator matrix

B =
(−C ′∗(t) C∗(t)

S′∗(t) −S∗(t)

)
. (10)

This matrix is a left inverse of
A =

(
S(t) C(t)
S′(t) C ′(t)

)
,

15



GEORGE BARAVDISH, B. TOMAS JOHANSSON

that is BA = I, and this is straightforward to check by formal matrix multipli-
cation using (8) together with S∗S′ = S′∗S and C∗C ′ = C ′∗C. Thus, B is the
inverse of A and using that therefore BA = I, i.e.

(
S(t) C(t)
S′(t) C ′(t)

)(−C ′∗(t) C∗(t)
S′∗(t) −S∗(t)

)
=

(
I 0
0 I

)
(11)

gives (9). 2

We note that from (11) follows immediately that also SC∗ and S′C ′∗ are
self-adjoint, which we state as a separate result.

Lemma 2. The operators SC∗ and S′C ′∗ are self-adjoint.

We then verify that provided r(C∗(T )S′(T )) < 1 then (7) is a well-de�ned
solution to (6).

Lemma 3. Assume that r(C∗(T )S′(T )) < 1. Then the inverse of S(T ) exists.

Proof. This is a standard application of the Neumann series in combination
with the relation (8). Indeed,

(I − C∗(T )S′(T ))
k−1∑

j=0

(C∗(T )S′(T ))j = (I − (C∗(T )S′(T ))k). (12)

Letting k tend to in�nity one can conclude, since r(C∗(T )S′(T )) < 1, that
(I − C∗(T )S′(T )) has an inverse. Applying (8) the result follows. 2

2. Convergence of the alternating procedure for (6). The alternating
procedure for problem (6) was given in the introduction. For clarity, we state
the steps again. The element u2k satis�es the initial value problem





u′′2k + Q(t)u2k = 0, in I,
u2k(0) = ϕ,
u′2k(0) = u′2k−1(0),

(13)

where u′0(0) = η is arbitrary. The solution to this problem is given by
u2k(t) = S(t)u′2k−1(0) + C(t)ϕ. (14)

The element u2k+1 is constructed as the solution to




u′′2k+1 + Q(t)u2k+1 = 0, in I,
u2k+1(T ) = ψ,
u′2k+1(T ) = u′2k(T ),

(15)

with solution
u2k+1(t) = (S(t)C∗(T )−C(t)S∗(T ))u′2k(T )+(C(t)S′∗(T )−S(t)C ′∗(T ))ψ. (16)

To verify that this indeed is a solution one can use that SC∗ and S′C ′∗ are
self-adjoint according to Lemma 2 together with (8)-(9).

We shall then establish convergence of the alternating algorithm (convergence
was shown in [33] for time-independent operators).
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Theorem 1. Let u be a solution to problem (6) and let C(t) and S(t) be the fun-
damental cosine and sine solutions to this problem. Let uk be the k-th approx-
imate solution generated by the alternating procedure. If r(C∗(T )S′(T )) < 1,
where r is the spectral radius, then

‖u2k − u‖∞ ≤ C1δ
k

and
‖u2k+1 − u‖∞ ≤ C2δ

k,

where C1 and C2 are positive constants and δ ∈ (r(C∗(T )S′(T )), 1).
Proof. The solution u2k+1 to (15) is given by (16) and this gives

u2k+1(t) = (S(t)C∗(T )− C(t)S∗(T ))u′2k(T ) +
+(C(t)S′∗(T )− S(t)C ′∗(T ))ψ = (17)

= Z1(t)u′2k(T ) + Z2(t)ψ.

In particular, calculating u′2k−1(0) and using that the solution to (13) is given
by (14) tedious but straightforward calculations show that

u2k(t) = S(t)
k−1∑

j=0

(C∗(T )S′(T ))j C ′∗(T )(C(T )ϕ− ψ) +

(18)
+S(t)(C∗(T )S′(T ))kη + C(t)ϕ.

Using this expression in (17) one derives
u2k+1(t) = Z1(t)S′∗(T )(C∗(T )S′(T ))kη +

+Z1(t)S′∗(T )
k−1∑

j=0

(C∗(T )S′(T ))jC ′∗(T )(C(T )ϕ− ψ) +

+Z1(t)C ′∗(T )ϕ + Z2(t)ψ.

Similar to the proof of Lemma 3 it follows from identity (8) that
k−1∑

j=0

(C∗(T )S′(T ))j = (I − C∗(T )S′(T ))−1(I − (C∗(T )S′(T ))k) =

(19)
= S−1(T )C ′∗(T )−1(I − (C∗(T )S′(T ))k).

Employing this in (18) one obtains
u2k(t) = S(t)(I − (C∗(T )S′(T ))k)S−1(T )C ′∗(T )−1C ′∗(T )(C(T )ϕ− ψ) +

+S(t)(C∗(T )S′(T ))kη + C(t)ϕ =

= S(t)(C∗(T )S′(T ))k(η − S−1(T )(C(T )ϕ− ψ)) +
+S(t)S−1(T )(C(T )ϕ− ψ) + C(t)ϕ.

Similarly, using (19) in (17)
u2k+1(t) = Z1(t)S′∗1 (T )(C∗(T )S′(T ))k(η − S−1(T )(C(T )ϕ− ψ)) +

+S(t)S−1(T )(C(T )ϕ− ψ) + C(t)ϕ.
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Next, from Lemma 3 the element S−1(T ) exists and thus the solution to prob-
lem (6) is given by (7). Using this, we �nally have

u2k(t)− u(t) = S(t)(C∗(T )S′(T ))k(η − u′(0))

and similarly
u2k+1(t)− u(t) = Z1(t)S′∗1 (T )(C∗(T )S′(T ))k(η − u′(0)).

Taking norms and making use of the identity
r(Q) = lim sup

k→∞
‖Qk‖1/k, (20)

we get
‖u2k − u‖∞ ≤ ‖S‖∞‖(C∗(T )S′(T ))k‖‖η − u′(0)‖ ≤ C1δ

k

and
‖u2k+1 − u‖∞ ≤ ‖Z1‖∞‖S′∗1 (T )‖‖(C∗(T )S′(T ))k‖‖η − u′(0)‖ ≤ C2δ

k,

where δ ∈ (r(C∗(T )S′(T )), 1). Thus, the result follows. 2

Remark 1. One can relax the conditions on the operator Q = A + B(t). In
fact, one can impose conditions such that B(t) can be a di�erential operator
and thus the problem studied can model for example the Dirichlet problem for
a hyperbolic equation, see [37]. This then generalizes the results in [33] for
the Dirichlet problem for hyperbolic operators to include time-dependent co-
e�cients. Note though that the Dirichlet problem for the hyperbolic problem
has only a unique solution when T is irrational, see [20]. Note also that gener-
alizing to include equations with a term V (t)u′ is considerable more di�cult in
the Banach space setting, see [18, Chapter 8].

Remark 2. Consider the partial di�erential operator
∆u + f(u) = 0 in Ω

supplied with Dirichlet boundary conditions, where Ω is an annular smooth
domain in Rn. Searching for a radial solution, u(r), leads to the equation

u′′(r) +
n− 1

r
u′(r) + f(u(r)) = 0.

Substituting s = r2−n gives
u′′(s) + ρ(s)f(u(s)) = 0,

with boundary conditions u(s1) = ϕ and u(s2) = ψ, see further [34]. Thus,
with f of the above form, the results also apply to problems for the Laplace
equation. Nonlinear functions f will be discussed in Section 4, thus the al-
ternating method could potentially be applied to semi-linear problems for the
Laplace operator.

3. A scalar equation
The results in the previous section are in an abstract setting and as remarked

at the end of the previous section the operator Q(t) could even in fact be a
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partial di�erential operator. Since the present study has as one of its aims to
study the alternating method for ordinary di�erential equations, we simplify in
this section and replace Q(t) by q2(t), where q(t) is a scalar real-valued function
and X = R, and study a classical scalar second-order two point boundary value
problem,





u′′ + q2(t)u = 0, in I,
u(0) = ϕ,
u(T ) = ψ,

(21)

where q ∈ C(0, T ). The condition for convergence of the alternating method
stated in Lemma 1 is in the case of (21) reduced to |c(T )s′(T )| <1, where c and
s are the usual fundamental solutions. To give conditions on the function q and
�nal time T for which this condition is satis�ed, we shall need the following two
lemmas below. These essentially follow from classical comparison theorems for
Sturm-Liouville operators; for completeness we give the proofs. For an overview
of history and results on Sturm-Liouville comparison theory, see [15, 17, 50].

Lemma 4. Let a, b ∈ C[0, T ], and let y be a nontrivial solution of
{

y′′ + a2(t)y = 0,
y′(0) = 0.

Suppose that y has its �rst positive zero at t = T , and let z be a nontrivial
solution of the equation

{
z′′ + b2(t)z = 0,
z′(0) = 0,

with b2(t) > a2(t) on (0, T ). Then there exists τ with 0 < τ < T , such that
z(τ) = 0.

Proof. Without loss of generality we can assume that y(0) = 1. Therefore, by
the assumption that y has no zeros in 0 < t < T , we �nd that y is positive
on this interval. Using the governing equation, it follows that y′ is decreasing
on (0, T ). Assume then that z has no zeros in (0, T ), for instance, that z is
positive on (0, T ). Let w = y′z − yz′; then w(0) = 0 and using y(T ) = 0 gives
w(T ) = y′(T )z(T ) ≤ 0 since y′ is decreasing and z is positive. However,

w′ = y′′z + y′z′ − y′z′ − yz′′ = yz(b2 − a2) > 0,

which is a contradiction. 2

Similarly, one can show a result about zeros of the derivative.

Lemma 5. Let a, b ∈ C[0, T ], and let y be a nontrivial solution of
{

y′′ + a2(t)y = 0,
y(0) = 0.

Suppose that y′ has its �rst positive zero at t = T , and let z be a solution of
{

z′′ + b2(t)z = 0,
z(0) = 0,
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with b2(t) > a2(t) on (0, T ). Then there exists τ with 0 < τ < T , such that
z′(τ) = 0.

Proof. We can assume that y′(0) = 1, and since by assumption y′ does not have
any zero on (0, T ) one can conclude that y is positive on (0, T ). Assume that
z′ has no zeros in (0, T ), for instance, that z′ is positive on (0, T ). This gives
that z is positive on (0, T ) since z(0) = 0. Let w = y′z − yz′, then w(0) = 0
and using that y′(T ) = 0 together with the positiveness of y and z′ imply
w(T ) = −y(T )z′(T ) ≤ 0. However,

w′ = y′′z + y′z′ − y′z′ − yz′′ = yz(b2 − a2) > 0,

which is a contradiction. 2

To derive properties of the fundamental solutions c and s, we shall use the
above lemmas together with the following two eigenvalue problems to compare
zeros of the solutions. Let λDN be the �rst eigenvalue of the following problem∗





u′′ + λq2(t)u = 0, in I,
u(0) = 0,
u′(T ) = 0,

(22)

and let λND be the �rst eigenvalue of the problem†




u′′ + λq2(t)u = 0, in I,
u′(0) = 0,
u(T ) = 0.

(23)

Lemma 6. Let λDN andλND be de�ned as above. If 1 < min{λDN , λND},
then the alternating procedure converges on every interval [0, T1], 0 < T1 <T.

Proof. The fundamental solution c(t) satis�es c(0) = 1 and c′(0) = 0. Clearly,
from the governing equation for this function, c′(t) is non-positive on the in-
terval (0, T ) implying that c(t) is decreasing on this interval. Suppose that
c(T1) = 0 for some 0 < T1 < T . Then, from Lemma 4 with T = T1 and a2 = q2

and b2 = λNDq2, we conclude that the solution to (23) is zero for t = τ with
0 < τ < T1. However, then the eigenfunction solution to (23) would be identi-
cally zero, which is a contradiction. Therefore, we �nd that c(t) do no change
sign on [0, T1] and we can conclude that 0 < c(t) < 1 on [0, T1]. A similar con-
clusion can be made using Lemma 5 for s′(t), and therefore 0 < c(t)s′(t) < 1
on [0, T1]. Thus, the condition for convergence in Theorem 1 is satis�ed. 2

It is then possible to state a convergence result for the alternating method
involving a condition on the coe�cient q and the �nal time T .

Theorem 2. If T ≤ (2max0≤t≤T |q(t)|)−1π, then the alternating procedure
converges as a geometric progression on the interval (0, T ).

∗The subscript DN refers to a Dirichlet condition at t = 0 and a Neumann condition at
t = T .

†The subscript ND refers to a Neumann condition at t = 0 and a Dirichlet condition at
t = T .
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Proof. Put a2(t) = q2(t) and b2(t) = max0≤t≤T q2(t) = M2. Once can check
that 1 < min{λDN , λND} in the interval [0, T1], where T1 ≤ π/2M . Thus, the
conclusion follows from Lemma 6. 2

3. Non-convergence for the alternating method. As mentioned in the
introduction, we are interested in a class of equations for which the alternating
method do not converge. Guided by the results in the previous section, we can
then give such a class of equations.

Consider the following problem:




u′′ − q2(t)u = 0, in I,
u(0) = ϕ,
u(T ) = ψ,

(24)

where q ∈ C[0, T ]. Let c and s be the fundamental solutions corresponding to
this equation. Examining the proof of Theorem 1 it is clear that the alternating
method do not converge if |s′(T )c(T )| > 1. We adjust T , if necessary, such that
c and s do not have any zeros for 0 < t < T . We shall then show that
|s′(T )c(T )| > 1 holds for the fundamental solutions to (24).

Proposition 1. Let c and t be the fundamental solutions corresponding to the
equation (24). Then |s′(T )c(T )| > 1.

Proof. Since T is chosen such that c and s do not have any zeros in 0 < t < T and
since c(0) = 1 we conclude that c is positive on (0, T ). Hence, it follows from the
equation (24) that c′′ is positive, which implies that c′ is increasing on (0, T ).
Thus, c(T ) > c(0) = 1. In similar way, one can show that s′(T ) > s′(0) = 1.
2

Therefore, since |s′(T )c(T )| > 1, we can conclude that the alternating method
applied to (24) will not converge.

4. Nonlinear operators
In this section we shall investigate the nonlinear case





u′′(t) + f(u(t)) = 0, in I,
u(0) = ϕ,
u(T ) = ψ.

(25)

For simplicity, we assume that u takes values in R. We shall further assume that
there exists a unique solution to problem (25). The existence and uniqueness of
a solution is a nontrivial matter, and there are plenty of results and conditions
in the literature. A good place to start is Chapter 1 in [9]. From that chapter
it follows that under a Lipschitz condition on f there exists a time-interval
where existence and uniqueness of a solution to (25) holds. Note that only
assuming that f is continuous and positive will not guarantee uniqueness, for
counterexamples, see [22].

We shall write down the solution to each of the �rst four steps in the alter-
nating method to be able to derive some general expressions for the generated
elements ηk and ζk.
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To generate an initial guess for the alternating method, let



v′′(t) = 0, in I,
v(0) = ϕ,
v(T ) = ψ,

(26)

that is
v(t) =

T − t

T
ϕ +

t

T
ψ.

Then de�ne η0 = v′(0) = 1
T (ψ − ϕ). With this initial guess, the �rst approxi-

mation u0 in the alternating procedure is given by



u′′0(t) + f(u0(t)) = 0, in I,
u0(0) = ϕ,
u′0(0) = η0,

(27)

with formal solution

u0(t) = ϕ+ tη0−
∫ t

0
(t− τ)f(u0(τ)) dτ =

T − t

T
ϕ+

t

T
ψ−

∫ t

0
(t− τ)f(u0(τ)) dτ,

where in the last equality the expression for the element η0 was used. The
derivative of u0 at t = T is calculated from this as

u′0(t) =
1
T

(ψ − ϕ)−
∫ t

0
f(u0(τ)) dτ,

giving

ζ1 = u′0(T ) =
1
T

(ψ − ϕ)−
∫ T

0
f(u0(τ)) dτ.

The next approximation u1 is found from



u′′1(t) + f(u1(t)) = 0, in I,
u1(T ) = ψ,
u′1(T ) = ζ1,

(28)

with solution

u1(t) = ψ + (t− T )ζ1 +
∫ T

t
(t− τ)f(u1(τ)) dτ.

Inserting the expression for ζ1,

u1(t) = ψ +
t− T

T
(ψ − ϕ)− (t− T )

∫ T

0
f(u0(τ)) dτ +

∫ T

t
(t− τ)f(u1(τ)) dτ.

From this, the derivative of u1 at zero is

η2 = u′1(0) =
1
T

(ψ − ϕ)−
∫ T

0
(f(u0(τ))− f(u1(τ))) dτ.

Then u2 is constructed as the solution to



u′′2(t) + f(u2(t)) = 0, in I,
u2(0) = ϕ,
u′2(0) = η2,

(29)

22



THE ALTERNATING METHOD APPLIED TO TWO-POINT ...

and formally

u2(t) = ϕ + tη2 −
∫ t

0
(t− τ)f(u2(τ)) dτ =

= ϕ +
t

T
(ψ − ϕ)− t

∫ T

0
(f(u0(τ))− f(u1(τ))) dτ −

−
∫ t

0
(t− τ)f(u2(τ)) dτ.

Calculating the derivative at t = T we obtain

ζ3 = u′2(T ) =
1
T

(ψ − ϕ)−
∫ T

0
(f(u0(τ))− f(u1(τ)) + f(u2(τ))) dτ. (30)

Then u3 is constructed,




u′′3(t) + f(u3(t)) = 0, in I,
u3(T ) = ψ,
u′3(T ) = ζ3,

(31)

having the solution

u3(t) = ψ + (t− T )ζ3 +
∫ T

t
(t− τ)f(u3(τ)) dτ

or by using the expression for ζ3,
u3(t) = ψ+

+ (t− T )
(

1
T

(ψ − ϕ)−
∫ T

0
(f(u0(τ))− f(u1(τ)) + f(u2(τ))) dτ

)
+

+
∫ T

t
(t− τ)f(u3(τ)) dτ.

From this expression, we have the derivative

η4 = u′3(0) =
1
T

(ψ − ϕ)−

−
∫ T

0
(f(u0(τ))− f(u1(τ)) + f(u2(τ))− f(u3(τ))) dτ

)
.

(32)

Note that (30) and (32) justi�es the term alternating method, since the sign
appear to alternate with each iteration.

We further observe that

ζ3 − ζ1 =
∫ T

0
(f(u1(τ))− f(u2(τ))) dτ

and
η4 − η2 =

∫ T

0
(f(u3(τ))− f(u2(τ))) dτ.

Continuing by iterating in the last two steps, a simple induction step reveals,
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Proposition 2. Let {η2k}∞k=0 and {ζ2k+1}∞k=0 be generated from the alternating
procedure. Then

η2k+2 − η2k =
∫ T

0
(f(u2k+1(τ))− f(u2k(τ))) dτ

and
ζ2k+3 − ζ2k+1 =

∫ T

0
(f(u2k+1(τ))− f(u2k+2(τ))) dτ.

Now, note that if f was a positive increasing function and if the approxi-
mations uk generated by the alternating method sats�ed uk+1 ≥ uk, then one
can conclude that {η2k} will be an increasing sequence and {ζ2k} a decreas-
ing sequence. Thus, provided these could be bounded from above and below,
one could establish a convergence proof. Another possibility is that the odd
approximations {u2k+1} are all above each of the even approximations {u2k}.

However, it appears rather di�cult to �nd conditions on the function f and
the �nal time T to have such conditions satis�ed. In fact, in the next section, we
shall take a rather simple function f and show numerically that the sequences
{η2k} and {ζ2k} do not need to be monotone, and still there appears to be
convergence.
4. A numerical example for a nonlinear problem. Let




u′′(t) + 1
2 sin(2u(t)) = 0, in I,

u(0) = 0,
u(T ) = ψ.

(33)

Here, f(u) = 1
2 sin(2u(t)) is Lipschitz with constant L = 1. Hence, from [9, p.

5] there is a unique solution to (33) for T < 2
√

2. In fact, we assume that psi
is chosen such that we have the following explicit expression for the solution,

u(t) = arcsin
e2t − 1
e2t + 1

. (34)

The initial guess is constructed as in the previous section. The initial value
problems needed to be solved in each iteration step of the alternating proce-
dure are solved with the Matlab function ODE45 (Matlab version R2013b on a
computer with Windows 8.2 and an Intel(R) Core(TM) i3-3217U Central Unit
Processor (CPU) at 1.8GHz).

In Fig. 1(a) we present the results obtained after 8 iterations (that is u7

is the �nal approximation; the corresponding value for k for the solution u2k

and u2k+1, respectively, is marked out on each approximation) obtained with
T = 1.6 and ψ generated from (34). As can be seen from this �gure there is
convergence towards the solution to (33). Moreover, a monotone behaviour of
the approximations, expected due to Proposition 2, is present. In fact, with
these solutions together with the function f and Proposition 2, the sequences
ηk and ζk should both be positive and decreasing. This has been checked for
and is the case in the numerical simulations.

Increasing T there is convergence of the similar kind up to about T = 1.8,
where the method starts to become slower and eventually does not converge.
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Choosing instead T = 2.8 and taking ψ = 0.5, one can see that monotonicity
is no longer present in the sense that some even iterates u2k intersects some
odd iterates u2m+1; this is shown in Fig. 1(b). In this case, we used the
Matlab function bvpc4 to generate an approximation to the solution to (33) to
test convergence against with ψ = 0.5 formula (34) does not give the sought
solution.

One can also change sign of the function f and run the procedure with −f .
This causes problems with the alternating method and only for small values of
T there seems to be convergence. For example, the method diverges for T = 1
and ψ = 1 as is highlighted in Fig. 2(a). Note that changing sign was shown
in the linear case in Section 3.1 to generate non-convergent sequences in the
alternating procedure.

We remark that we have also tried a linearization in the alternating method
in the sense that f is instead evaluated on the solution from the previous
step. This new linearized procedure does not give any signi�cant improvement
for (33). However, changing to−f this linearized procedure appears to converge
for T = 1 and ψ = 1 as shown in Fig. 2(b).
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Fig. 1. The solutions u2k ( ) and u2k+1 (· · · ), and the analytical
solution u (�) for various T and ψ.

5. Conclusion
The alternating method [33] was investigated for two-point boundary value

problems for second order time-dependent di�erential operators. Convergence
was established in the linear case extending [33] to the time-dependent case
with the operators taking values in a Hilbert space (potentially the similar
analysis can be carried over to the Banach space setting). In the scalar case, a
criteria involving the coe�cients of the operator and the �nal time were given
to guarantee convergence. It was also shown that changing sign of a term in
the di�erential operator generates equations for which the alternating method
does not converge. Moreover, for nonlinear operators, expressions were derived
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Fig. 2. The solutions u2k ( ) and u2k+1 (· · · ), and the analytical
solution u (�) for various T and ψ.

on which a proof of convergence can potentially be obtained. However, as was
highlighted by numerical examples, to pin-point precise criteria on the operator
and �nal time to have a proof of convergence also in the nonlinear case seem
di�cult. A linearization was suggested such that linear di�erential equations
were solved at each iteration step and this linearization turned out to converge
in some cases where the orignal alternating method did not converge. This
merits further investigations and is deferred to future work.
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AN ALTERNATING BOUNDARY INTEGRAL
BASED METHOD FOR A CAUCHY PROBLEM

FOR KLEIN-GORDON EQUATION

Roman Chapko, Dmytro Laba

Ðåçþìå. Ðîçãëÿäà¹òüñÿ ÷èñåëüíå ðîçâ'ÿçóâàííÿ çàäà÷i Êîøi äëÿ ðiâíÿí-
íÿ Êëåéíà-Ãîðäîíà ó äâîçâ'ÿçíié ïëîñêié îáëàñòi. Çâàæàþ÷è íà íåêîðåêò-
íiñòü öi¹¨ ëiíiéíî¨ îáåðíåíî¨ çàäà÷i, âèêîðèñòàíî àëüòåðíóþ÷èé ìåòîä,
ÿêèé âîëîäi¹ ðåãóëÿðèçóþ÷èìè âëàñòèâîñòÿìè. Öå ïðèâîäèòü äî ðîçâ'ÿçó-
âàííÿ äâîõ ìiøàíèõ êðàéîâèõ çàäà÷ íà êîæíié iòåðàöi¨. Öi ìiøàíi çàäà÷i
íàáëèæåíî ðîçâ'ÿçóþòüñÿ ìåòîäîì ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü. Ïðè-
âåäåíî ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ.
Abstract. We consider the numerical solution of a Cauchy problem for
the Klein-Gordon equation in a planar double connected domain. Due to
the ill-posedness of this linear inverse problem the alternating method with
regularization properties is used. It leads to two mixed well-posed boundary
value problems on every iteration. These problems are solved by boundary
integral equation method. Numerical examples are presented.

1. Introduction
Let D be a double connected domain in IR2 with inner and outer boundaries
Γ1 and Γ2, respectively. We suppose that Γ1, Γ2 ∈ C3 (see Fig. 1). Let ν
denote the outward unit normal on boundary.

Fig. 1. An example of a double connected domain

Given the su�ciently smooth continuous functions f1 and f2, we consider
the Cauchy problem of �nding a function u ∈ C2(D) ∩ C1(D̄) which satis�es

Key words. Klein-Gordon equation; Cauchy problem; Double connected domain; Single-
and double layer potentials; Integral equations; Alternating method.
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the Klein-Gordon equation
∆u− κ2u = 0 in D (1)

and the boundary value conditions

u = f and ∂u

∂ν
= g on Γ2. (2)

In (1) κ > 0 is a given constant. In particular we are interested in �nding
the Cauchy data on the inner boundary Γ1.

For the uniqueness of a solution to the Cauchy problem (1), (2) see, for
example, [2]. The solution does not in general depend continuously on the
data, i.e. the problem is ill-posed in the sense of Hadamard, thus making
classical methods inappropriate.

We shall employ the so-called alternating iterative method proposed in [6]
and successfully applied in several engineering problems, see for example [5] and
[8]. The use of the alternating method with an integral equation approach for
the Laplace equation is discussed in [3]. The details of alternating procedure for
the case of the Klein-Gordon equation are listed in section 4. In each iteration,
mixed direct problems are solved in the solution domain D. There are the
Dirichlet-Neumann mixed boundary value problem

∆w − κ2w = 0 in D, (3)

w = h on Γ1,
∂w

∂ν
= g on Γ2 (4)

and Neumann-Dirichlet mixed boundary value problem
∆v − κ2v = 0 in D, (5)

∂v

∂ν
= p on Γ1, v = f on Γ2. (6)

For the direct problems in this study, we propose and investigate a numerical
method based on the potential theory. Instead, the problems are each reduced
to boundary integral equations over Γ1 and Γ2. This approach makes the
implementation of the alternating method very e�cient.

2. Integral equation method for the mixed problems

2.1. Dirichlet-Neumann mixed problem
The problem (3), (4) will be solved by reducing to the system of integral

equations of the �rst kind. We represent the solution w ∈ C2(D)∩C1(D̄) as a
combination of a single- and a double-layer potential

w(x) =
∫

Γ1

ϕ1(y)Φ(x, y)ds(y) +
∫

Γ2

ϕ2(y)
∂Φ(x, y)
∂ν(y)

ds(y), x ∈ D, (7)

where ϕ1 and ϕ2 are unknown continuous densities, Φ(x, y) = 1
2πK0(κ|x− y|)

is a fundamental solution of the equation (3) in term of the modi�ed Hankel
function K0 [1].
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From the continuity of the single-layer potential and the normal derivative
of the double-layer potential we obtain for the problem (3), (4) the following
system of integral equations of the �rst kind




∫

Γ1

ϕ1(y)Φ(x, y)ds(y) +
∫

Γ2

ϕ2(y)
∂Φ(x, y)
∂ν(y)

ds(y) = h(x), x ∈ Γ1,

∫

Γ1

ϕ1(y)
∂Φ(x, y)
∂ν(x)

ds(y)+

+
∂

∂ν(x)

∫

Γ2

ϕ2(y)
∂Φ(x, y)
∂ν(y)

ds(y) = g(x), x ∈ Γ2.

(8)

It is known that modi�ed Bessel functions have the following asymptotic prop-
erties [1] K0(z) ∼ ln 1

z , z → 0 and K1(z) ∼ 1
z , z → 0. Thus, we obtained

the system of integral equations of the �rst kind which contains kernels with
logarithmic singularity as well as a hypersingularity.

Using the Maue type expression [7] the second equation from (8) could be
rewritten in the following way∫

Γ1

ϕ1(y)Φ(x, y)ds(y) +
∫

Γ2

∂ϕ2

∂θ
(y)

∂Φ(x, y)
∂θ(x)

ds(y)−

−κ2

∫

Γ2

ϕ2(y)Φ(x, y)[ν(x) · ν(y)]ds(y) = g(x), x ∈ Γ2,

where θ denotes the unit tangential vector for Γ2.
For the future numerical implementation we consider a parametrization of

the system (8). We assume that the domain boundaries have the parametric
representations

Γi = {xi(t) = (xi1(t), xi2(t)), t ∈ [0, 2π]}, i = 1, 2,

where xi : IR → IR2 are C3 and 2π�periodic with |x′i(t)| > 0 for all t ∈ [0, 2π].
As a result of the parametrization of the system (8) we obtain





1
2π

2π∫

0

[µ1(τ)H11(t, τ) + µ2(τ)H12(t, τ)] dτ = h(t),

1
2π

2π∫

0

[
µ1(τ)H21(t, τ) + µ′2(τ)Ĥ22(t, τ) + µ2(τ)H22(t, τ)

]
dτ = g(t),

(9)

where µi(t) = ϕi(xi(t)), i = 1, 2, h(t) = h(x1(t)), g(t) = 2g(x2(t))|x′2(t)|. The
representation of kernels of the obtained system is listed below

H11(t, τ) = K0(κ|r11(t, τ)|)|x′1(τ)|,

H12(t, τ) = κK1(κ|r12(t, τ)|)r12(t, τ) · ν2(τ)
|r12(t, τ)| |x′2(τ)|,

H21(t, τ) = −2κK1(κ|r21(t, τ)|)r21(t, τ) · ν2(t)
|r21(t, τ)| |x′1(τ)||x′2(t)|,

32



AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD ...

Ĥ22(t, τ) = −2κK1(κ|r22(t, τ)|) [r22(t, τ) · x′2(t)]
|r22(t, τ)| ,

H22(t, τ) = 2κ2K0(κ|r22(t, τ)|)[x′2(t) · x′2(τ)].
Here we introduced the notation rij(t, τ) = xi(t)− xj(τ).

Next we express the system of integral equations (9) in the speci�c form to
be able to apply the trigonometrical quadrature rules. The system of integral
equations in the following form is ready for application of the numerical methods




1
2π

2π∫

0

[µ1(τ)(H1
11(t, τ) ln

4
e

sin2 t− τ

2
+

+ H2
11(t, τ)) + µ2(τ)H12(t, τ)]dτ = h(t),

1
2π

2π∫

0

[µ1(τ)H21(t, τ) + µ′2(τ) cot
τ − t

2
+

+ µ2(τ)(H1
22(t, τ) ln

4
e

sin2 t− τ

2
+ H2

22(t, τ))]dτ = g(t).

(10)

Here kernels are represented as follows

H1
11(t, τ) = −1

2
I0(κ|x1(t)− x1(τ)|)|x′1(τ)|,

H1
22(t, τ) =

= κ2

[
I0(κ|r22(t, τ)|) + I2(κ|r22(t, τ)|)

2|r22(t, τ)|2 r22(t, τ) · x′2(t)r22(t, τ) · x′2(τ)

− I0(κ|r22(t, τ)|)r22(t, τ) · ν2(t)|x′2(t)|x′2(t) · x′2(τ)+

+
I1(κ|r22(t, τ)|)
κ|r22(t, τ)|3 r22(t, τ) · ν2(t)|x′2(t)|r22(t, τ) · ν2(τ)|x′2(τ)|

]
,

H2
ii(t, τ) = Hii(t, τ)−H1

ii(t, τ) ln
4
e

sin2 t− τ

2
, t 6= τ, i = 1, 2

with diagonal terms

H1
22(t, t) = −1

2
κ2|x′2(t)|2, H2

11(t, t) = −1
2

ln
eκ2|x′1(t)|2

4
|x′1(t)| − γ|x′1(t)|

and
H2

22(t, t) = κ2 ln
eκ2|x′2(t)|2

4
|x′2(t)|2−

−1
6

+
1
3

x′2(t) · x′′′2 (t)
|x′2(t)|2

+
1
2
|x′′2(t)|2
|x′2(t)|2

− (x′2(t) · x′′2(t))2
|x′2(t)|4

+ κ2(
1
2
− γ)|x′2(t)|2,

where I0 and I1 are the modi�ed Bessel functions and γ is the Euler constant
[1].

For m ∈ IN ∪ {0} and 0 < α < 1, by Cm,α[0, 2π] we denote the space of m-
times uniformly H�older continuously di�erentiable and 2π-periodic functions
furnished with the usual H�older norm. Using the Riesz theory [7] we can
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conclude that for given functions h ∈ Cm+1,α[0, 2π], g ∈ Cm,α[0, 2π] the system
of integral equations (10) provides a unique solution µ1 ∈ Cm,α[0, 2π] and
µ2 ∈ Cm+1,α[0, 2π].

Clearly, we have according to (7) the following representation for the normal
derivative on the boundary Γ1

∂w

∂ν
(x) = −1

2
ϕ1(x)+

+
∫

Γ1

ϕ1(y)
∂Φ(x, y)
∂ν(x)

ds(y) +
∫

Γ2

ϕ2(y)
∂2Φ(x, y)

∂ν(x)∂ν(y)
ds(y), x ∈ Γ1,

Taking into account the parametric representation of Γi, i = 1, 2 and by
some transformation in the kernels we obtain

∂w

∂ν
(x1(t)) = −1

2
µ1(t)+

+
1
2π

2π∫

0

[
µ1(τ)

(
L11(t, τ) ln

4
e

sin2 t− τ

2
dτ + L12(t, τ)

)
+

+µ2(τ)L2(t, τ)

]
dτ, t ∈ [0; 2π]

(11)

with kernels

L11(t, τ) =
κ
2

I1(κ|r11(t, τ)|)r11(t, τ) · ν1(t)
|r11(t, τ)| |x′1(τ)|,

L12(t, τ) = L1(t, τ)− L11(t, τ) ln
4
e

sin2 t− τ

2
, t 6= τ,

L12(t, t) =
x′′1(t) · ν1(t)

2|x′1(t)|
.

2.2. Neumann-Dirichlet mixed problem
For solving the mixed boundary value problem (5), (6) we use the similar
boundary integral equations approach as described in the previous section.

The solution to the problem (5), (6) inside the domain could be represented
as the following sum of potentials

v(x) =
∫

Γ1

ϕ1(y)
∂Φ(x, y)
∂ν(y)

ds(y) +
∫

Γ2

ϕ2(y)Φ(x, y)ds(y), x ∈ D.
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As in the previous section, using the boundary conditions, we obtain the system
of integral equations which after parametrization and all needed transforma-
tions is represented like





1
2π

2π∫

0

[µ′1(τ) cot
τ − t

2
+ µ1(τ)(H̃1

11(t, τ) ln
4
e

sin2 t− τ

2
+

+ H̃2
11(t, τ)) + µ2(τ)H̃12(t, τ)]dτ = p(t),

1
2π

2π∫

0

[µ1(τ)H̃21(t, τ)+

+ µ2(τ)(H̃1
22(t, τ) ln

4
e

sin2 t− τ

2
+ H̃2

22(t, τ))]dτ = f(t).

(12)

Here the kernels are smooth functions and their di�erential properties are de-
pendent from smoothness of the boundaries Γi. Using approach described ear-
lier in this section, one can check the existence and uniqueness of the solution
to the system (12).
Again we have the following way to calculate the function values on the inner
boundary Γ1

v(x) =
1
2
ϕ1(x) +

∫

Γ1

ϕ1(y)
∂Φ(x, y)
∂ν(y)

ds(y) +
∫

Γ2

ϕ2(y)Φ(x, y)ds(y), x ∈ Γ1.

The corresponding formula for the function values in terms of parametric
representation of the boundary curve Γ1 can be obtained

v(x1(t)) =
1
2
µ1(t)+

+
1
2π

2π∫

0

[
µ1(τ)

(
L̃11(t, τ) ln

4
e

sin2 t− τ

2
+ L̃12(t, τ)

)
+

+µ2(τ)L̃2(t, τ)

]
dτ.

3. Numerical solution of integral equations

3.1. Quadrature method
To discretize our integral equations of the �rst kind we suggest quadrature

method. Let M ∈ IN and tj =
jπ

M
, j = 0, . . . , 2M − 1. For approximation of

corresponding integrals we use the following trigonometrical quadratures [4, 7]
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1
2π

2π∫

0

f(τ)dτ ≈ 1
2M

2M−1∑

j=0

f(tj),

1
2π

2π∫

0

f(τ) ln
4
e

sin2 t− τ

2
dτ ≈

2M−1∑

j=0

Rj(t)f(tj),

1
2π

2π∫

0

f ′(τ) cot
τ − t

2
dτ ≈

2M−1∑

j=0

Tj(t)f(tj).

(13)

Here the weight functions Rj and Tj are de�ned as

Rj(t) = − 1
M

[
1
2

+
M−1∑

i=1

1
i

cos i(t− tj) +
cosM(t− tj)

2M

]

and

Tj(t) = − 1
M

M−1∑

i=1

i cos i(t− tj)− 1
2

cosM(t− tj).

After application quadrature formulas (13) and performing collocation using
the nodes of interpolation we obtain the system of linear equations with respect
to unknown µ̃`(tj) ≈ µ`(tj), ` = 1, 2, j = 0, . . . , 2M − 1





2M−1∑

j=0

µ̃1(tj)H1
11(tk, tj)Rj(tk) +

1
2M

2M−1∑

j=0

µ̃1(tj)H2
11(tk, tj)+

+
1

2M

2M−1∑

j=0

µ̃2(tj)H12(tk, tj) = h(tk), k = 0, . . . , 2M − 1,

1
2M

2M−1∑

j=0

µ̃1(tj)H21(tk, tj) +
2M−1∑

j=0

µ̃2(tj)Tj(tk)−

−
2M−1∑

j=0

µ̃2(tj)H1
22(tk, tj)Rj(tk)−

− 1
2M

2M−1∑

j=0

µ̃2(tj)H2
22(tk, tj) = g(tk), k = 0, . . . , 2M − 1.

(14)

Finally, we have the following representation for approximate solution to Dirich-
let-Neumann mixed problem (3), (4) in the domain D

w(x) ≈ 1
2M

2M−1∑

j=0

µ̃1(tj)K0(κ|x− x1(tj)|)|x′1(tj)|+

+
1

2M

2M−1∑

j=0

µ̃2(tj)κK1(κ|x− x2(tj)|) [(x− x2(tj)) · ν2(tj)]
|x− x2(tj)| |x′2(tj)|, x ∈ D.
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Taking into account (11) the numerical approximation for the normal derivative
on Γ1 can be calculated as

∂w

∂ν
(x1(tk)) ≈ −1

2
µ̃1(tk) +

2M−1∑

j=0

µ̃1(tj)L11(tk, tj)Rj(tk)+

+
1

2M

2M−1∑

j=0

µ̃1(tj)L12(tk, tj) +
1

2M

2M−1∑

j=0

µ̃2(tj)L2(tk, tj), k = 0, . . . , 2M − 1.

Numerical solution of the system (12) is realized in the similar way.

3.2. Numerical experiments for mixed problems
Let's choose the domain with following boundaries (see Fig. 2)

Γ1 = {x(t) = (0.5 cos(t) + 0.5 cos(2t)− 0.25, sin(t)), t ∈ [0, 2π]}
and

Γ2 = {x(t) = (0.3 cos(t) + 0.25, 0.2 sin(t)), t ∈ [0, 2π]}.
The boundary conditions for the Dirichlet-Neumann problem are given as

h(x) = 0.5x1, x ∈ Γ1, g(x) = 0.05x2
2, x ∈ Γ2

and for the Neumann-Dirichlet problem we choose
p(x) = e−x2 , x ∈ Γ1, f(x) = 0.25 sin(x1 + x2), x ∈ Γ2.

For both problems we state κ = 1.
The maximum norm errors of the obtained numerical solution values on

Γ1 for the Dirichlet-Neumann problem (3), (4) and calculated values of the
normal derivative on Γ1 for the Neumann-Dirichlet problem (5), (6) are listed
for various values of the mesh size M in the Table 1. Note, that as the �exact�
solutions we use the approximation solutions obtained by our numerical method
with M = 128.

Fig. 2. Solution domain 1
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Tabl. 1. Errors of the numerical solutions for the mixed problems

M ||∂w
∂ν − ∂wex

∂ν ||C(Γ1) ||v − vex||C(Γ1)

4 1.631718 · 10−3 5.145063 · 10−3

8 2.131915 · 10−5 3.133429 · 10−4

16 8.192651 · 10−10 4.243675 · 10−9

32 3.295214 · 10−14 5.041247 · 10−13

4. An alternating method for the Cauchy problem

4.1. An alternating procedure
To obtain the solution to Cauchy problem (1), (2) we use the alternating

iterative procedure.
Each iteration of alternating procedure requires solving one of the mixed

boundary value problems and �nding Cauchy data on the inner domain bound-
ary. These problems are numerically solved by application of integral equations
method described in the above sections.

In problem de�nitions (3), (4) and (5), (6) functions f and g are the same
as in the Cauchy problem (1), (2).

The functions p and h will be substituted with solution approximations dur-
ing the alternating procedure run.

The alternating procedure of solving Cauchy problem (1), (2) runs as follows
� The �rst approximation u(0) to the solution is obtained by solving the

problem (5), (6), with p = p0, where p0 is an arbitrary initial guess.
� Having constructed u(2k), we �nd u(2k+1) by solving (3), (4), with

h = u(2k)


Γ1
.

� To obtain u(2k+2) the problem (5), (6) is solved with p =
∂u(2k+1)

∂ν


Γ1

.

The following result about the convergence of alternating procedure can be
obtained using the similar approach as in [3].
Theorem 1. Suppose that Cauchy problem (1), (2) with appropriate input data
f and g has a bounded solution. Let uk be the k-th approximate solution in the
alternating procedure. Then the following is true:

lim
k→∞

‖u− uk‖L2(D) = 0

for any su�ciently smooth initial data element p0 which starts the procedure.
Also we have to note that alternating procedure which is applied to solve

Cauchy problem is a regularizing method [3].

4.2. Numerical experiments for the Cauchy problem
In the numerical experiments we will use the solutions to the mixed problems

for generating the input functions for problem (1), (2); i.e. we solve the mixed
problem with prede�ned input functions, calculate the Cauchy data on both
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boundaries and as a result we got the input data for (1), (2) as well as the solu-
tion and it's normal derivative values on the inner boundary (the approximate
solution will be compared with this values for checking the results). Please also
note that the constant κ is set to one in the following numerical experiments.

Example 1. In the �rst example we will use the same domain as on Fig. 2.
We generate input data for Cauchy problem by solving mixed problem (3), (4)
with

h(x) = 6(x2
1 + x2

2), x ∈ Γ1, g(x) = 3 sin(x1 + x2), x ∈ Γ2.

With M = 128 and zero initial guess which starts the alternating procedure,
we obtain the results re�ected in Fig. 3 and Fig. 4 for function and normal
derivative reconstructions in case of exact input and input data with noise. The
solid line (�) denotes the graph of exact solution and the dashed line (- - -)
denotes the numerical solution obtained by alternating procedure.

Exact data, n = 500 Data with 3% noise, n = 185

Fig. 3. Function values on the inner boundary Γ1 for Ex. 1

Exact data, n = 500 Data with 3% noise, n = 181

Fig. 4. Normal derivative values on the inner boundary Γ1 for Ex. 1

39



ROMAN CHAPKO, DMYTRO LABA

Exact data Data with 3% noise

Fig. 5. C-error of function (�) and normal derivative (- - -) on
Γ1 for Ex. 1

Example 2. Assume that boundaries have the following parametric represen-
tations (see Fig. 6)

Γ1 = {x(t) = (0.5 cos(t), 0.5 sin(t)), t ∈ [0, 2π]}
and

Γ2 = {x(t) = (2 cos(t), sin(t)), t ∈ [0, 2π]}.

To obtain input functions for this numerical example we solve the mixed
boundary value problem (5), (6) with

p(x) = x1 + x2, x ∈ Γ1,

f(x) = 0.5x1, x ∈ Γ2.

Fig. 6. Solution domain 2

The results of Cauchy data reconstruction on Γ1 are presented in Fig. 7 and
Fig. 8. The corresponding C-errors on every iteration step are re�ected in Fig. 9
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Exact data, n = 500 Data with 3% noise, n = 110

Fig. 7. Function values on the inner boundary Γ1 for Ex. 2

Exact data, n = 500 Data with 3% noise, n = 121

Fig. 8. Normal derivative values on the inner boundary Γ1 for Ex. 2

Exact data Data with 3% noise

Fig. 9. C-error of solution function (�) and normal derivative
(- - -) on Γ1 for Ex. 2

As one can observe from the above numerical examples, a satisfactory quality
for the reconstruction of the boundary function and the normal derivative on
the inner boundary is obtained with a reasonable stability against noisy data.
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THREE-POINT DIFFERENCE SCHEMES OF
HIGH-ORDER ACCURACY FOR SECOND-ORDER

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS
WITH BOUNDARY CONDITIONS OF THIRD KIND

Marta Kr�ol, Myroslav Kutniv

Ðåçþìå. Äëÿ íåëiíiéíèõ çâè÷àéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü äðóãîãî
ïîðÿäêó ç ïîõiäíîþ â ïðàâié ÷àñòèíi òà êðàéîâèìè óìîâàìè òðåòüîãî ðîäó
ïîáóäîâàíî òà îá ðóíòîâàíî òðèòî÷êîâi ðiçíèöåâi ñõåìè âèñîêîãî ïîðÿäêó
òî÷íîñòi íà íåðiâíîìiðíié ñiòöi. Ïîáóäîâàíî òàêîæ àïðîêñèìàöiþ ïîòîêó
êðàéîâî¨ çàäà÷i ó âóçëàõ ñiòêè. Äëÿ îá÷èñëåííÿ ðîçâ'ÿçêó ðiçíèöåâèõ ñõåì
âèêîðèñòîâóþòüñÿ iòåðàöiéíi ìåòîäè. Äîâåäåíî iñíóâàííÿ òà ¹äèíiñòü
ðîçâ'ÿçêó öèõ ñõåì, âñòàíîâëåíî îöiíêó òî÷íîñòi. Åôåêòèâíiñòü òðèòî÷êî-
âèõ ðiçíèöåâèõ ñõåì øîñòîãî ïîðÿäêó òî÷íîñòi ïðîiëþñòðîâàíà íà ïðèê-
ëàäàõ.
Abstract. Three-point di�erence schemes of hight-order accuracy on a non-
equidistant grid for the second-order nonlinear ordinary di�erential equations
with derivative in the right-hand side and boundary conditions of the third
kind is constructed and justi�ed. We also construct an approximation of
�ow for boundary value problem at grid nodes. Iterative methods were used
to compute the solution of di�erence schemes. We prove the existence and
uniqueness of the solution of this schemes and determine the order of accuracy.
The e�ciency of a three-point di�erence schemes of sixth-order accuracy is
illustrated by an examples.

1. Introduction
An approach for construction of exact three-point di�erence scheme (ETDS)

and three-point di�erence schemes (TDS) of high-order accuracy on a equidis-
tant grid for the nonlinear problems of the form

d

dx

[
k(x)

du

dx

]
= −f (x, u) , x ∈ (0, 1), u(0) = µ1, u(1) = µ2

was suggested in [8, 7]. These results on a non-equidistant grid were generalized
and developed in [6] and for monotone boundary value problems in [5, 1].

In the present paper the e�ective algorithmic implementation ETDS, pro-
posed in [9], was developed via the truncated TDS for a nonlinear ODEs

d

dx

[
k(x)

du

dx

]
= −f

(
x, u,

du

dx

)
, x ∈ (0, 1), (1)

Key words. Nonlinear ordinary di�erential equations, boundary conditions of third kind,
exact three-point di�erence schemes, three-point di�erence schemes of hight-order accuracy,
iterative methods.
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with a boundary conditions

k(0)
du(0)
dx

− β1u(0) = −µ1, −k(1)
du(1)
dx

− β2u(1) = −µ2, (2)

where k(x), f (x, u, ξ) are given functions, a β1, β2, µ1, µ2 are given numbers.
To �nd the coe�cients and right-hand side of TDS at each node's xj , j =
1, 2, ..., N −1 of the non-equidistance grid we need to solve two auxiliary initial
value problems for nonlinear ODEs and two initial value problems for linear
ODEs on the intervals [xj−1, xj ] (forward) and [xj , xj+1] (backward). Moreover,
to �nd right-hand sides di�erence boundary conditions we need to solve initial
value problems for nonlinear and linear ODEs on the intervals [x0, x1] (forward)
and [xN−1, xN ] (backward). These initial value problems can be solved by
executing only one step with an arbitrary one-step method order of accuracy
m̄ = 2[(m + 1)/2] (m is a given the positive integer, [·] denotes the entire part
of the number in this brackets). As a result the implementations ETDS which
received from truncated TDS of rank m̄, for which it is proved that it has
an order of accuracy m̄. Constructed approaching �ow k(x)du/dx at the grid
nodes, the order of accuracy of which is the same as the solution, that is of m̄.

2. Existence and uniqueness of the solution
Su�cient conditions for the existence and uniqueness of weak solutions of

the problem (1), (2) are given by following statement.
Theorem 1. Let the following assumptions be satis�ed

0 < c1 ≤ k(x) ≤ c2 ∀x ∈ [0, 1], k(x) ∈ Q1[0, 1], (3)
fuξ(x) ≡ f (x, u, ξ) ∈ Q0[0, 1] ∀u, ξ ∈ R1,

fx (u, ξ) ≡ f (x, u, ξ) ∈ C(R2) ∀x ∈ [0, 1],
(4)

|f (x, u, ξ)− f0(x)| ≤ c(|u|)[g(x) + |ξ|] ∀x ∈ [0, 1], u, ξ ∈ R1, (5)
[f (x, u, ξ)− f (x, v, η)] (u− v) ≤ 0 ∀x ∈ [0, 1], u, v, ξ, η ∈ R1, (6)

β1 > 0, β2 > 0. (7)
Then the problem (1),(2) has a unique solution u(x) ∈ W 1

2 (0, 1), with
u(x), k(x)

du

dx
∈ C[0, 1].

Here c(t) is a continuous function, f0(x) ∈ L2(0, 1), g(x) ∈ L1(0, 1), c1 , c2 , c3

are some real constants, Qp[0, 1] is the class of functions having p piece-wise
continuous derivatives and a �nite number of discontinuity points of �rst kind.

The proof can be found in [9].

3. Algorithmic implementation of the exact
three-point difference schemes

On the interval (0, 1) we introduce the non-equidistant grid
ω̂h = {xj ∈ (0, 1), j = 1, 2, ..., N − 1, hj = xj − xj−1 > 0, h1 + h2 + ... + hN}
such the discontinuity points of functions k(x), f (x, u, ξ) coincide with the
nodes of the grid ω̂h. Denote by ρ the set of all discontinuity points and assume
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that N in such that ρ ⊆ ω̂h. At discontinuity points the solution of problem
(1),(2) should satisfy the continuity conditions

u(xi − 0) = u(xi + 0), k(x)
du

dx

∣∣∣∣
x=xi−0

= k(x)
du

dx

∣∣∣∣
x=xi+0

∀xi ∈ ρ.

For problem (1),(2) in paper [9] is constructed ETDS of the form

(aux̄)x̂,j = −ϕ(xj , u), j = 1, 2, ..., N − 1, (8)

1
~0

(a1ux,0 − β1u0) = −ϕ(x0, u),

− 1
~N

(aNux̄,N + β2uN ) = −ϕ(xN , u),
(9)

where

ux̄,j =
uj − uj−1

hj
, ux̂,j =

uj+1 − uj

~j
, ux,j =

uj+1 − uj

hj+1
,

a(xj) =
[

1
hj

V j
1 (xj)

]−1

, ~j =
hj + hj+1

2
, ~0 = 0, 5h1, ~N = 0, 5hN ,

ϕ(xj , u) = [~jV
j
1 (xj)]−1

xj∫

xj−1

V j
1 (ξ)f

(
ξ, u,

du

dξ

)
dξ+

+ [~jV
j
2 (xj)]−1

xj+1∫

xj

V j
2 (ξ)f

(
ξ, u,

du

dξ

)
dξ,

ϕ(x0, u) = [~0V
1
1 (x1)]−1

x1∫

x0

V 0
2 (ξ)f

(
ξ, u,

du

dξ

)
dξ + ~−1

0 µ1,

ϕ(xN , u) = [~NV N
1 (xN )]−1

xN∫

xN−1

V N
1 (ξ)f

(
ξ, u,

du

dξ

)
dξ + ~−1

N µ2,

V j
1 (x) =

x∫

xj−1

dt

k(t)
, V j

2 (x) =

xj+1∫

x

dt

k(t)
.

First of all, take into account, that since

(−1)α+1

xj∫

xj+(−1)α

V j
α (ξ)f

(
ξ, u(ξ),

du

dξ

)
dξ =

= (−1)αV j
α (xj)Zj

α(xj , u) + Y j
α (xj , u)− uj+(−1)α ,
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where Y j
α (x, u), Zj

α(x, u), j = 2 − α, 3 − α, ..., N + 1 − α, α = 1, 2 are the
solutions of the initial value problems

dY j
α (x, u)
dx

=
Zj

α(x, u)
k(x)

,
dZj

α(x, u)
dx

= −f

(
x, Y j

α (x, u),
Zj

α(x, u)
k(x)

)
,

xj−2+α < x < xj−1+α,

Y j
α (xj+(−1)α , u) = uj+(−1)α , Zj

α(xj+(−1)α , u) = k(x)
du

dx

∣∣∣∣
x=xj+(−1)α

,

(10)

and V̄ j
α (x) = (−1)α+1V j

α (x) are the solutions of the initial value problems
dV̄ j

α (x)
dx

=
1

k(x)
, xj−2+α < x < xj−1+α,

V̄ j
α (xj+(−1)α) = 0, j = 2− α, 3− α, ..., N + 1− α, α = 1, 2.

(11)

Obviously, the right-hand side of the ETDS can be written as

ϕ(xj , u) =
1
~j

2∑

α=1

(−1)α

[
Zj

α(xj , u) + (−1)α Y j
α (xj , u)− uj+(−1)α

V j
α (xj)

]
, (12)

ϕ(x0, u) =
1
~0

[
Z0

2 (x0, u) +
Y 0

2 (x0, u)− u1

V 0
2 (x0)

+ µ1

]
, (13)

ϕ(xN , u) =
1
~N

[
−ZN

1 (xN , u) +
Y N

1 (xN , u)− uN−1

V N
1 (xN )

+ µ2

]
. (14)

Therefore, to construct the ETDS (8), (9), (12)-(14) for j = 2 − α, 3 −
α, ..., N + 1− α it is necessary to solve initial value problems (10), (11) in the
forward direction (α = 1), and in the backward direction (α = 2). We will
solve then numerically by using one-step methods:

Y (m̄)j
α (xj , u) = uj+(−1)α + (−1)α+1hj−1+α×

× Φ1

(
xj+(−1)α , uj+(−1)α ,

(
k
du

dx

)

j+(−1)α

, (−1)α+1hj−1+α

)
, (15)

Z(m)j
α (xj , u) =

(
k
du

dx

)

j+(−1)α

+ (−1)α+1hj−1+α×

× Φ2

(
xj+(−1)α , uj+(−1)α ,

(
k
du

dx

)

j+(−1)α

, (−1)α+1hj−1+α

)
, (16)

V̄ (m̄)j
α (xj) = (−1)α+1hj−1+αΦ3(xj+(−1)α , 0, (−1)α+1hj−1+α), (17)

where Φ1 (x, u, v, h) , Φ2 (x, u, v, h) , Φ3 (x, u, h) are increment functions,(
k
du

dx

)

j+(−1)α

= k(x)
du

dx

∣∣∣∣
x=xj+(−1)α

,

Z
(m)j
α (xj , u) approximates the values Zj

α(xj , u) with an order of accuracy m,
Y

(m̄)j
α (xj , u) and V̄

(m̄)j
α (xj) approximate Y j

α (xj , u) and V̄ j
α (xj), respectively,

with accuracy order m̄.
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If k(x) and the right-hand side of the di�erential equation f(x, u, ξ) are
di�erentiated a su�cient number of times, then there exist expansions

Y j
α (xj , u) =Y (m̄)j

α (xj , u)+

+ [(−1)α+1hj−1+α]m̄+1ψj
α(xj+(−1)α , u) + O(hm̄+2

j−1+α), (18)
Zj

α(xj , u) =Z(m)j
α (xj , u)+

+ [(−1)α+1hj−1+α]m+1ψ̃j
α(xj+(−1)α , u) + O(hm+2

j−1+α), (19)
V̄ j

α (xj) =V̄ (m̄)j
α (xj)+

+ [(−1)α+1hj−1+α]m̄+1ψ̄j
α(xj+(−1)α) + O(hm̄+2

j−1+α). (20)

If in the ETDS (8), (9), (12)-(14) the exact solutions of the corresponding
initial value problems (10), (11) are approximated by numerical solutions, the
following truncated TDS of rank m̄ is obtained:

(a(m̄)y
(m̄)
x̄ )x̂,j = −ϕ(m̄)(xj , y

(m̄)), j = 1, 2, . . . , N − 1, (21)

1
~0

(
a

(m̄)
1 y

(m̄)
x,0 − β1y

(m̄)
0

)
= −ϕ(m̄)(x0, y

(m̄)),

− 1
~N

(
a

(m̄)
N y

(m̄)
x̄,N + β2y

(m̄)
N

)
= −ϕ(m̄)(xN , y(m̄)),

(22)

where

a(m̄)(xj) =
[

1
hj

V
(m̄)
1 (xj)

]−1

, j = 1, 2, . . . , N,

ϕ(m̄)(xj , u) = ~−1
j

2∑

α=1

(−1)α

[
Z(m)j

α (xj , u) + (−1)α Y
(m̄)j
α (xj , u)− uj+(−1)α)

V
(m̄)j
α (xj)

]
,

ϕ(m̄)(x0, u) =
1
~0

[
Z

(m)0
2 (x0, u) +

Y
(m̄)0
2 (x0, u)− u1

V
(m̄)0
2 (x0)

+ µ1

]
,

ϕ(m̄)(xN , u) =
1
~N

[
−Z

(m)N
1 (xN , u) +

Y
(m̄)N
1 (xN , u)− uN−1

V
(m̄)N
1 (xN )

+ µ2

]
.

We need the following assertion to prove the existence and uniqueness of a
solution to TDS (21), (22) and to establish its accuracy.

Lemma 1. Let
0 < c1 ≤ k(x) ≤ c2 ∀x ∈ [0, 1], k(x) ∈ Qm+1[0, 1],

f(x, u, ξ) ∈ N∪
j=1

Cm
(
[xj−1, xj ]×R2

)
.

Then one has the following estimates
∣∣∣a(m̄)(xj)− a(xj)

∣∣∣ ≤ M |h|m̄ , j = 1, 2, . . . , N, (23)
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ϕ(m̄)(xj , u)− ϕ(xj , u) =

=

{
hm+1

j

[
k(x)

(
ψj

1(x, u)− ψ̄j
1(x)k(x)

du

dx

)
− ψ̃j

1(x, u)
]

x=xj+0

}

x̂

+

+ O

(
hm+2

j + hm+2
j+1

~j

)
, j = 1, 2, . . . , N − 1,

(24)

ϕ(m̄)(x0, u)− ϕ(x0, u) =

=
hm+1

1

~0

[
k(x)

(
ψ1

1(x, u)− ψ̄1
1(x)k(x)

du

dx

)
− ψ̃1

1(x, u)
]

x=x1

+

+ O

(
hm+2

1

~0

)
,

(25)

ϕ(m̄)(xN , u)− ϕ(xN , u) =

= −hm+1
N

~N

[
k(x)

(
ψN

1 (x, u)− ψ̄N
1 (x)k(x)

du

dx

)
− ψ̃N

1 (x, u)
]

x=xN

+

+ O

(
hm+2

N

~N

)
,

(26)

if m is odd and

ϕ(m̄)(xj , u)− ϕ(xj , u) =

=

{
hm

j

[
k(x)

(
ψj

1(x, u)− ψ̄j
1(x)k(x)

du

dx

)]

x=xj+0

}

x̂

+

+ O

(
hm+1

j + hm+1
j+1

~j

)
, j = 1, 2, . . . , N − 1,

(27)

ϕ(m̄)(x0, u)− ϕ(x0, u) =

=
hm

1

~0

[
k(x)

(
ψ1

1(x, u)− ψ̄1
1(x)k(x)

du

dx

)]

x=x1

+ O

(
hm+1

1

~0

)
,

(28)

ϕ(m̄)(xN , u)− ϕ(xN , u) =

= −hm
N

~N

[
k(x)

(
ψN

1 (x, u)− ψ̄N
1 (x)k(x)

du

dx

)]

x=xN

+ O

(
hm+1

N

~N

)
,

(29)

if m is even.

Proof. The estimate (23) follows from relation (20). Actually,

a(m̄)(xj)− a(xj) =
hj [V

j
1 (xj)− V

(m̄)j
1 (xj)]

V j
1 (xj)V

(m̄)j
1 (xj)

= O(hm̄
j ).
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Let us prove (24)-(29). Note that

ϕ(m̄)(xj , u)− ϕ(xj , u) = ~−1
j

2∑

α=1

(−1)α
{

Z(m)j
α (xj , u)− Zj

α(xj , u)+

+(−1)α

[
Y

(m̄)j
α (xj , u)− uj+(−1)α

V
(m̄)j
α (xj)

− Y j
α (xj , u)− uj+(−1)α

V j
α (xj)

]}
.

(30)

ϕ(m̄)(x0, u)− ϕ(x0, u) =
1
~0

{
Z

(m)0
2 (x0, u)− Z0

2 (x0, u) +

+
Y

(m̄)0
2 (x0, u)− u1

V
(m̄)0
2 (x0)

− Y 0
2 (x0, u)− u1

V 0
2 (x0)

}
,

(31)

ϕ(m̄)(xN , u)− ϕ(xN , u) =
1
~N

{
−Z

(m)N
1 (xN , u) + ZN

1 (xN , u) +

+
Y

(m̄)N
1 (xN , u)− uN−1

V
(m̄)N
1 (xN )

− Y N
1 (xN , u)− uN−1

V N
1 (xN )

}
.

(32)

From Lemma 3.4 (see [4, p.102] ) and the equalities

V j
α (xj) =

hj−1+α

kj+(−1)α
+ O(h2

j−1+α),

Y j
α (xj , u)− uj+(−1)α = (−1)α+1hj−1+α

du

dx

∣∣∣∣
x=xj+(−1)α

+ O(h2
j−1+α),

j = 2− α, 3− α, ..., N + 1− α, α = 1, 2

we obtain

Z(m)j
α (xj , u)− Zj

α(xj , u) =

= −[(−1)α+1hj−1+α]m+1ψ̃j−1+α
1 (xj+(−1)α , u) + O(hm+2

j−1+α),
(33)

Y
(m̄)j
α (xj , u)− uj+(−1)α

V
(m̄)j
α (xj)

− Y j
α (xj , u)− uj+(−1)α

V j
α (xj)

= −(−1)α+1hm̄
j−1+α×

×
[
k(x)

(
ψj−1+α

1 (x, u)− ψ̄j−1+α
1 (x)k(x)

du

dx

)]

x=xj+(−1)α

+

+ O(hm̄+1
j−1+α), j = 2− α, 3− α, ..., N + 1− α, α = 1, 2.

(34)
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Then the equalities (30)-(32) are reduced to estimates (25), (26), and

ϕ(m̄)(xj , u)− ϕ(xj , u) =
1
~j

{
hm+1

j+1 ×

×
[
k(x)

(
ψj+1

1 (x, u)− ψ̄j+1
1 (x)k(x)

du

dx

)
− ψ̃j+1

1 (x, u)
]

x=xj+1

−

−hm+1
j

[
k(x)

(
ψj

1(x, u)− ψ̄j
1(x)k(x)

du

dx

)
− ψ̃j

1(x, u)
]

x=xj−1

}
+

+ O

(
hm+2

j + hm+2
j+1

~j

)
,

(35)

for odd m, and to (28), (29), and

ϕ(m̄)(xj , u)− ϕ(xj , u) =

=
1
~j

{
hm

j+1

[
k(x)

(
ψj+1

1 (x, u)− ψ̄j+1
1 (x)k(x)

du

dx

)]

x=xj+1

−

−hm
j

[
k(x)

(
ψj

1(x, u)− ψ̄j
1(x)k(x)

du

dx

)]

x=xj−1

}
+

+ O

(
hm+1

j + hm+1
j+1

~j

)
,

(36)

for even m.
Since

[
k(x)

(
ψj

1(x, u)− ψ̄j
1(x)k(x)

du

dx

)]

x=xj−1

=

=
[
k(x)

(
ψj

1(x, u)− ψ̄j
1(x)k(x)

du

dx

)]

x=xj

+ O(hj),

ψ̃j
1(xj−1, u) = ψ̃j

1(xj , u) + O(hj),

it follows from (35) and (36) that the estimates (24) and (27) hold.
On the basis of the above-obtained results, one can prove the following as-

sertion.

Theorem 2. Let the assumptions of Theorem 1 and Lemma 1 hold. Then
there exists an h0 > 0 such that for all {hj}N

j=1 with |h| = max
1≤j≤N

hj ≤ h0 and
TDS (21), (22) has a unique solution, whose accuracy is characterized by the
estimate

∥∥∥y(m̄) − u
∥∥∥
∗

1,2, ˆ̄ωh

=




∥∥∥y(m̄) − u
∥∥∥

2

0,2, ˆ̄ωh

+

∥∥∥∥∥k
dy(m̄)

dx
− k

du

dx

∥∥∥∥∥
2

0,2, ˆ̄ωh




1/2

≤ M |h|m̄ ,
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where

‖u‖0,2, ˆ̄ωh
=





N∑

j=0

~ju
2
j





1/2

,

k(x)
dy(m̄)

dx

∣∣∣∣∣
x=xj

=aj−1+αy
(m̄)
x̄,j−1+α + Z(m)j

α

(
xj , y

(m̄)
)

+

+ (−1)α
Y

(m̄)j
α

(
xj , y

(m̄)
)− y

(m̄)
j+(−1)α

V
(m̄)j
α (xj)

, α = 1, 2,

j = 1, 2, ..., N − 1,

k(x)
dy(m̄)

dx

∣∣∣∣∣
x=x0

= β1y
(m̄)
0 − µ1, k(x)

dy(m̄)

dx

∣∣∣∣∣
x=xN

= −β2y
(m̄)
N + µ2,

and M is a constant independent of |h| .
Proof. Let us consider the operators

B
(m̄)
h uj =





− 1
~0

(
a

(m̄)
1 ux,0 − β1u0

)
, j = 0,

−(a(m̄)ux̄)x̂,j , j = 1, 2, ..., N − 1,

1
~N

(
a

(m̄)
N ux̄,N + β2uN

)
, j = N,

(37)

A
(m̄)
h (xj , u) =





− 1
~0

(
a

(m̄)
1 ux,0 − β1u0

)
− ϕ(m̄)(x0, u), j = 0,

−(a(m̄)ux̄)x̂,j − ϕ(m̄)(xj , u), j = 1, 2, ..., N − 1,

1
~N

(
a

(m̄)
N ux̄,N + β2uN

)
− ϕ(m̄)(xN , u), j = N,

(38)

which is de�ned in the �nite-dimensional space of grid functions H(ˆ̄ωh) with
the scalar products

(u, v) ˆ̄ωh
=

∑

ξ∈ω̂h

~(ξ)u(ξ)v(ξ) + ~0u0v0 + ~NuNvN ,

(u, v)ω̂+
h

=
∑

ξ∈ω̂+
h

h(ξ)u(ξ)v(ξ), ω̂+
h = ω̂h ∪ xN ,

and the norms
‖u‖0,2, ˆ̄ωh

= (u, u)1/2
ˆ̄ωh

, ‖u‖0,2,ω̂+
h

= (u, u)1/2

ω̂+
h

,

‖u‖1,2, ˆ̄ωh
=

(
‖u‖2

0,2, ˆ̄ωh
+ ‖ux̄‖2

0,2,ω̂+
h

)1/2
, ‖u‖

B
(m̄)
h

=
(
B

(m̄)
h u, u

)1/2

ˆ̄ωh

.

Because (see proof of Theorem 2 in [9])

(ϕ(x, u)− ϕ(x, v), u− v) ˆ̄ωh
≤ −c1

1∫

0

{
d

dη
[û(η)− v̂(η)− u(η) + v(η)]

}2

dη,
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û(η) = u(xj)
V j

1 (η)

V j
1 (xj)

+ u(xj−1)
V j−1

2 (η)

V j
1 (xj)

, xj−1 ≤ η ≤ xj ,

then due to (23)-(29) ∃h0 > 0 such that ∀ {hj}N
j=1 with |h| = max

1≤j≤N
hj ≤ h0

the following estimation holds:

0 < c̃1 ≤ a(m̄)(x) ∀x ∈ ω̂+
h ,

(
ϕ(m̄)(x, u)− ϕ(m̄)(x, v), u− v

)
ˆ̄ωh

≤ 0.

Then, from the Green's �rst di�erence formula [3, p.26]) and inequality (see [3,
p.39])

γ1 ‖u‖2
0,2, ˆ̄ωh

≤ (
u2

x̄, 1
)
ω̂+

h
+ β1u

2
0 + β2u

2
N , γ1 > 0, (39)

it follows that
(
A

(m̄)
h (x, u)−A

(m̄)
h (x, v), u− v

)
ˆ̄ωh

=
(
a(m̄) (ux̄ − vx̄)2 , 1

)
ω̂+

h

+

+ β1 (u0 − v0)
2 + β2 (uN − vN )2−

−
(
ϕ(m̄)(x, u)− ϕ(m̄)(x, v), u− v

)
ˆ̄ωh

≥ ‖u− v‖2

B
(m̄)
h

=

=
(
a(m̄) (ux̄ − vx̄)2 , 1

)
ω̂+

h

+ β1 (u0 − v0)
2 + β2 (uN − vN )2 ≥

≥ min {c̃1, 1}
[(

(ux̄ − vx̄)2, 1
)
ω̂+

h
+ β1(u0 − v0)2 + β2(uN − vN )2

]
≥

≥ min {c̃1, 1} γ1 ‖u− v‖2
0,2, ˆ̄ωh

. (40)

Therefore, if |h| ≤ h0, then A
(m̄)
h (x, u) is strongly monotone operator, and

the TDS (21), (22) has a unique solution y(m̄)(x), x ∈ ˆ̄ωh (see [2, p.461]).
For error z(x) = y(m̄)(x) − u(x), x ∈ ˆ̄ωh of di�erence scheme (21), (22) will

have a problem

−
[
a(m̄)(x)zx̄(x)

]
x̂
−

(
ϕ(m̄)(x, y(m̄))− ϕ(m̄)(x, u)

)
=

= ϕ(m̄)(x, u)− ϕ(x, u) +
[(

a(m̄)(x)− a(x)
)

ux̄(x)
]
x̂
, x ∈ ω̂h,

(41)

− 1
~0

(
a

(m̄)
1 zx,0 − β1z0

)
−

(
ϕ(m̄)(x0, y

(m̄))− ϕ(m̄)(x0, u)
)

=

= ϕ(m̄)(x0, u)− ϕ(x0, u) +
1
~0

(
a

(m̄)
1 − a1

)
ux,0,

(42)

1
~N

(
a

(m̄)
N zx,N − β2zN

)
−

(
ϕ(m̄)(xN , y(m̄))− ϕ(m̄)(xN , u)

)
=

= ϕ(m̄)(xN , u)− ϕ(xN , u)− 1
~N

(
a

(m̄)
N − aN

)
ux̄,N .

(43)
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From (41)-(43) we obtain
(
A

(m̄)
h (x, y(m̄))−A

(m̄)
h (x, u), z

)
ˆ̄ωh

=

=
(((

a(m̄) − a
)
ux̄

)
x̂
, z

)
ω̂h
−

(
a

(m̄)
N − aN

)
ux̄,NzN+

+
(
a

(m̄)
1 − a1

)
ux,0z0 +

(
ϕ(m̄)(x, u)− ϕ(x, u), z

)
ˆ̄ωh

.

(44)

Using the relations (23)-(29), Cauchy-Bunyakovsky-Schwartz inequality, for-
mula of summation by parts (see [3, p.25]), evaluate the expression on the
right-hand side equality (44)

(((
a(m̄) − a

)
ux̄

)
x̂
, z

)
ω̂h

−
(
a

(m̄)
N − aN

)
ux̄,NzN +

(
a

(m̄)
1 − a1

)
ux,0z0 =

=
((

a(m̄) − a
)

ux̄, zx̄

)
ω̂+

h

≤
∥∥∥a(m̄) − a

∥∥∥
0,2,ω̂+

h

‖ux̄‖0,2,ω̂+
h
‖zx̄‖0,2,ω̂+

h
≤

≤ M |h|m̄ ‖zx̄‖0,2,ω̂+
h
≤ M |h|m̄

c̃1
‖z‖

B
(m̄)
h

,

(45)

(
ϕ(m̄)(x, u)− ϕ(x, u), z

)
ˆ̄ωh

≤ M |h|m+1 ‖zx̄‖0,2,ω̂+
h
≤

≤ M |h|m+1

c̃1
‖z‖

B
(m̄)
h

,

(46)

if m is odd;

(
ϕ(m̄)(x, u)− ϕ(x, u), z

)
ˆ̄ωh

≤ M |h|m ‖zx̄‖0,2,ω̂+
h
≤ M |h|m

c̃1
‖z‖

B
(m̄)
h

, (47)

if m is even.
Taking into account the relations (40), (44)-(47) is the true estimation

‖z‖2

B
(m̄)
h

≤
(
A

(m̄)
h (x, y(m̄))−A

(m̄)
h (x, u), z

)
ˆ̄ωh

≤ M |h|m̄ ‖z‖
B

(m̄)
h

.

Hence it follows that ‖z‖
B

(m̄)
h

≤ M |h|m̄. So on the basis of equivalence of norms
‖·‖1,2, ˆ̄ωh

, ‖·‖
B

(m̄)
h

, we obtain

‖z‖1,2, ˆ̄ωh
≤ M |h|m̄ . (48)

Due to (23), (48), (33), (34), (15)-(17) we have
∣∣∣∣
(

k
dz

dx

)

0

∣∣∣∣ ≤ β1 |z0| ≤ M |h|m̄ ,

∣∣∣∣
(

k
dz

dx

)

N

∣∣∣∣ ≤ β2 |zN | ≤ M |h|m̄ , (49)
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∣∣∣∣∣
(

k
dz

dx

)

j

∣∣∣∣∣ ≤
∣∣∣a(m̄)

j−1+α − aj−1+α

∣∣∣
∣∣∣y(m̄)

x̄,j−1+α

∣∣∣ + |aj−1+α| |zx̄,j−1+α|+

+

∣∣∣∣∣∣
Z(m)j

α (xj , y
(m̄)) + (−1)α

Y
(m̄)j
α (xj , y

(m̄))− y
(m̄)
j+(−1)α

V
(m̄)j
α (xj)

−

−Z(m)j
α (xj , u)− (−1)α Y

(m̄)j
α (xj , u)− uj+(−1)α

V
(m̄)j
α (xj)

∣∣∣∣∣+

+
∣∣∣Z(m)j

α (xj , u)− Zj
α(xj , u)

∣∣∣+

+

∣∣∣∣∣
Y

(m̄)j
α (xj , u)− uj+(−1)α

V
(m̄)j
α (xj)

− Y j
α (xj , u)− uj+(−1)α

V j
α (xj)

∣∣∣∣∣ ≤

≤ M |h|m̄ +

+

∣∣∣∣∣∣
Φ


xj+(−1)α , y

(m̄)
j+(−1)α ,

(
k
dy(m̄)

dx

)

j+(−1)α

, (−1)α+1hj−1+α


 −

−Φ

(
xj+(−1)α , uj+(−1)α ,

(
k
du

dx

)

j+(−1)α

, (−1)α+1hj−1+α

)∣∣∣∣∣ ,

α = 1, 2, j = 1, 2, ..., N − 1,

where
Φ(x, u, v, h) = v + hΦ2(x, u, v, h)− Φ1(x, u, v, h)

Φ3(x, u, h)
.

Because
Φ1(x, u, v, 0) =

v

k(x)
, Φ3(x, 0, 0) =

1
k(x)

,

so using the Theorem on �nite increments, we obtain

Φ(x, u, v, h) = Φ(x, u, v, 0) + h
∂Φ(x, u, v, h̄)

∂h
= h

∂Φ(x, u, v, h̄)
∂h

, h̄ ∈ (0, h).

Then∣∣∣∣∣
(

k
dz

dx

)

j

∣∣∣∣∣ ≤ M |h|m̄ +

+ hj−1+α

∣∣∣∣∣∣∣∣

∂Φ
(

xj+(−1)α , y
(m̄)
j+(−1)α ,

(
k dy(m̄)

dx

)
j+(−1)α

, (−1)α+1h̄j−1+α

)

∂h
−

−
∂Φ

(
xj+(−1)α , uj+(−1)α ,

(
k du

dx

)
j+(−1)α , (−1)α+1h̄j−1+α

)

∂h

∣∣∣∣∣∣
≤ (50)
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≤ M |h|m̄ + hj−1+α

∣∣∣∣∣
∂2Φ(xj+(−1)α , ūj+(−1)α , v̄j+(−1)α , h̄j−1+α)

∂h∂u

∣∣∣∣∣
∣∣zj+(−1)α

∣∣+

+ hj−1+α

∣∣∣∣∣
∂2Φ(xj+(−1)α , ūj+(−1)α , v̄j+(−1)α , h̄j−1+α)

∂h∂v

∣∣∣∣∣

∣∣∣∣∣
(

k
dz

dx

)

j+(−1)α

∣∣∣∣∣ ≤

≤ M |h|m̄ + |h|M1

∣∣∣∣∣
(

k
dz

dx

)

j+(−1)α

∣∣∣∣∣ , α = 1, 2, j = 1, 2, ..., N − 1,

where ūj = uj + θjzj , 0 < θj < 1, v̄j =
(
k du

dx

)
j
+ ηj

(
k dz

dx

)
j
, 0 < ηj < 1, j =

0, 1, 2, ..., N .
Consistently applying inequalities (49), (50), we obtain∣∣∣∣∣

(
k

dz

dx

)

j

∣∣∣∣∣ ≤ M |h|m̄ , j = 0, 1, 2, ..., N.

Hence ∥∥∥∥k
dz

dx

∥∥∥∥
0,2, ˆ̄ωh

≤ M |h|m̄ .

Therefore, taking into account (48), we will have ‖z‖∗1,2, ˆ̄ωh
≤ M |h|m̄.

For solving the nonlinear TDS order of accuracy m̄ (21), (22) apply the
iteration method.
Theorem 3. Let the conditions of Theorem 2 are satis�ed. Then∣∣∣ϕ(m̄)(x, u)− ϕ(m̄)(x, v)

∣∣∣ ≤ L̃ |u− v| ,

there exist an h0 > 0 such that for all {hj}N
j=1 with |h| ≤ h0,

0 < c̃1 ≤ a(m̄)(x),
(
A

(m̄)
h (x, u)−A

(m̄)
h (x, v), u− v

)
ˆ̄ωh

≥ ‖u− v‖2

B
(m̄)
h

,

the iteration method

B
(m̄)
h

y(m̄,n) − y(m̄,n−1)

τ
+ A

(m̄)
h (x, y(m̄,n−1)) = 0, x ∈ ˆ̄ωh, n = 1, 2, ..., (51)

y(m̄,0)(x) =
µ1 + µ2 + µ1β2V

(m̄)
2 (x) + µ2β1V

(m̄)
1 (x)

β1 + β2 + β1β2V
(m̄)
1 (1)

, x ∈ ˆ̄ωh,

V
(m̄)
1 (xj) =

j∑

k=1

V
(m̄)k
1 (xk), V

(m̄)
2 (xj) =

N∑

k=j+1

V
(m̄)k
1 (xk)

with

τ = τ0 =

(
1 +

L̃

γ1 min {c̃1, 1}

)−2

converges and for the error we have∥∥∥y(m,n) − u
∥∥∥
∗

1,2, ˆ̄ωh

≤ M(|h|m̄ + qn), q =
√

1− τ0, (52)
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where the operators B
(m̄)
h , A

(m̄)
h (x, u) are determined by the formulas (37), (38),

k(x)
dy(m̄,n)

dx

∣∣∣∣∣
x=x0

= β1y
(m̄,n)
0 − µ1, k(x)

dy(m̄,n)

dx

∣∣∣∣∣
x=xN

= −β2y
(m̄,n)
N + µ2,

k(x)
dy(m̄,n)

dx

∣∣∣∣∣
x=xj

=aj−1+αy
(m̄,n)
x̄,j−1+α + Z(m)j

α

(
xj , y

(m̄,n)
)

+ (−1)α
Y

(m̄)j
α

(
xj , y

(m̄,n)
)− y

(m̄,n)
j+(−1)α

V
(m̄)j
α (xj)

, α = 1, 2,

j = 1, 2, ..., N − 1,

and M is a constant independent of |h| ,m, n.

Proof. According to Theorem 2 we have
∥∥∥y(m̄,n) − u

∥∥∥
∗

1,2, ˆ̄ωh

≤
∥∥∥y(m̄) − u

∥∥∥
∗

1,2, ˆ̄ωh

+
∥∥∥y(m̄,n) − y(m̄)

∥∥∥
∗

1,2, ˆ̄ωh

≤

≤ M |h|m̄ +
∥∥∥y(m̄,n) − y(m̄)

∥∥∥
∗

1,2, ˆ̄ωh

.
(53)

Considering that the f(x, u, ξ) ∈ N∪
j=1

Cm̄([xj−1, xi]×R2), we obtain

∣∣∣ϕ(m̄)(x, u)− ϕ(m̄)(x, v)
∣∣∣ ≤ L̃ |u− v| , x ∈ ˆ̄ωh.

Using the Cauchy-Bunyakovsky-Schwartz inequality and (39) we get an esti-
mate (

A
(m̄)
h (x, u)−A

(m̄)
h (x, v), w

)
ˆ̄ωh

≤ ‖u− v‖
B

(m̄)
h

‖w‖
B

(m̄)
h

+

+
∥∥∥ϕ(m̄)(x, u)− ϕ(m̄)(x, v)

∥∥∥
0,2, ˆ̄ωh

‖w‖0,2, ˆ̄ωh
≤

≤ ‖u− v‖
B

(m̄)
h

‖w‖
B

(m̄)
h

+ L̃ ‖u− v‖0,2, ˆ̄ωh
‖w‖0,2, ˆ̄ωh

≤

≤
(

1 +
L̃

γ1 min {c̃1, 1}

)
‖u− v‖

B
(m̄)
h

‖w‖
B

(m̄)
h

.

We put w =
(
B

(m̄)
h

)−1 (
A

(m̄)
h (x, u)−A

(m̄)
h (x, v)

)
, then

∥∥∥∥
(
B

(m̄)
h

)−1 (
A

(m̄)
h (x, u)−A

(m̄)
h (x, v)

)∥∥∥∥
B

(m̄)
h

≤

≤
(

1 +
L̃

γ1 min {c̃1, 1}

)
‖u− v‖

B
(m̄)
h

.

(54)
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From (41), (54) it follows
(

A
(m̄)
h (x, u)−A

(m̄)
h (x, v),

(
B

(m̄)
h

)−1 (
A

(m̄)
h (x, u)−A

(m̄)
h (x, v)

))

ˆ̄ωh

≤

≤
(

1 +
L̃

γ1 min {c̃1, 1}

)2

‖u− v‖2

B
(m̄)
h

≤

≤
(

1 +
L̃

γ1 min {c̃1, 1}

)2 (
A

(m̄)
h (x, u)−A

(m̄)
h (x, v), u− v

)
ˆ̄ωh

.

Therefore [3, p.353], the iteration method (51) converges in the space H
B

(m̄)
h

.
As the norms ‖·‖1,2, ˆ̄ωh

, ‖·‖
B

(m̄)
h

are equivalent, then the error can be estimated
as ∥∥∥y(m̄,n) − y(m̄)

∥∥∥
1,2, ˆ̄ωh

≤ M1q
n.

In addition
∣∣∣∣∣

(
k
dy(m̄,n)

dx

)

0

−
(

k
dy(m̄)

dx

)

0

∣∣∣∣∣ ≤ β1

∣∣∣y(m̄,n)
0 − y

(m̄)
0

∣∣∣ ≤

≤ M1

∥∥∥y(m̄,n) − y(m̄)
∥∥∥

1,2, ˆ̄ωh

,
∣∣∣∣∣

(
k
dy(m̄,n)

dx

)

N

−
(

k
dy(m̄)

dx

)

N

∣∣∣∣∣ ≤ β2

∣∣∣y(m̄,n)
N − y

(m̄)
N

∣∣∣ ≤

≤ M2

∥∥∥y(m̄,n) − y(m̄)
∥∥∥

1,2, ˆ̄ωh

,

∣∣∣∣∣∣

(
k
dy(m̄,n)

dx

)

j

−
(

k
dy(m̄)

dx

)

j

∣∣∣∣∣∣
≤

∣∣∣a(m̄)
j−1+α

∣∣∣
∣∣∣y(m̄,n)

x̄,j−1+α − y
(m̄)
x̄,j−1+α

∣∣∣+

+
∣∣∣Z(m)j

α (xj , y
(m̄,n))− Z(m)j

α (xj , y
(m̄))

∣∣∣ +
1∣∣∣V (m̄)j

α (xj)
∣∣∣

∣∣∣y(m̄,n)
j+(−1)α − y

(m̄)
j+(−1)α

∣∣∣+

+
1∣∣∣V (m̄)j

α (xj)
∣∣∣

∣∣∣Y (m̄)j
α (xj , y

(m̄,n))− Y (m̄)j
α (xj , y

(m̄))
∣∣∣ ≤

≤ M3

∥∥∥y(m̄,n) − y(m̄)
∥∥∥

1,2, ˆ̄ωh

+

+




∣∣∣∣
∂

∂u
Z(m)j

α (xj , u)
∣∣∣∣
u=ỹ

+
1∣∣∣V (m̄)j

α (xj)
∣∣∣

∣∣∣∣
∂

∂u
Y (m̄)j

α (xj , u)
∣∣∣∣
u=ȳ


×

×
∥∥∥y(m̄,n) − y(m̄)

∥∥∥
0,2, ˆ̄ωh

≤

≤ M3

∥∥∥y(m̄,n) − y(m̄)
∥∥∥

1,2, ˆ̄ωh

, j = 1, 2, ..., N,
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∥∥∥∥∥k
dy(m̄,n)

dx
− k

dy(m̄)

dx

∥∥∥∥∥
0,2, ˆ̄ωh

≤ M
∥∥∥y(m̄,n) − y(m̄)

∥∥∥
1,2, ˆ̄ωh

.

Hence we get that ∥∥∥y(m̄,n) − y(m̄)
∥∥∥
∗

1,2, ˆ̄ωh

≤ Mqn. (55)

From the inequality (53), (55) implies the following estimate (52).
From a practical point of view to �nd a solution TDS (21), (22) will eventu-

ally need to use an iteration method of Newton. Linearizing (21), (22) taking
into account the equality

ϕ(m̄)(xj , y
(m̄))=~−1

j

2∑

α=1


hj−1+α

2
f


xj+(−1)α , y

(m̄)
j+(−1)α ,

dy(m̄)

dx

∣∣∣∣∣
x=xj+(−1)α





+

+ O

(
h2

j + h2
j+1

~j

)
, j = 1, 2, ..., N − 1,

ϕ(m̄)(x0, y
(m̄)) = f

(
x1, y

(m̄)
1 ,

dy(m̄)

dx

∣∣∣∣∣
x=x1

)
+

1
~0

µ1 + O (h1) ,

ϕ(m̄)(xN , y(m̄)) = f


xN−1, y

(m̄)
N−1,

dy(m̄)

dx

∣∣∣∣∣
x=xN−1


 +

1
~N

µ2 + O (hN ) ,

dy(m̄)

dx

∣∣∣∣∣
x=xj+(−1)α

= y
(m̄)
x̄,j−1+α + O

(
h2

j−1+α

~j

)
,

j = 2− α, 3− α, ..., N + 1− α, α = 1, 2,

then modi�ed Newton iteration method will be a form

(
a(m̄)∇y

(m̄,n)
x̄

)
x̂,j

+
hj

2~j

∂f

(
xj−1, y

(m̄,n−1)
j−1 , dy(m̄,n−1)

dx

∣∣∣
x=xj−1

)

∂u
∇y

(m̄,n)
j−1 +

+
hj+1

2~j

∂f

(
xj+1, y

(m̄,n−1)
j+1 , dy(m̄,n−1)

dx

∣∣∣
x=xj+1

)

∂u
∇y

(m̄,n)
j+1 +

+
hj

2~j

∂f

(
xj−1, y

(m̄,n−1)
j−1 , dy(m̄,n−1)

dx

∣∣∣
x=xj−1

)

∂ξ
∇y

(m̄,n)
x̄,j +

+
hj+1

2~j

∂f

(
xj+1, y

(m̄,n−1)
j+1 , dy(m̄,n−1)

dx

∣∣∣
x=xj+1

)

∂ξ
∇y

(m̄,n)
x,j =

= −ϕ(m̄)
(
xj , y

(m̄,n−1)
)
−

(
a(m̄)y

(m̄,n−1)
x̄

)
x̂,j

, j = 1, 2, ..., N − 1,

(56)
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1
~0

(
a

(m̄,n)
1 ∇y

(m̄,n)
x,0 − β1∇y

(m̄,n)
0

)
+

+
∂f

(
x1, y

(m̄,n−1)
1 , dy(m̄,n−1)

dx

∣∣∣
x=x1

)

∂u
∇y

(m̄,n)
1 +

+
∂f

(
x1, y

(m̄,n−1)
1 , dy(m̄,n−1)

dx

∣∣∣
x=x1

)

∂ξ
∇y

(m̄,n)
x,0 =

= −ϕ(m̄)
(
x0, y

(m̄,n−1)
)
− 1
~0

(
a

(m̄,n)
1 y

(m̄,n−1)
x,0 − β1y

(m̄,n−1)
0

)
,

(57)

− 1
~N

(
a

(m̄,n)
N ∇y

(m̄,n)
x̄,N + β2∇y

(m̄,n)
N

)
+

+
∂f

(
xN−1, y

(m̄,n−1)
N−1 , dy(m̄,n−1)

dx

∣∣∣
x=xN−1

)

∂u
∇y

(m̄,n)
N−1 +

+
∂f

(
xN−1, y

(m̄,n−1)
N−1 , dy(m̄,n−1)

dx

∣∣∣
x=xN−1

)

∂ξ
∇y

(m̄,n)
x̄,N =

= −ϕ(m̄)
(
xN , y(m̄,n−1)

)
+

1
~N

(
a

(m̄,n)
N y

(m̄,n−1)
x̄,N + β2y

(m̄,n−1)
N

)
,

(58)

y
(m̄,n)
j = y

(m̄,n−1)
j +∇y

(m̄,n)
j , j = 1, 2, ..., N − 1, n = 1, 2, ... (59)

4. Numerical examples

Example 1. Let us consider boundary value problem

d2u

dx2
= π2 exp(u), x ∈ (0, 1),

du(0)
dx

− u(0) = − π√
3

+ ln 1, 5, −du(1)
dx

− u(1) = −
√

3π − ln 2,
(60)

with the exact solution

u(x) = − ln
(

2 cos2
(

π

2

(
x− 1

3

)))
.

Since f(x, u, ξ) = −π2 exp(u) it follows that condition (5) is satis�ed if we take
f0(x) ≡ 0, c(t) = π2 exp(t), g(x) ≡ 1. Besides we have

[f(x, u, ξ)− f(x, v, η)] (u−v) = −π2 exp(θu+(1−θ)v)(u−v)2 ≤ 0, 0 < θ < 1.

Thus, due to Theorem 1 the problem has a unique solution.
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For numerical solution of problem (60) on the equidistance grid ω̄h = {xj =
jh, j = 0, 1, ..., N, h = 1/N} we use TDS of the sixth order of accuracy (m = 6)

y
(6)
x̄x,j = −ϕ(6)(xj , y

(6)), j = 1, 2, . . . , N − 1,

2
h

(
y

(6)
x,0 − β1y

(6)
0

)
= −ϕ(6)(x0, y

(6)),

−2
h

(
y

(6)
x̄,N + β2y

(6)
N

)
= −ϕ(6)(xN , y(6)),

(61)

with

ϕ(6)(xj , u) = h−1
2∑

α=1

(−1)α

[
Z(6)j

α (xj , u) + (−1)α Y
(6)j
α (xj , u)− uj+(−1)α

h

]
,

ϕ(6)(x0, u) =
2
h

[
Z

(6)0
2 (x0, u) +

Y
(6)0
2 (x0, u)− u1

h
+ µ1

]
,

ϕ(6)(xN , u) =
2
h

[
−Z

(6)N
1 (xN , u) +

Y
(6)N
1 (xN , u)− uN−1

h
+ µ2

]
,

β1 = 1, β2 = 1, µ1 =
π√
3
− ln 1, 5, µ2 =

√
3π + ln 2,

and Y
(6)j
α (x, u), Z(6)j

α (x, u) are numerical solutions of initial value problems

dY j
α (x, u)
dx

= Zj
α (x, u) ,

dZj
α (x, u)
dx

= −f
(
x, Y j

α (x, u) , Zj
α (x, u)

)
,

xj−2+α < x < xj−2+α,

Y j
α

(
xj+(−1)α , u

)
= uj+(−1)α , Zj

α

(
xj+(−1)α , u

)
=

du

dx

∣∣∣∣
x=xj+(−1)α

,

(62)

j = 2− α, 3− α, ..., N + 1− α, α = 1, 2

computed by a explicit Runge-Kutta method of the sixth-order of accuracy (see
Table 6.1 [10, p.189]).

To determine the solution of the di�erence scheme (61) the modi�ed Newton
method (56)-(59) will be used. System linear algebraic equations (56)-(58) for
the unknowns ∇y(6,n)(x), x ∈ ˆ̄ωh we solved by Gaussian elimination for linear
system with a tridiagonal matrix.

Numerical results are given in Table 1. To evaluate the convergence rate in
practice, we introduced the following quantities

er =
∥∥∥z(6)

∥∥∥
∗

1,2,ω̄h

=
∥∥∥y(6) − u

∥∥∥
∗

1,2,ω̄h

, p = log2

∥∥z(6)
∥∥∗

1,2,ω̄h∥∥z(6)
∥∥∗

1,2,ω̄h/2

.

In the following example the implementation of the TDS uses the h− h/2 a
posteriori estimation to achieve a given accuracy EPS. The comparison with
the true error Er shows that this accuracy is actually achieved.
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Tabl. 1. Numerical results for problem (60).

N Er p
16 0, 2241 · 10−5

32 0, 3522 · 10−7 6
64 0, 5514 · 10−9 6
128 0, 8642 · 10−11 6

Example 2. Let us consider the boundary value problem
d2u

dx2
= 3u

du

dx
, x ∈ (0, 1),

du(0)
dx

= −1, 5/ cosh2(0, 75),

−du(1)
dx

− u(1) = 1, 5/ cosh2(0, 75) + tanh(0, 75).

(63)

The exact solution is u(x) = tanh
(

3(1− 2x)
4

)
.

The numerical results which have been obtained for di�erence scheme of
order of accuracy 6 are given in Table 2

Tabl. 2. Numerical results for problem (63).

EPS N Er
10−4 2048 0, 1323 · 10−5

10−6 2048 0, 4816 · 10−7

10−8 4096 0, 4078 · 10−9
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INTERPOLATING FUNCTIONAL POLYNOMIAL
FOR THE APPROXIMATE SOLUTION OF

THE BOUNDARY VALUE PROBLEM

Volodymyr Makarov, Igor Demkiv

Ðåçþìå. Ó ðîáîòi, çàñòîñîâóþ÷è ôóíêöiîíàëüíèé ïîëiíîì Íüþòîíà ïî-
áóäîâàíèé íà êîíòèíóàëüíié ìíîæèíi âóçëiâ, áóäó¹òüñÿ iíòåðïîëÿöiéíèé
ôóíêöiîíàëüíèé ïîëiíîì n-ãî ïîðÿäêó äëÿ íàáëèæåííÿ äî ðîçâ'ÿçêó êðà-
éîâî¨ çàäà÷i äðóãîãî ïîðÿäêó.
Abstract. Interpolating functional polynomial of order for the approxima-
tion to the solution of the boundary value problem of the second order is
constructed and justi�ed in this paper. This is done using Newton functional
polynomial constructed on a continual set of knots.

1. Introduction
Many authors investigated the generalization of the classical theory of one

variable functions interpolation to the case of nonlinear functionals and opera-
tors (see for example [1, 2, 3, 4, 5, 6, 7, 8] ). In particular, in [9] it is suggested
to seek for Newton-type interpolants in the class of functional polynomials of
the following form

Pn(x(·)) = K0+

+
n∑

s=1

∫ 1

0

∫ 1

z1

...

∫ 1

zs−1

Ks(−→z s)
s∏

i=1

[x(zi)− xi−1(zi)] dzs . . . dz1,
(1)

where xi (z) ∈ Q[0, 1], i = 0, 1, . . . are arbitrary, �xed elements from the space
Q[0, 1]. Which is a space of piecewise continuous on the interval [0, 1] functions
with a �nite number of discontinuity points of the �rst kind. For determination
of the kernels K0, Ks (−→z s), s = 1, n a following continual set of knots

xn
(
z, ~ξn

)
= x0 (z) +

n∑

i=1

H (z − ξi) [xi (z)− xi−1 (z)] , z ∈ [0, 1] , (2)

~ξn = (ξ1, ξ2, . . . , ξn) ∈ Ωn =

= {~zn = (z1, z2, . . . , zn) : 0 ≤ z1 ≤ z2 ≤ . . . ≤ zn ≤ 1} ,

was introduced and continual interpolation conditions of the form

Key words. Newton's functional polynomial, continual set of nodes, boundary value prob-
lem, interpolating functional polynomial.
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P I
n

(
xn

(
·, ~ξn

))
= F

(
xn

(
·, ~ξn

))
, ∀~ξn ∈ Ωn,

were set, where H (z) is a Heaviside function.
In the above-mentioned work, it was shown that the necessary conditions for

polynomial (1) to be interpolating on the continual knots (2) are the determi-
nation of its kernels according to the following formulas

K0 = F (x0 (·)) ,

Ks (~zs) = (−1)s
s∏

i=1

[xi (zi)− xi−1 (zi)]
−1 ∂s

∂z1 . . . ∂zs
F (xs (·, ~zs)) ,

s = 1, n .

To ensure su�cient condition for polynomial Pn (x (·)) to be interpolating on
continual knots (2) the following substitution rules satisfaction

∂p

∂z1∂z2 . . . ∂zp

[
F

(
xp+1

(·, ~zp+1
))∣∣

zp+1=zp

]
=

=
[

∂p

∂z1∂z2 . . . ∂zp
F

(
xp+1

(·, ~zp+1
))]∣∣∣∣

zp+1=zp

xp+1 (zp)− xp−1 (zp)
xp (zp)− xp−1 (zp)

,

p = 1, n− 1

(3)

were required.
The purpose of this paper is to develop and study the interpolating functional

polynomial for approximation of the solution of the second order boundary
value problem.

2. Statement of the problem
One must apply the Newton type functional polynomial of the form (1),

(2) and construct the approximation to the solution of the following boundary
value problem.

U ′′ (x; q (·))− q (x) U (x; q (·)) = −f (x) , x ∈ (0, 1) , (4)

U (0; q (·)) = 0, U (1; q (·)) = 0. (5)

3. Solution of the problem
When the function f (x) is �xed, one can consider solution of the problem

(4), (5) as non-linear operator with respect to q (x) . We introduce the following
continual interpolating knots

qn
(
x,
−→
ξ n

)
=

n∑

i=1

1
n

H (x− ξi) , (6)

where
0 ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξn ≤ 1 (7)
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and the frame of these knots are

qi (x) =
i

n
, i = 0, n.

Let us write the following n− degree interpolating functional polynomial of
Newton type

Un (x; q (·)) =
n∑

i=0

∫ 1

0

∫ 1

z1

. . .

∫ 1

zi−1

Ki (x; q (·))
i∏

p=1

n
(
q (zp)− p

n

)
d−→z p, (8)

where
Ki (x; q (·)) = (−1)i ∂i

∂z1 . . . ∂zi
U

(
x; qi

(
x;−→z i

))
, (9)

i = 1, n, K0 (x; q (·)) = U (x; 0) .

According to Theorem 2.1 from [9] the necessary and su�cient condition for
polynomial (8), (9) to be interpolating for solution of the boundary problem
(4), (5) on a continual set of interpolating knots (6), (7), i.e. the following
conditions were met

U
(
x; qn

(
·,−→ξ n

))
= Un

(
x; qn

(
·,−→ξ n

))
, ∀ −→ξ n ∈ Ωn, (10)

is the following substitution rules to be applicable

[
∂

∂ξi−1
U

(
x; qi

(
·,−→ξ i

))]

ξi=ξi−1

=
1
2

∂

∂ξi−1
U

(
x; qi

(
·; −→ξ i

∣∣∣
ξi=ξi−1

))
,

i = 2, n.

(11)

The following statement is ful�lled.

Lemma 1. Let the solution of boundary value problem (4), (5) be considered
as non-linear operator with respect to q (x). Then it satis�es the substitution
rule (11).

Proof. Consider the following boundary problem

U ′′
(
x; qi

(
·;−→ξ i

))
−

i∑

p=1

1
n

H (x− ξp) U
(
x; qi

(
x;
−→
ξ i

))
= −f (x) ,

x ∈ (0, 1) ,

(12)

U
(
0; qi

(
·;−→ξ i

))
= 0, U

(
1; qi

(
·;−→ξ i

))
= 0. (13)

As consequences from (12), (13) we have following two boundary value prob-
lems with the same di�erential operator

d2

dx2

[
∂

∂ξi−1
U

(
x; qi

(
·;−→ξ i

))]

ξi=ξi−1

−
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−
i∑

p=1

1
n

H (x− ξp)|ξi=ξi−1

[
∂

∂ξi−1
U

(
x; qi

(
·;−→ξ i

))]

ξi=ξi−1

= (14)

=
1
n

d

dξi−1
H (x− ξi−1) U

(
x; qi

(
·,−→ξ i

))∣∣∣
ξi=ξi−1

,

[
∂

∂ξi−1
U

(
x; qi

(
·;−→ξ i

))]

ξi=ξi−1

∣∣∣∣∣
x=0,1

= 0, (15)

d2

dx2

[
∂

∂ξi−1
U

(
x; qi

(
·;−→ξ i

))]

ξi=ξi−1

−

−
i∑

p=1

1
n

H (x− ξp)|ξi=ξi−1

∂

∂ξi−1
U

(
x; qi

(
·; −→ξ i

∣∣∣
ξi=ξi−1

))
= (16)

=
2
n

d

dξi−1
H (x− ξi−1) U

(
x; qi

(
·, −→ξ i

∣∣∣
ξi=ξi−1

))
,

∂

∂ξi−1
U

(
x; qi

(
·; −→ξ i

∣∣∣
ξi=ξi−1

))∣∣∣∣
x=0,1

= 0. (17)

Note that right hand sides of their di�erential equations di�er only by numer-
ical multiplier. Comparison of boundary value problems (14), (15) and (16),
(17) proves the lemma.

To construct the interpolant (8), (9) one must �nd the solution of the prob-
lems (12), (13) at i = 0, n. Then we have

U (x; 0) = K0 (x; q (·)) =
∫ 1

0
G0 (x, ξ) f (ξ) dξ,

U
(
x; qi

(
·;−→ξ i

))
=

∫ 1

0
Gi (x, ξ) f (ξ) dξ, i = 1, n,

where Gi (x, ξ) , i = 0, n are Green's functions of the corresponding boundary
value problems

G0 (x, ξ) =

{
x (1− ξ) , 0 ≤ x ≤ ξ,

ξ (1− x) , ξ ≤ x ≤ 1,
.

Gi (x, ξ) =
1

V1,i (1)

{
V1,i (x) V2,i (ξ) , 0 ≤ x ≤ ξ,

V2,i (x) V1,i (ξ) , ξ ≤ x ≤ 1.

Here V1,i (x) , V2,i (x) are solutions of the following Cauchy problems:

d2Vαi (x)
dx2

−
i∑

p=1

1
n

H (x− ξp) Vαi (x) = 0, x ∈ (0, 1) , α = 1, 2;

V1i (0) = 0;
dV1i (0)

dx
= 1; V2i (1) = 0;

dV2i (1)
dx

= −1.
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It is quite simple to �nd functions V1,i (x) , V2,i (x) in explicit form because
the di�erential equations which they satisfy have a piecewise constant coe�-
cient. In particular at i = 1 we obtain

V11 (x) =





x, 0 ≤ x ≤ ξ1,

√
n sinh

1√
n

(x− ξ1) + x cosh
1√
n

(x− ξ1) , ξ1 ≤ x ≤ 1,

V21 (x) =





√
n sinh

1√
n

(1− x) , ξ1 ≤ x ≤ 1,

− cosh
1√
n

(1− ξ1) (x− ξ1) +
√

n sinh
(1− ξ1)√

n
, 0 ≤ x ≤ ξ1.

4. Conclusions
Thus, Newton type interpolating functional polynomial of n−degree of form

(8), (9) was obtained. This polynomial will be the approximation to the solution
of the boundary value problem (4), (5).
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FD-METHOD FOR SOLVING THE STURM�LIOUVILLE
PROBLEM WITH POTENTIAL THAT IS THE DERIVATIVE

OF A FUNCTION OF BOUNDED VARIATION

Volodymyr Makarov, Nataliia Romaniuk, Igor Lazurchak

Ðåçþìå. Ðîçãëÿäà¹òüñÿ ñêàëÿðíà çàäà÷à Øòóðìà-Ëióâiëëÿ ç ïîòåíöià-
ëîì, ùî ¹ ïîõiäíîþ âiä ôóíêöi¨ îáìåæåíî¨ âàðiàöi¨, òà êðàéîâèìè óìîâàìè
Äiðiõëå. Âèêëàäåíà îñíîâà ðåàëiçàöi¨ FD-ìåòîäó ó âèïàäêó, êîëè ôóíêöiÿ
q̄ (x), ùî íàáëèæà¹ ïîòåíöiàë q (x), ¹ òîòîæíiì íóëåì, à òàêîæ ó çàãàëüíî-
ìó âèïàäêó. Âñòàíîâëåíi äîñòàòíi óìîâè ñóïåðåêñïîíåíöiàëüíî¨ çáiæíîñòi
FD-ìåòîäó òà îöiíêè éîãî òî÷íîñòi, ÿêi ¹ çíà÷íèì ïîñèëåííÿì òà óçàãàëü-
íåííÿì âiäïîâiäíèõ ðåçóëüòàòiâ, îòðèìàíèõ â ïîïåðåäíiõ ðîáîòàõ.
Abstract. We consider a scalar Sturm-Liouville problem with the Dirichlet
boundary conditions where the potential q (x) is assumed to be a derivative
of the function with bounded variation. The application of the abstract FD-
method scheme to such eigenvalue problem is studied in the scope of this
work. In addition to the general case when the function q̄ (x) approximating
q (x) is assumed to be arbitrary we study the case when q̄ (x) is equal to zero
everywhere. We obtain new su�cient conditions for the super-exponential
convergence of the FD-method and its accuracy estimates which essentially
generalize similar results obtained in the earlier works.

MSC 2010 : 65L15, 65L20, 34B09, 34B24, 34L16, 34L20.

1. Introduction
Most of the current technological and industrial advancements in electronics

rely on the increasingly rigorous quantum-mechanical models. The models
where the discontinuities of the potential are essential to represent the modelled
phenomena and can not be disregarded. Mathematically such models can be
represented as follows (the one particle, many center Hamiltonian):

H = −∆ +
∑

α∈ℵ
γαδα (·) , (1)

where ∆ is a Laplace operator in L2
(
Rd

)
, d stands for the dimension of the

con�guration space, ℵ is a discrete, countable at most, subset in Rd, δα (·) is
a Dirac delta function at the point α (i.e. a single measure concentrated at
α) (see [1]). H describes the energy of the quantum mechanical particle which
moves under the in�uence of an "interaction potential" created by the "point
source" forces γα, located at α. We will denote this function as δ (x) and refer
to it as Dirac delta function (DDF).

Key words. Sturm-Liouville problem, Dirac delta function potential, distribution potential,
functional-discrete method, super-exponential convergence rate.
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Dirac delta function (DDF) potentials had been used for modelling of atomic
and molecular systems including atomic lattices, quantum heterostructures,
semiconductors, organic �uorescent materials, solar cells etc. (see [1, 2, 3] and
citations of them). Among recent applications of (1) one may mention the
novel structure of quantum waveguide [2] based on the modelling with the
same potential as in (1) having the �nite numbers of delta functions. This
type of potentials are called Dirac comb by the authors of [2]. History of the
studies, mathematical properties and the visualization for some of the models
involving such discontinuous potentials as well as various physical applications
are summarized in [3].

Linear Sturm-Liouville problem with distribution potentials are extensively
studied theoretically (for example see [4]). The authors of [5] derive the to-
tal regularized trace formula of di�erential Sturm�Liouville operators on a �-
nite closed interval with singular potentials q(x) that are not locally integrable
functions and such that

∫
q(x)dx ∈ BVc[0, π] in the sense of distributions (the

de�nition of BVc[0, π] will be given shortly). During the technical revision of
[5] author of [6] found a simple proof for the case of potential q (x) = δ

(
x− π

2

)
.

Note that if q (x) ∈ L1 then Theorem 1 from [5] contains the results of [7].
Independently from [5] the authors of [8] received the spectral asymptotic and
the trace formula on the interval [0, l] for the class of potentials, which may
contain �nite of sum δ-functions.

In the current paper we study an eigenvalue problem for the Hamiltonian
having the form (1) with d = 1, ℵ = {α}, α ∈ (0, 1), which is stated as follows:

d2u(x)
dx2

+ (λ− q(x))u(x) = 0, x ∈ (0, 1), u(0) = 0, u(1) = 0, (2)

where
q(x) =

dσ(x)
dx

and σ(x) is a function of bounded variation.
We start by summarizing some useful facts from the real analysis. Since σ(x)

is the function of bounded variation, the following representation is valid:
σ(x) = h(x) + ψ(x) + χ(x),

with h(x), ψ(x), χ(x) being the jump function, the absolutely continuous func-
tion and the singular function correspondingly (see. [9], p.347). The singular
part χ(x) has at most countable number of discontinuities which coincide with
those of the jump function h(x). Let us enumerate these discontinuity points in
the ascending order and denote them as xp ∈ (0, 1), p = 1, 2, ... , x1 < x2 < ...,
then h(x) =

∑
p γpH (x− xp), where γp are real numbers, H(z) is the Heavi-

side function. From now on we assume that σ(x) belongs to the class BVc[0, 1].
That is the class of functions with bounded variation and which are right con-
tinuous at any point x ∈ (0, 1) and continuous at the endpoints x = 0 and
x = 1.

An essential role in the proof of FD-method's convergence rely on the fol-
lowing result:
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Theorem 1. ([10], p.481) Let σ(x) ∈ BVc[0, 1] and a function f(x) be contin-
uous on the segment [0, 1], then the following inequality holds true:

∣∣∣∣∣∣

1∫

0

f(x)dσ(x)

∣∣∣∣∣∣
≤ max

x∈[0,1]
|f(x)| ‖σ‖v ,

where ‖σ‖v = var {σ(x); 0, 1}.
Due to the importance of the model there exist a large number of software

packages for the numerical solution of the singular scalar Sturm-Liouville prob-
lems. Most notable FORTRAN packages are SL02F [11] and SLEDGE [12] im-
plementing the Pruess method, SLEIGN [13, 14] and SLEIGN2 [15] � shooting
method based on the Pr�ufer transformation. MATSLISE package [16] imple-
ments the Constant Perturbation Methods (CPM) and the Line Perturbation
Methods (LPM) in MATLAB.

The code of SLEIGN2 became a considerable improvement of SLEIGN code.
It covers more problem cases than other software packages, existent at that
moment. Among other things the developers of SLEIGN2 expand the list of
singular self-adjoint problems compatible with the package. Such list along with
problem's classi�cation, numerical examples and the package documentation
can be found in [15]. The mentioned FORTRAN codes is available as a part
of SLTSTPAK package (see [17]). Its implementation details as well as 60 test
problem application examples are given [18]. Taking in to account the joint
interest from di�erent application areas, and the lack of common interface for
the mentioned software packages the developers (V. Ledoux and rest of authors)
created MATSLISE. It o�ers an interactive graphical user interface for various
Sturm-Liouville problem solvers and the ability to control the parameters of the
solver on-the-�y. Aside of that it contains some useful solution visualization
tools (see [19]).

In spite of the large amount of implementations none of the mentioned pack-
ages can handle DDF potentials directly.

The purpose of the current work is to study, justify and propose algo-
rithm implementation of the FD-method for eigenvalue problem for the Sturm-
Liouville operator (2) with the potential being the derivative of the function
with bounded variation such as

q (x) =
k∑

p=1

γpδ (x− xp) + ψ′ (x) , xp ∈ (0, 1), p = 1, k.

The results, presented here, extends the results reported in [20] in the linear
case (N (u) ≡ 0), where the potential q (x) have only one singularity (k = 1).
Aside of that the current work contains the generalization of section 5 from
[21], where the FD-method (with q̄(x) ≡ 0) considered in application to (2)
with q (x) = aδ

(
x− 1

2

)
, a > 0.

In section 2 we apply the simplest version of the FD-method, when the func-
tion q̄ (x), approximating the potential q (x), is zero everywhere. The necessary
conditions of the applied method's convergence is given. We show that under
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such conditions the method will converge super-exponentially. The practical
implications of the technique proposed here lie in the fact that theoretical es-
timates on the lowest eigenvalue number for which the method is justi�ed to
converge, are more close to the number obtained experimentally. It may be
considered as an improvement of the similar conditions from theorem 1 [8]. In
the end of the section we present some numerical experiments to justify our
theoretical results. The algorithm of general FD-method scheme (q̄(x) 6≡ 0)
along with its justi�cation is given in section 3. The results of a numerical
calculation presented in the end of the section illustrate the e�ectiveness of the
proposed algorithm.

2. FD-method for q̄(x) ≡ 0
To �nd the approximate solution of the problem (2) we shall apply the FD-

method of the m-th rank with the function q̄(x) ≡ 0. Detailed justi�cation for
the choice of the FD-method scheme used here will be given in section 3 dealing
with the general case q̄(x) 6≡ 0. The m-th rank approximate solution will be
sought in the form of a �nite sum

m
un(x) =

m∑

j=0

u(j)
n (x),

m
λn =

m∑

j=0

λ(j)
n , (3)

where every summand in (3) is obtained from the solution of the recurrent
sequence of problems

d2u
(j+1)
n (x)
dx2

+ λ(0)
n u(j+1)

n (x) = −
j∑

p=0

λ(j+1−p)
n u(p)

n (x) + q(x)u(j)
n (x),

u(j+1)
n (0) = 0, u(j+1)

n (1) = 0, x ∈ (0, 1), j = 0, 1, ...,m− 1,

u(0)
n =

√
2 sin(nπx), λ(0)

n = (nπ)2,

(4)

supplied by the solvability condition

λ(j+1)
n = −

j∑

p=1

λ(j+1−p)
n

1∫

0

u(p)
n (x) u(0)

n (x)dx +

1∫

0

q(x)u(j)
n (x) u(0)

n (x)dx

and the following orthogonality condition

1∫

0

u(j+1)
n (x) u(0)

n (x)dx = 0,

which guaranties the uniqueness of the solution to (4). Let us represent the
solution to (4) using the generalized Green's function approach:
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u(j+1)
n (x) =

1∫

0

gn(x, ξ)


−

j∑

p=0

λ(j+1−p)
n u(p)

n (ξ) + q(ξ)u(j)
n (ξ)


 dξ =

= −
j∑

p=0

λ(j+1−p)
n

1∫

0

gn(x, ξ)u(p)
n (ξ)dξ +

1∫

0

gn(x, ξ)u(j)
n (ξ)dσ(ξ),

λ(j+1)
n =

1∫

0

q(ξ)u(j)
n (ξ)u(0)

n (ξ)dξ =

1∫

0

u(j)
n (ξ)u(0)

n (ξ)dσ(ξ),

(5)

where

gn(x, ξ) =
[
(x−H(x− ξ)) cos(nπx)

πn
− sin(nπx)

2π2n2

]
sin(nπξ)+

+
sin(nπx)(ξ −H(ξ − x)) cos(nπξ)

πn
= gn,1(x, ξ) + gn,2(x, ξ),

gn,1(x, ξ) =
(x−H(x−ξ)) cos(nπx)

πn
sin(nπξ)+

+
sin(nπx)(ξ−H(ξ −x))

πn
cos(nπξ),

gn,2(x, ξ) = −sin(nπx)
2π2n2

sin(nπξ).

(6)

The generalized Green's function gn(x, ξ) has the following properties:
gn(x, ξ) = gn(ξ, x), gn(x, ξ) = gn(1− x, 1− ξ),

1∫

0

gn(x, ξ) sin(nπx)dx = 0,

1∫

0

gn(x, ξ) sin(nπξ)dξ = 0,

|gn(x, ξ)| ≤ 1
πn

+
1

2(πn)2
≤ 7

6πn
.

(7)

Representation (5) along with the properties of Green function (7) and the
results of theorem 1 allows us to obtain the following recurrent system of in-
equalities

∥∥∥u(j+1)
n

∥∥∥
∞
≤ ‖gn‖∞




j∑

p=1

∣∣∣λ(j+1−p)
n

∣∣∣
∥∥∥u(p)

n

∥∥∥
∞

+
∥∥∥u(j)

n

∥∥∥
∞
‖σ‖v


 ,

∣∣∣λ(j+1)
n

∣∣∣ ≤
√

2
∥∥∥u(j)

n

∥∥∥
∞
‖σ‖v , (8)

j = 0, 1, ...,m− 1.

One can deduce from (8) that
∥∥∥u(j+1)

n

∥∥∥ ≤ Mn

j∑

p=0

∥∥∥u(j−p)
n

∥∥∥
∥∥∥u(p)

n

∥∥∥
∞

,
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where Mn =
√

2 ‖gn‖∞ ‖σ‖v ≤
√

2 7
6πn ‖σ‖v.

To obtain the solution of (8) we use the generating functions method (see
[22]). It gives us the following sequence of estimates for the solution

∥∥∥u(j)
n

∥∥∥
∞
≤ 2

√
2
(2j − 1)!!
(2j + 2)!!

(4Mn)j ≤
√

2
(4Mn)j

(j + 1)
√

πj
,

∣∣∣λ(j+1)
n

∣∣∣ ≤ 4 ‖σ‖v

(2j − 1)!!
(2j + 2)!!

(4Mn)j ≤ 2 ‖σ‖v

(4Mn)j

(j + 1)
√

πj
,

j = 0, 1, ..., m− 1,

where (2j)!! = 2 · 4 · ... · 2j, (2j + 1)!! = 1 · 3 · ... · (2j + 1). These estimates
along with the assumptions regarding the form of σ(x) yields the next result.
Theorem 2. Let σ(x) ∈ BVc[0, 1] and the following condition holds true

rn
def
= 4Mn = 4

√
2 ‖gn‖∞ ‖σ‖v < 1, (9)

then the FD-method for the Sturm�Liouville problem (2) converges super-expo-
nentially. Moreover the error estimates satisfy (10), (11)

∥∥∥un − m
un

∥∥∥
∞

=

∥∥∥∥∥∥
un −

m∑

j=0

u(j+1)
n

∥∥∥∥∥∥
∞

≤
√

2rm+1
n

(m + 2)
√

π(m + 1)(1− rn)
, (10)

∣∣∣∣λn −
m
λn

∣∣∣∣ =

∣∣∣∣∣∣
λn −

m∑

j=0

λ(j+1)
n

∣∣∣∣∣∣
≤ 2 ‖σ‖v rm

n

(m + 1)
√

πm(1− rn)
. (11)

This result is a considerable extension and generalization of the similar results
of section 5 from [21], as well as the results of theorem 1 from [8]. In order to
show that let us recall the similar result from [8]. If σ(x) ∈ BVc[0, 1] and

n >
1
4π

(
681
16

‖σ‖v + 1
)

def
= nb (12)

then the following representation (in the notation of current work) is valid

λn = (πn)2 −
1∫

0

[
u(0)

n (x)
]2

dσ(x)−
1∫

0

1∫

0

kn(ξ1, ξ2)dσ(ξ1)dσ(ξ2) + ν ′n,2(σ),

where

kn(ξ1, ξ2)≡ 1
4πn

2∑

i=1

(1−cos(2πnξi)) sin(2πnξ3−i)×

×
[

2
π

Θ(2πξ3−i)+(−1)i−1sgn(ξ2−ξ1)
]
,

Θ(t) = (π − t)/2,

∣∣ν ′n,2(σ)
∣∣ ≤ ‖σ‖2

v

4.4 + 467 ‖σ‖v + 2 ‖σ‖2
v(

πn− 1
4

)2

def
= γb (n, ‖σ‖v) . (13)
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At the same time, it follows from theorem 2 that
λn = (πn)2 + λ(1)

n + λ(2)
n + R(3)

n , (14)
where

λ(1)
n =

1∫

0

[
u(0)

n (x)
]2

dσ(x), λ(2)
n =

1∫

0

u(0)
n (x)u(1)

n (x)dσ(x),

u(1)
n (x)=

1∫

0

gn(x, ξ)u(0)
n (ξ)dσ(ξ),

while the residual term R
(3)
n satis�es

∣∣∣R(3)
n

∣∣∣ ≤ 2 ‖σ‖v r2
n

3
√

2π(1− rn)
, (15)

as long as (9) holds. To make the comparison of the estimates (13) and (15)
more convenient, we employ the estimate for rn

rn
def
= 4

√
2 ‖gn‖∞ ‖σ‖v ≤ 4

√
2

[
1

πn
+

1
2(πn)2

]
‖σ‖v

def
= rn,1 ≤

≤ 14
√

2
3πn

‖σ‖v

def
= rn,2.

Then the estimate (15) could be replaced by the estimate
∣∣∣R(3)

n

∣∣∣ ≤ 2 ‖σ‖v r2
n,1

3
√

2π(1− rn,1)
def
= γm (n, ‖σ‖v) , (16)

valid for all n such that

n >
2
√

2
π


‖σ‖v +

√
‖σ‖2

v +
√

2
4
‖σ‖v


 def

= nm. (17)

By comparing (12) and (17) it is easy to see that
nb > nm, ∀ ‖σ‖v ∈ [0,∞), lim

‖σ‖v→∞
(nb − nm) = ∞,

i.e. the condition (17) is less strict than the condition (12). Let us now compare
estimates (16) and (13) for the residual terms for n > nb, when both estimates
make sense. For the clarity we remove the second summand from

λ(2)
n =

1∫

0

u(0)
n (x)

1∫

0

gn,1(x, ξ)u(0)
n (ξ)dσ(ξ)dσ(x)+

+

1∫

0

u(0)
n (x)

1∫

0

gn,2(x, ξ)u(0)
n (ξ)dσ(ξ)dσ(x)= λ

(2)
n,1 + λ

(2)
n,2

(see (6)) and combine it with R
(3)
n . One can observe, afterwards, that

ν
′
n,2(σ) = R(3)

n + λ
(2)
n,2,
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which after taking the norm of both sides lead us to the estimate for
∣∣∣ν ′n,2(σ)

∣∣∣ ≤
∣∣∣R(3)

n

∣∣∣ +
∣∣∣λ(2)

n,2

∣∣∣ ≤ 2 ‖σ‖v r2
n,1

3
√

π2(1− rn,1)
+
‖σ‖2

v

(nπ)2
def
= γ̃m(n, ‖σ‖v).

Using the elementary computations we see that

γb(n, ‖σ‖v) > γ̃m(n, ‖σ‖v), ∀ ‖σ‖v ≥ 0.

Consequently, we have shown that the second-rank FD-method could be more
e�cient than the approach suggested in [21] from the accuracy standpoint.
Example 2.1. Let us consider problem (2) with the potential q (x) =

δ (x− a) for q̄ (x) ≡ 0, where a is a real number and a ∈ (0, 1). The algo-
rithm of FD method described above is exactly realizable (see [23]) in this case.

Let us denote

I0 (x) = gn (t, a) , Ij (x) =

1∫

0

gn (x, t) Ij−1 (t) dt, j = 1, 2, ... .

By applying and the so-called sifting or sampling property for function f ∈
C1 [0, 1], which reads as

1∫

0

f (x) δ (x− a) dx = f (a) , a ∈ (0, 1)

to (5) we obtain the following formulas for approximations of eigenvalues:

λ(1)
n =

[
u(0)

n (a)
]2

, λ(2)
n =

[
u(0)

n (a)
]2

I0 (a) ,

λ(3)
n =

[
u(0)

n (a)
]2

(
−

[
u(0)

n (a)
]2

I1 (a) + [I0 (a)]2
)

,

λ(4)
n =

[
u(0)

n (a)
]2

([
u(0)

n (a)
]4

I2 (a)− 3
[
u(0)

n (a)
]2

I0 (a) I1 (a) + [I0 (a)]3
)

,

λ(5)
n =

[
u(0)

n (a)
]2

(
−

[
u(0)

n (a)
]6

I3 (a) +

+
[
u(0)

n (a)
]4 (

4I0 (a) I2 (a) + 2 [I1 (a)]2
)
−

− 6
[
u(0)

n (a)
]2

[I0 (a)]2 I1 (a) + [I0 (a)]4
)

.

By setting a =
1√
2
we obtain

I0

(
1√
2

)
=

(√
2− 1

)
sin

(
πn
√

2
)

2nπ
+

cos
(
πn
√

2
)− 1

4n2π2
,
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I1

(
1√
2

)
=

(
3
√

2− 4
)
cos

(
πn
√

2
)

+ 1
12n2π2

+

+

(√
2− 1

)
sin

(
πn
√

2
)

4n3π3
+

3
16

cos
(
πn
√

2
)− 1

n4π4
,

I2

(
1√
2

)
= −

(
2
√

2− 3
)
sin

(
πn
√

2
)

+ 1
24n3π3

+

(
3
√

2− 4
)
cos

(
πn
√

2
)

+ 1
16n4π4

+

+
3

(√
2− 1

)
sin

(
πn
√

2
)

16n5π5
+

5
32

cos
(
πn
√

2
)− 1

n6π6
,

I3

(
1√
2

)
= −

(
30
√

2− 43
)
cos

(
πn
√

2
)− 2

1440n4π4
−

(
2
√

2− 3
)
sin

(
πn
√

2
)

24n5π5
+

+
5
96

(
3
√

2− 4
)
cos

(
πn
√

2
)

+ 1
n6π6

+
5
32

(√
2− 1

)
sin

(
πn
√

2
)

n7π7
+

+
35
256

cos
(
πn
√

2
)− 1

n8π8
.

From here we derive analytical expressions for the corrections to eigenvalues:

λ(1)
n = 1− cos

(
πn
√

2
)

,

λ(2)
n =

√
2− 1
4nπ

[
2 sin

(
πn
√

2
)
−sin

(
2πn

√
2
)]

+

+
1

8n2π2

[
4 cos

(
πn
√

2
)
−cos

(
2πn

√
2
)
−3

]
,

λ(3)
n =

1
48n2π2

[(
27−15

√
2
)

cos
(
πn
√

2
)
−

(
36−24

√
2
)

cos
(
2πn

√
2
)
−

−
(
−13+9

√
2
)

cos
(
3πn

√
2
)
− 4

]
+

+
√

2− 1
8n3π3

[
−5 sin

(
πn
√

2
)

+4 sin
(
2πn

√
2
)
− sin

(
3πn

√
2
)]
−

− 1
16n4π4

[
15 cos

(
πn
√

2
)
− 6 cos

(
2πn

√
2
)

+ cos
(
3πn

√
2
)
− 10

]
,

λ(4)
n =

1
96n3π3

[(
33−26

√
2
)

sin
(
πn
√

2
)
−

(
102−74

√
2
)

sin
(
2πn

√
2
)

+

+
(
93−66

√
2
)

sin
(
3πn

√
2
)
−

(
27−19

√
2
)

sin
(
4πn

√
2
)]

+

+
1

128n4π4

[(
84
√

2−160
)

cos
(
πn
√

2
)

+
(
260− 168

√
2
)

cos
(
2πn

√
2
)

+

+
(
−160 + 108

√
2
)

cos
(
3πn

√
2
)

+
(
35− 24

√
2
)

cos
(
4πn

√
2
)
+25

]
−
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− 3
32n5π5

[
−14 sin

(
πn
√

2
)

+14 sin
(
2πn

√
2
)
−6 sin

(
3πn

√
2
)
+

+ sin
(
4πn

√
2
)](√

2− 1
)

+
5

128n6π6

[
56 cos

(
πn
√

2
)
−

− 28 cos
(
2πn

√
2
)

+ 8 cos
(
3πn

√
2
)
− cos

(
4πn

√
2
)
− 35

]
.

Symbolic and numerical computations were carried out using the computer
algebra system Maple 17.00 (where Digits=50). The exact values of �rst four
smallest eigenvalues are:

λex
1 ≈ 11.02252382511, λex

2 ≈ 41.34074086778,
λex

3 ≈ 89.10712301833, λex
4 ≈ 158.4324892201.

Numerical results are given in Table 1, where we show the absolute error of
approximation to the eigenvalue

∣∣∣∣λex
n −

m
λn

∣∣∣∣, n = 1, 4 calculated by the FD-

method with the rank m = 1, 7.

Tabl. 1. Convergence of FD-method for the eigenvalues λn, n = 1, 4.

m

∣∣∣∣λex
1 −

m

λ1

∣∣∣∣
∣∣∣∣λex

2 −
m

λ2

∣∣∣∣
∣∣∣∣λex

3 −
m

λ3

∣∣∣∣
∣∣∣∣λex

4 −
m

λ4

∣∣∣∣
0 1.1529194 1.8623232 2.8068340 · 10−1 5.1881880 · 10−1

1 1.13335918·10−1 4.1070777 · 10−3 3.9480386 · 10−3 8.1111546 · 10−3

2 7.74223271·10−3 5.4659978 · 10−3 3.5908153 · 10−5 2.0458308 · 10−5

3 2.41326302·10−4 2.2361009 · 10−4 2.7688079 · 10−6 4.7899759 · 10−6

4 1.80327662·10−5 1.7567730 · 10−5 2.2495782 · 10−8 9.7346306 · 10−8

5 2.80813804·10−6 2.7903081 · 10−6 1.7826757 · 10−9 1.1955865 · 10−9

6 8.40809762·10−8 8.3989549 · 10−8 5.1188146 ·10−11 1.0727859 ·10−10

7 1.70181022·10−8 1.7004392 · 10−8 7.0536476 ·10−13 1.6910131 ·10−12

One can see that the method converges for all eigenvalues including n = 1,
even though condition (9) of theorem 2 is satis�ed for n ≥ 2 only.

3. General scheme of FD-method (for q̄(x) 6≡ 0)
If condition (9) is not valid, one has to apply the general FD-method tech-

nique. We intend to consider this case in the present section. For this purpose
we embed problem (2) into the more general parametrical problem set

∂2u (x, t)
∂x2

+

{
λ (t)−

k∑

p=1

γpδ (x− xp)− ψ̂′ (x)−

−t
[
ψ′ (x)− ψ̂′ (x)

] }
u (x, t) = 0,

x ∈ (0, 1) , u (0, t) = u (1, t) = 0,

(18)
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where ψ (x) is the absolutely continuous function while ψ̂ (x) stands for its
piecewise linear approximation,

ψ̂ (x) = ψ (xp)
xp+1 − x

xp+1 − xp
+ ψ (xp+1)

x− xp

xp+1 − xp
,

ψ̂′ (x) = ψx,p =
ψ (xp+1)− ψ (xp)

xp+1 − xp
,

x ∈ [xp, xp+1] , p = 0, k,

0 = x0 < x1 < ... < xk+1 = 1.

We look for the solution (18) in the form of series

un (x, t) =
∞∑

j=0

u(j)
n (x) tj , λn (t) =

∞∑

j=0

λ(j)
n tj . (19)

We substitute expressions (19) into (18) and then compare the coe�cients in
front of the equal powers of t. It gives us the following recurrence sequence of
boundary problems:




L(0)
n u(j+1)

n (x) ≡ d2u
(j+1)
n (x)
dx2

+

+



λ(0)

n −
k∑

p=1

γpδ (x− xp)− ψ̂′ (x)



u(j+1)

n (x) =

=−
j∑

l=0

λ
(j+1−l)
n u

(l)
n (x) +

[
ψ′ (x)− ψ̂′ (x)

]
u

(j)
n (x) ≡

≡ −F (j+1)
n (x) , x ∈ (0, 1) ,

u
(j+1)
n (0) = u

(j+1)
n (1) = 0,

(20)

λ(j+1)
n =

1∫

0

u(0)
n (x)

[
ψ′ (x)− ψ̂′ (x)

]
u(j)

n (x) dx, (21)

1∫

0

u(0)
n (x) u(j+1)

n (x) dx = 0, (22)

j = 0, 1, ... .

Here the pair
{

λ
(0)
n , u

(0)
n (x)

}
= {λn (0) , un (0)} is the solution of the basic

problem

∂2u
(0)
n (x)
∂x2

+



λ(0)

n −
k∑

p=1

γpδ (x− xp)− ψ̂′ (x)



u(0)

n (x) = 0, x ∈ (0, 1) ,

u(0)
n (0) = u(0)

n (1) = 0,

(23)

The su�cient conditions for the convergence of the series for un(x, t) and
λn(t) at t = 1, where un (x) = un (x, 1), λn = λn (1) , n = 1, 2, ..., will be
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presented later. But �rst we give the algorithmic implementation of the FD-
method.

Let us rewrite the problem (23) in the alternative form

∂2u
(0)
n (x)
∂x2

+
{

λ(0)
n − ψ̂′(x)

}
u(0)

n (x) = 0,

x ∈ (0, x1) ∪ (x1, x2) ∪ ... ∪ (xk, 1) ,

u(0)
n (0) = u(0)

n (1) = 0,

(24)

[
u

(0)
n (x)

]
x=xp

= u
(0)
n (xp + 0)− u

(0)
n (xp − 0) = 0,

[
du

(0)
n (x)
dx

]

x=xp

=
du

(0)
n (xp + 0)

dx
− du

(0)
n (xp − 0)

dx
= γpu

(0)
n (xp) ,

p = 1, k. (matching conditions)





(25)

On the intervals [xp, xp+1) , p = 0, k − 1 and [xk, 1] the solutions of equation
(24) can be written as follows

u(0)
n (x) = A(0)

p,n sin
(√

µ
(0)
n,p (x− xp)

)
+

+ B(0)
p,n cos

(√
µ

(0)
n,p (x− xp)

)
, x ∈ [xp, xp+1) ,

p = 0, k − 1, B
(0)
0,n = 0,

u(0)
n (x) = A

(0)
k,n sin

(√
µ

(0)
n,k (1− x)

)
, x ∈ [xk, 1] ,

where
µ(0)

n,p = λ(0)
n − ψx,p.

The calculation of constants A
(0)
p,n, p = 0, k, B

(0)
p,n, p = 1, k − 1 is performed us-

ing the combination of conditions (25) which when applied to the representation
of solutions lead us to the following homogeneous system:

−A
(0)
p−1,nsin

(√
µ

(0)
n,p−1 (xp−xp−1)

)
−

−B
(0)
p−1,ncos

(√
µ

(0)
n,p−1 (xp−xp−1)

)
+B(0)

p,n =0,

−A
(0)
p−1,n

√
µ

(0)
n,p−1 cos

(√
µ

(0)
n,p−1 (xp − xp−1)

)
+

+ B
(0)
p−1,n

√
µ

(0)
n,p−1 sin

(√
µ

(0)
n,p−1 (xp−xp−1)

)
+

+
√

µ
(0)
n,pA

(0)
p,n−γpB

(0)
p,n = 0, p = 1, k−1, B

(0)
0,n =0,

(26)
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−A
(0)
k−1,n sin

(√
µ

(0)
n,k−1 (xk − xk−1)

)
−

−B
(0)
k−1,n cos

(√
µ

(0)
n,k−1 (xk − xk−1)

)
+

+ A
(0)
k,n sin

(√
µ

(0)
n,k (1− xk)

)
= 0,

−A
(0)
k−1,n

√
µ

(0)
n,k−1 cos

(√
µ

(0)
n,k−1 (xk − xk−1)

)
+

+ B
(0)
k−1,n

√
µ

(0)
n,k−1 sin

(√
µ

(0)
n,k−1 (xk − xk−1)

)
−

−A
(0)
k,n

[√
µ

(0)
n,k cos

(√
µ

(0)
n,k (1− xk)

)
+

+γk sin
(√

µ
(0)
n,k (1− xk)

)]
= 0.

We look for the roots of determinant ∆
(
λ

(0)
n

)
of system (26) which are

di�erent from ψx,p, p = 0, k. Every eigenvalue of problems (24)-(25) is the
zero of determinant ∆

(
λ

(0)
n

)
having the multiplicity 1. The eigenvalues form

a monotonically increasing sequence λ
(0)
1 < λ

(0)
2 < ... < λ

(0)
n < ... which tends

to in�nity.
For the given λ

(0)
n the solution to system (26) can be determined only up to

a constant factor which we calculate from the normalization condition

∥∥∥u(0)
n

∥∥∥
0

=





1∫

0

[
u(0)

n (x)
]2

dx





1
2

= 1.

The sequence of the normalized eigenfunctions
{

u
(0)
n (x)

}∞
n=1

form a complete
orthonormal system in L2 [0, 1]. The above mentioned facts follow from the
results of chapter 12 in [10].

Let us, move on to the solution of the recurrent sequence of problems (20)-
(22). First we rewrite these equations in the equivalent form

L̂(0)
n u(j+1)

n (x) ≡ d2u
(j+1)
n (x)
dx2

+ µ(0)
n u(j+1)

n (x) = −F (j+1)
n (x) ,

x ∈ (0, x1) ∪ (x1, x2) ∪ ... ∪ (xk, 1) ,

µ(0)
n (x) = µ(0)

n,p, x ∈ (xp, xp+1) , p = 0, k, (27)
u(j+1)

n (0) = u(j+1)
n (1) = 0,

[
u

(j+1)
n (x)

]
x=xp

= 0,
[

du
(j+1)
n (x)
dx

]

x=xp

= γpu
(j+1)
n (xp) , p = 1, k.





(matching
conditions)
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Whereupon, its solution possess a representation

u(j+1)
n (x) = A(j+1)

p,n sin
(√

µ
(0)
n,p (x− xp)

)
+

+ B(j+1)
p,n cos

(√
µ

(0)
n,p (x− xp)

)
−

−
x∫

xp

sin
(√

µ
(0)
n,p (x− ξ)

)

√
µ

(0)
n,p

F (j+1)
n (ξ) dξ, x ∈ [xp, xp+1) ,

p = 0, k − 1, B
(j+1)
0,n = 0,

u(j+1)
n (x) = A

(j+1)
k,n sin

(√
µ

(0)
n,k (1− x)

)
+

+

1∫

x

sin
(√

µ
(0)
n,k (x− ξ)

)

√
µ

(0)
n,k

F (j+1)
n (ξ) dξ, x ∈ [xk, 1] .

By combining (27) and the matching conditions we obtain the following
system for coe�cients A

(j+1)
p,n , B

(j+1)
p,n :

−A
(j+1)
p−1,nsin

(√
µ

(0)
n,p−1 (xp−xp−1)

)
−B

(j+1)
p−1,ncos

(√
µ

(0)
n,p−1 (xp−xp−1)

)
+

+ B(j+1)
p,n = −

xp∫

xp−1

sin
(√

µ
(0)
n,p−1 (xp − ξ)

)

√
µ

(0)
n,p−1

F (j+1)
n (ξ) dξ,

−A
(j+1)
p−1,n

√
µ

(0)
n,p−1 cos

(√
µ

(0)
n,p−1 (xp − xp−1)

)
+ B

(j+1)
p−1,n

√
µ

(0)
n,p−1×

× sin
(√

µ
(0)
n,p−1 (xp−xp−1)

)
+

√
µ

(0)
n,pA

(j+1)
p,n −γpB

(j+1)
p,n =

= −
xp∫

xp−1

cos
(√

µ
(0)
n,p−1 (xp − ξ)

)
F (j+1)

n (ξ) dξ,

p = 1, k−1, B
(j+1)
0,n =0,

(28)

−A
(j+1)
k−1,n sin

(√
µ

(0)
n,k−1 (xk − xk−1)

)
−

−B
(j+1)
k−1,n cos

(√
µ

(0)
n,k−1 (xk − xk−1)

)
+

+ A
(j+1)
k,n sin

(√
µ

(0)
n,k (1− xk)

)
=
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= −
1∫

xk

sin
(√

µ
(0)
n,k (xk − ξ)

)

√
µ

(0)
n,k

F (j+1)
n (ξ) dξ−

−
xk∫

xk−1

sin
(√

µ
(0)
n,k−1 (xk − ξ)

)

√
µ

(0)
n,k−1

F (j+1)
n (ξ) dξ,

−A
(j+1)
k−1,n

√
µ

(0)
n,k−1 cos

(√
µ

(0)
n,k−1 (xk − xk−1)

)
+

+ B
(j+1)
k−1,n

√
µ

(0)
n,k−1 sin

(√
µ

(0)
n,k−1 (xk − xk−1)

)
−

−A
(j+1)
k,n

[√
µ

(0)
n,k cos

(√
µ

(0)
n,k (1− xk)

)
+

+γk sin
(√

µ
(0)
n,k (1− xk)

)]
= −

1∫

xk

cos
(√

µ
(0)
n,k (xk − ξ)

)
F (j+1)

n (ξ) dξ−

−
xk∫

xk−1

cos
(√

µ
(0)
n,k−1 (xk−ξ)

)
F (j+1)

n (ξ) dξ+

+ γk

1∫

xk

sin
(√

µ
(0)
n,k (xk − ξ)

)

√
µ

(0)
n,k

F (j+1)
n (ξ)dξ.

The left-hand-side matrix of this system of linear algebraic equations is de-
generate since it coincides with that of the system (26). For the solution of
(28) to exist it is necessary and su�cient that the vector composed from the
right-hand-side coe�cients is orthogonal to the eigenvector of the conjugate
matrix.

Let us introduce the following vectors

~Y (j+1)
n =





A
(j+1)
0,n , A

(j+1)
1,n , B

(j+1)
1,n︸ ︷︷ ︸, ..., A

(j+1)
k−1,n, B

(j+1)
k−1,n︸ ︷︷ ︸

, A
(j+1)
k,n





T

,

~H(j+1)
n =

{
~H(j+1)

n,p

}T

p=1,k
,

~H(j+1)
n,p =

{
−

xp∫

xp−1

sin
(√

µ
(0)
n,p−1 (xp − ξ)

)

√
µ

(0)
n,p−1

F (j+1)
n (ξ) dξ,

−
xp∫

xp−1

cos
(√

µ
(0)
n,p−1 (xp − ξ)

)
F (j+1)

n (ξ) dξ

}
,
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p = 1, k−1,

~H
(j+1)
n,k =




−

1∫

xk

sin
(√

µ
(0)
n,k (xk − ξ)

)

√
µ

(0)
n,k

F (j+1)
n (ξ) dξ −

−
xk∫

xk−1

sin
(√

µ
(0)
n,k−1 (xk − ξ)

)

√
µ

(0)
n,k−1

F (j+1)
n (ξ) dξ,

−
1∫

xk

cos
(√

µ
(0)
n,k (xk − ξ)

)
F (j+1)

n (ξ) dξ−

−
xk∫

xk−1

cos
(√

µ
(0)
n,k−1 (xk − ξ)

)
F (j+1)

n (ξ) dξ+

+γk

1∫

xk

sin
(√

µ
(0)
n,k (xk − ξ)

)

√
µ

(0)
n,k

F (j+1)
n (ξ) dξ





and denote the matrix of the system (26) as Dn. Then systems (26), (28) could
be presented in the matrix-vector form

Dn
~Y (0)

n = ~0, Dn
~Y (j+1)

n = ~H(j+1)
n , j = 0, 1, ... . (29)

If ~ZT
n is the eigenvector (row) that corresponds to the null eigenvalue of the

matrix Dn, i.e.
~ZT

n Dn = ~0,

then the necessary and su�cient condition of the solvability of system (29) is
~ZT

n
~H(j+1)

n = 0. (30)
It is easy to show that condition (30) is equivalent to the integral condition
having the form

1∫

0

F (j+1)
n (x) u(0)

n (x) dx = 0. (31)

Next we wind from (31) or, equivalently, from (30) that

λ(j+1)
n =−

j∑

p=1

λ(j−p+1)
n

1∫

0

u(0)
n (x) u(p)

n (x) dx+

+

1∫

0

u(0)
n (x)

[
ψ′ (x)−ψ̂′ (x)

]
u(j)

n (x) dx.

(32)

Since the solution of system of linear algebraic equations (29) is found with the
accuracy up to a constant factor, u

(j+1)
n (x) is found with the same accuracy.
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The constant factor can be calculated from the orthogonality condition (22),
and formula (32) is transformed to (21).

The aforementioned results give us all information necessary to apply FD-
method to some concrete problem. They however are not so useful to get the
su�cient conditions of its convergence and the corresponding accuracy esti-
mates (both a-priory and a-posteriori).

To get those estimates we propose an alternative approach. Relying on the
completeness of the orthonormalized system

{
u

(0)
n (x)

}∞
n=1

in L2 [0, 1], we write
down the solution to problem (20) in the following form:

u(j+1)
n (x) = −

∞∑

p=1
p6=n

1∫

0

F (j+1)
n (ξ) u(0)

p (ξ) dξ
u

(0)
p (x)

λ
(0)
n − λ

(0)
p

.

It lead us to the estimate∥∥∥u(j+1)
n

∥∥∥ ≤ Mn

∥∥∥F (j+1)
n

∥∥∥ ≤

≤ Mn

{
j∑

l=1

∣∣∣λ(j+1−l)
n

∣∣∣
∥∥∥u(l)

n

∥∥∥+
∥∥∥
[
ψ′ (x)−ψ̂′ (x)

]
u(j)

n (x)
∥∥∥
}

,
(33)

where

Mn = max

{
1

λ
(0)
n − λ

(0)
n−1

,
1

λ
(0)
n+1 − λ

(0)
n

}
. (34)

Let us introduce a function

ω
(
ψ′

)
= max

0≤p≤k
max

x∈[xp,xp+1]

∣∣∣∣∣∣∣

xp+1∫

xp

ψ′ (x)− ψ′ (t)
xp+1 − xp

dt

∣∣∣∣∣∣∣
.

Then by substituting (21) into (33) we receive the sequence of estimates
∥∥∥u(j+1)

n

∥∥∥ ≤ Mn

{
j∑

l=1

∣∣∣λ(j+1−l)
n

∣∣∣
∥∥∥u(l)

n

∥∥∥ + ω
(
ψ′

) ∥∥∥u(j)
n

∥∥∥
}

,

∣∣∣λ(j+1)
n

∣∣∣ ≤ ω
(
ψ′

) ∥∥∥u(j)
n

∥∥∥ ,

(35)

that lead to the following inequality
∥∥∥u(j+1)

n

∥∥∥ ≤ Mnω
(
ψ′

) j∑

l=0

∥∥∥u(j−l)
n

∥∥∥
∥∥∥u(l)

n

∥∥∥ . (36)

The solution of inequality (36) be obtained via the generating functions method.
It has a following form (see [24])

∥∥∥u(j+1)
n

∥∥∥ ≤
(
4Mnω

(
ψ′

))j+1 2
(2j + 1)!!
(2j + 4)!!

≤

≤ [4Mnω (ψ′)]j+1

(j + 2)
√

π (j + 1)
=

r̂j+1
n

(j + 2)
√

π (j + 1)
.

(37)
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Inequality (37) permit us to get the corresponding inequality for the eigenvalue
from (35)

∣∣∣λ(j+1)
n

∣∣∣ ≤ ω
(
ψ′

)
r̂j
n 2

(2j − 1)!!
(2j + 2)!!

≤ ω
(
ψ′

) r̂j
n

(j + 1)
√

πj
. (38)

Using estimates (37), (38) one can easily deduce that the next statement is
correct
Theorem 3. Let

σ (x) =
k∑

p=1

γpH (x− xp) + ψ (x) (39)

and the following condition holds true

r̂n
def
= 4Mnω

(
ψ′

)
< 1,

then the FD-method for the Sturm�Liouville problem (18), (39) converges super-
exponentially. Moreover the following error estimates are valid:

∥∥∥un − m
un

∥∥∥ ≤
∥∥∥∥∥∥
un −

m∑

j=0

u(j)
n

∥∥∥∥∥∥
≤ r̂m+1

n

(m + 2)
√

π (m + 1) (1− r̂n)
, (40)

∣∣∣∣λn −
m
λn

∣∣∣∣ ≤
∣∣∣∣∣∣
λn −

m∑

j=0

λ(j)
n

∣∣∣∣∣∣
≤ ω (ψ′) r̂m

n

(m + 1)
√

πm (1− r̂n)
. (41)

Remark 3.1. In order to to understand the behavior of r̂n with respect to n
one can use (34) and theorem 2. They lead to the estimates on the denominator
from (34)

λ(0)
n − λ

(0)
n−1 = π2 (2n− 1)+

+ 2
k∑

p=1

γp

[
sin2 (nπxp)− sin2 ((n− 1)πxp)

]
+ R(2)

n −R
(2)
n−1 ≥

≥ π2 (2n− 1)− 4
k∑

p=1

|γp| −
2

∑k
p=1 |γp|
2
√

π

[
r̂n

1− r̂n
+

r̂n−1

1− r̂n−1

]
,

λ
(0)
n+1 − λ(0)

n ≥ π2 (2n + 1)− 4
k∑

p=1

|γp| −
∑k

p=1 |γp|√
π

[
r̂n+1

1− r̂n+1
+

r̂n

1− r̂n

]
,

These estimates are valid under condition (9), i.e. estimates (40), (41) and
(10), (11) from the theorem 2 are valid under the same restriction on n. How-
ever, r̂n has a reserve of easing the restrictions on n up to its complete exclusion.
This reserve caused by the occurrence of factor ω (ψ′) in r̂n that will relax the
restrictions on n provided that function ψ′ (x) is, at least, piecewise continuous
function from Q0 [0, 1], i.e. ψ (x) ∈ C [0, 1] ∩Q1 [0, 1].
Remark 3.2. If the conditions of theorem 3 are met then the series

un (x, t) =
∑∞

j=0 u
(j)
n (x) tj, λn (t) =

∑∞
j=0 λ

(j)
n tj are absolutely convergent
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for |t| ≤ 1. Moreover they approximate the exact solution of given problem
un (x) = un (x, 1) =

∑∞
j=0 u

(j)
n (x), λn = λn (1) =

∑∞
j=0 λ

(j)
n .

Example 3.1. We applied the FD-method to problem (2) with the potential
q (x) = δ

(
x− 1

2

)
+ 100x in the following cases: a) ψ̂′(x) ≡ 0, k = 1, x1 = 1

2 ,
γ1 = 1; b) the interval (0, 1) is partitioned into two equal subintervals (ψ̂′(x) 6≡
0, k = 1, x1 = 1

2 ,γ1 = 1); c) the interval (0, 1) is partitioned into four equal

Tabl. 2. Convergence of FD-method for eigenvalue λ1

m a) ψ̂′(x) ≡ 0, k = 1, b) ψ̂′(x) 6≡ 0, k = 1, c) ψ̂′(x) 6≡ 0, k = 3,∣∣∣∣λex
1 −

m

λ1

∣∣∣∣
∣∣∣∣λex

1 −
m

λ1

∣∣∣∣
∣∣∣∣λex

1 −
m

λ1

∣∣∣∣
0 39.79669103 2.270616222 2.168801379 · 10−1

1 10.20330897 8.341737964 · 10−1 6.083140294 · 10−2

2 2.135818380 1.901098870 · 10−2 5.300909434 · 10−5

3 2.135818380 3.157060409 · 10−3 4.333553271 · 10−6

4 1.226920389 2.930165507 · 10−4 1.367746278 · 10−8

5 1.226920389 2.102813177 · 10−5 5.850330410 · 10−10

6 9.509541771 · 10−1 4.743628885 · 10−6 3.835005760 · 10−12

7 9.509541771 · 10−1 5.240882809 · 10−8 9.702842701 · 10−14

8 8.506978298 · 10−1 7.286716281 · 10−8 1.229092383 · 10−15

9 8.506978298 · 10−1 2.930256199 · 10−9 1.865391361 · 10−17

10 8.276761403 · 10−1 1.032042190 · 10−9 4.064792983 · 10−19

11 8.276761403 · 10−1 1.038538699 · 10−10 3.423104476 · 10−21

12 8.508842593 · 10−1 1.221151730 · 10−11 1.238050539 · 10−22

13 8.508842593 · 10−1 2.481662360 · 10−12 3.497226425 · 10−25

14 9.094304891 · 10−1 8.479672332 · 10−14 3.323469489 · 10−26

15 9.094304891 · 10−1 4.980766446 · 10−14 1.068874105 · 10−28

16 1.000506593 1.155397490 · 10−15 7.886548397 · 10−30

17 1.000506593 8.676674901 · 10−16 9.000481917 · 10−32

18 1.125540512 6.964067548 · 10−17 1.660871600 · 10−33

19 1.125540512 1.270480995 · 10−17 4.098653028 · 10−35

20 1.288866993 2.045466355 · 10−18 2.760733186 · 10−37

subintervals (ψ̂′(x) 6≡ 0, k = 3, x1 = 1
4 , x2 = 1

2 , x3 = 3
4 , γ1 = 0, γ2 = 1, γ3 = 0).

We computed the exact eigenvalue (further denoted by λex
1 ) and its ap-

proximation (denoted by λ1) using the computer algebra system Maple 17.00
(Digits=100). The smallest exact eigenvalue of the problem, considered here,
is equal to

λex
1 ≈ 51.56855019480048558891973935119068439085.

The absolute errors of approximations
∣∣∣∣λex

1 −
m
λ1

∣∣∣∣ to smallest eigenvalue λ1 ob-

tained using the FD-method of rank m = 1, 20 in the cases a)-c) are presented
in table 2.

One can see from the table 2 that the simplest form of the FD-method
à) (with ψ̂′(x) ≡ 0) for the �rst eigenvalue is divergent while the FD-method
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converges when the interval is partitioned into two or more subintervals. The
convergence rate is doubled with increase in the number of subdivision points
(from one to three).
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IMPLICIT ITERATION METHOD OF SOLVING
LINEAR EQUATIONS WITH APPROXIMATING
RIGHT-HAND MEMBER AND APPROXIMATELY

SPECIFIED OPERATOR

Oleg Matysik

Ðåçþìå. Ó ãiëüáåðòîâîìó ïðîñòîði äîñëiäæó¹òüñÿ íåÿâíèé ìåòîä iòåðà-
öié ðîçâ'ÿçóâàííÿ ëiíiéíèõ ðiâíÿíü ç íåíåãàòèâíèì ñàìîñïðÿæåíèì i íåñà-
ìîñïðÿæåíèì îáìåæåíèì îïåðàòîðîì. Äîâåäåíî çáiæíiñòü ìåòîäó ó âè-
ïàäêó àïðiîðíîãî âèáîðó ÷èñëà iòåðàöié ó âèõiäíié íîðìi ãiëüáåðòîâîãî
ïðîñòîðó, â ïðèïóùåííi, ùî ïîõèáêè ¹ íå òiëüêè â ïðàâié ÷àñòèíi ðiâíÿííÿ,
à é â îïåðàòîði. Îòðèìàíî îöiíêè ïîõèáêè i àïðiîðíèé ìîìåíò çóïèíêè.
Abstract. The article deals with the study of the implicit method of solving
linear equations with nonnegative self-adjoint and nonself-adjoint limited op-
erator in Hilbert space. It aims at proving the method convergence in case of a
priori choice of the number of iterations in the basic norm of Hilbert space on
the assumption of existing errors not only in the equation right-hand member
but in the operator as well. Error estimation and a priori stop moment are
obtained.

1. Problem statement
Let H and F be Hilbert spaces and A ∈ £(H, F ), i. e. A is a linear

continuous operator functioning from H to F . It is assumed that zero belongs
to operator spectrum A, but it is not its characteristic constant. The following
equation is solved

Ax = y. (1)
The problem of searching for element x ∈ H by element y ∈ F is incorrect,

for arbitrary small disturbances in the right-hand member y may result in
arbitrary disturbances in solution.

Let us suppose that the accurate development x∗ ∈ H of equation (1) exists
and is the unique one. We shall search for it with the help of iteration process

(E + α2A2k)xn+1 = (E − αAk)2xn + 2αAk−1y, x0 = 0, k ∈ N, (2)
where E is an identity operator while α is an iteration parameter.

We consider that operator A and the right-hand member of equation (1) are
speci�ed approximately, i.e. approximation yδ, ‖y − yδ‖ ≤ δ is known instead
of y, and operator Aη, ‖A−Aη‖ ≤ η is known instead of operator A. Suppose
0 ∈ Sp(Aη), Sp(Aη) ⊆ [0,M ]. Then method (2) will look

(E + α2A2k
η )xn+1 = (E − αAk

η)
2xn + 2αAk−1

η yδ, x0 = 0, k ∈ N. (3)

Key words. Regularization, iteration method, incorrect problem, Hilbert space, self-
conjugated and non self-conjugated approximately operator.
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The case of approximate right-member of equation yδ and faithful operator
A for the method under consideration (3) has been studied in monograph [1]. It
deals with a priori and a posteriori choice of a regularization parameter and the
case of non-unique solution of problem (1), as well as with proving the method
convergence in Hilbert space energy norm.

Let us prove the method convergence (3) in case of a priori choice of a reg-
ularization parameter in solving the equation Aηx = yδ with the approximate
operator Aη and the approximate right-hand member yδ and obtain a priori
estimated errors.

2. The case of self-adjoint nonnegative operators
Let H equal F , A = A∗ ≥ 0, Aη = A∗η ≥ 0, Sp(Aη) ⊆ [0,M ], 0 < η ≤ η0.

The iteration method (3) will be presented in the following way:

xη = gn(Aη)yδ, (4)

where gn(λ) = λ−1

[
1− (1− αλk)2n

(1 + α2λ2k)n

]
. There have been obtained in [1-2] the

conditions for functions gn(λ) with α > 0:

sup
0≤λ≤M

|gn(λ)| ≤ γn1/k, γ = 2kα1/k, n > 0, (5)

sup
0≤λ≤M

λs|1− λgn(λ)| ≤ γsn
−s/k, (n > 0), 0 < s < ∞, γs =

( s

2kαe

)s/k
, (6)

(here s is the degree of source representability of exact solution x∗ = Asz, s >
0, ‖z‖ ≤ ρ),

sup
0≤λ≤M

|1− λgn(λ)| ≤ γ0, γ0 = 1, n > 0, (7)

sup
0≤λ≤M

λ|1− λgn(λ)| → 0, n →∞. (8)

The following is valid:

Lemma 1. Let A = A∗ ≥ 0, Aη = A∗η ≥ 0, ‖Aη − A‖ ≤ η, Sp(Aη) ⊆ [0,M ],
(0 < η ≤ η0), α > 0 and conditions (7), (8) be satis�ed. Then ‖Gnηv‖ → 0
at n → ∞, η → 0 ∀v ∈ N(A)⊥ = R(A), where N(A) = {x ∈ H|Ax = 0} and
Gnη = E −Aηgn(Aη).

Proof. We have
‖Gnηv‖ = ‖(E −Aηgn(Aη))v‖ =

=

∥∥∥∥∥∥

M∫

0

(1− λgn(λ))dEλv

∥∥∥∥∥∥
=

∥∥∥∥∥∥

M∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
≤

≤
∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
+

∥∥∥∥∥∥

M∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
.
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∥∥∥∥∥∥

M∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
≤ qn(ε)

∥∥∥∥∥∥

M∫

ε

dEλv

∥∥∥∥∥∥
→ 0, n →∞,

as for λ ∈ [ε,M ]
(1− αλk)2

(1 + α2λ2k)n
≤ q(ε) < 1.

∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

ε∫

0

dEλv

∥∥∥∥∥∥
= ‖Eεv‖ → 0, ε → 0

owing to integrated spectrum properties [3-4]. Consequently, ‖Gnηv‖ → 0 at
n →∞, η → 0. Lemma 1 is proved. 2

The convergence condition for method (3) is given by
Theorem 1. Let A = A∗ ≥ 0, Aη = A∗η ≥ 0, ‖Aη − A‖ ≤ η, Sp(Aη) ⊆ [0,M ],
(0 < η ≤ η0), α > 0, y ∈ R(A), ‖y − yδ‖ ≤ δ and conditions (5), (7), (8)
be satis�ed. Let us choose parameter n = n(δ, η) in approximation (3) so that
(δ + η)n1/k(δ, η) → 0 at n(δ, η) → ∞, δ → 0, η → 0. Then xn(δ,η) → x∗ at
δ → 0, η → 0.

Proof. According to (4) we have xn = gn(Aη)yδ. Then
xn − x∗ = gn(Aη)yδ − x∗ = −Gnηx

∗ + Gnηx
∗ + gn(Aη)yδ − x∗ =

= −Gnηx
∗+(E−Aηgn(Aη))x∗+gn(Aη)yδ−x∗ = −Gnηx

∗+gn(Aη)(yδ−Aηx
∗).

Condition (5) being as follows ‖gn(Aη)‖ ≤ sup
0≤λ≤M

|gn(λ)| ≤ γn1/k, then

‖yδ −Aηx
∗‖ ≤ ‖yδ − y‖+ ‖y −Aηx

∗‖ =

= ‖yδ − y‖+ ‖Ax∗ −Aηx
∗‖ ≤ δ + ‖A−Aη‖‖x∗‖ ≤ δ + η‖x∗‖.

Consequently,
‖xn(δ,η)−x∗‖ ≤ ‖Gnηx

∗‖+‖gn(Aη)(yδ−Aηx
∗)‖ ≤ ‖Gnηx

∗‖+γn1/k(δ+η‖x∗‖).
As appears from Lemma 1, ‖Gnηx

∗‖ → 0 at n → ∞, η → 0, and according
to the condition of Theorem 1, n1/k(δ + η) → 0 at δ → 0, η → 0. Thus,
‖xn(δ,η) − x∗‖ → 0, δ → 0, η → 0. Theorem 1 is proved. 2

Theorem 2. Let A = A∗ ≥ 0, Aη = A∗η ≥ 0, ‖Aη − A‖ ≤ η, Sp(Aη) ⊆ [0,M ],
(0 < η ≤ η0), α > 0, y ∈ R(A), ‖yδ − y‖ ≤ δ and conditions (5), (6) be
satis�ed. If the exact solution is source representable, i.e. x∗ = Asz, s > 0,
‖z‖ ≤ ρ, then error estimation is equitable
‖xn(δ,η) − x∗‖ ≤ γ0csη

min(1,s)ρ + γsn
−s/kρ + γn1/k(δ + η‖x∗‖), 0 < s < ∞.

Proof. Using the source representability of the exact solution we have
‖Gnηx

∗‖ = ‖GnηA
sz‖ ≤ ‖Gnη(As −As

η)z‖+ ‖GnηA
s
ηz‖ ≤

≤ γ0csη
min(1,s)ρ + γsn

−s/kρ,
(9)
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as according to Lemma 1.1 [5, p. 91] ‖As
η−As‖ ≤ csη

min(1,s), cs = const, (cs ≤ 2
for 0 < s ≤ 1). Then
‖xn(δ,η)−x∗‖ ≤ γ0csη

min(1,s)ρ+γsn
−s/kρ+γn1/k(δ+η‖x∗‖), 0 < s < ∞. (10)

Theorem 2 is proved. 2

If the right side of estimation (10) is minimized by n, we get the meaning of
a priori stop moment:

nopt =
[

sγsρ

γ (δ + ‖x∗‖η)

]k/(s+1)

= dsρ
k/(s+1) [δ + η‖x∗‖]−k/(s+1) ,

where ds =
(

sγs

γ

)k/(s+1)

=
( s

2k

)(s+k)/(s+1)
α−1e−s/(s+1). Consequently,

nopt =
( s

2k

)(s+k)/(s+1)
α−1e−s/(s+1)ρk/(s+1) [δ + η‖x∗‖]−k/(s+1) .

Let us substitute nopt in estimation (10) to get

‖xn(δ,η) − x∗‖opt ≤ γ0csη
min(1,s)ρ + γsρ

(
dsρ

k/(s+1)
)−s/k

(δ + η‖x∗‖)s/(s+1) +

+γ (δ + η‖x∗‖) d1/k
s ρ1/(s+1) (δ + η‖x∗‖)−1/(s+1) =

= γ0csη
min(1,s)ρ + (δ + η‖x∗‖)s/(s+1)

(
d−s/k

s γsρ
1/(s+1) + γd1/k

s ρ1/(s+1)
)

=

= γ0csη
min(1,s)ρ + ρ1/(s+1)c′s (δ + η‖x∗‖)s/(s+1) ,

where
c′s = d−s/k

s γs + γd1/k
s =

(
s1/(s+1) + s−s/(s+1)

)
γs/(s+1)γ1/(s+1)

s =

=
( s

2k

)s(1−k)/(k(s+1))
(1 + s)e−s/(k(s+1)).

Hence
‖xn(δ,η) − x∗‖opt ≤ csη

min(1,s)ρ+

+
( s

2k

)s(1−k)/(k(s+1))
(1 + s)e−s/(k(s+1))ρ1/(s+1) (δ + η‖x∗‖)s/(s+1) .

Note. Optimal error estimation does not depend on α, whereas nopt depends
on α. Since there are no contingencies concerning α upwards (α > 0), it is
possible to choose α so as to make nopt = 1. For that it is enough to take

αopt =
( s

2k

)(s+k)/(s+1)
e−s/(s+1)ρk/(s+1) [δ + η‖x∗‖]−k/(s+1) .

3. The case of nonself-adjoint operators
In case of nonself-adjoint problem iteration method (3) will be presented as

[
E + α2(A∗ηAη)2k

]
xn+1 =

[
E − α(A∗ηAη)k

]2
xn+

+2α(A∗ηAη)k−1A∗ηyδ, x0 = 0, k ∈ N.
(11)
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It can be written as follows:
xn = gn(A∗ηAη)A∗ηyδ. (12)

It follows from Lemma 1 that

Lemma 2. Let A,Aη ∈ £(H,F ), ‖Aη − A‖ ≤ η, ‖Aη‖2 ≤ M,α > 0 and
conditions (7), (8) be satis�ed. Then

‖Knηv‖ → 0 at n →∞, η → 0, ∀v ∈ N(A)⊥ = R(A∗), (13)

‖K̃nηz‖ → 0 at n →∞, η → 0, ∀z ∈ N(A∗)⊥ = R(A), (14)
where Knη = E −A∗ηAηgn(A∗ηAη), K̃nη = E −AηA

∗
ηgn(AηA

∗
η).

Lemma 2 is used for proving the following theorem.

Theorem 3. Let A,Aη ∈ £(H, F ), ‖A−Aη‖ ≤ η, ‖Aη‖2 ≤ M , (0 < η ≤ η0),
α > 0, y ∈ R(A), ‖yδ − y‖ ≤ δ and conditions (5), (7), (8) be satis�ed.
Parameter n = n(δ, η) is chosen so as to get

(δ + η)2n1/k(δ, η) → 0 at n(δ, η) →∞, δ → 0, η → 0. (15)
Then xn(δ,η) → x∗ at δ → 0, η → 0.

Proof. For approximation error xn(δ,η) we have
xn(δ,η) − x∗ = −Knηx

∗ + gn(A∗ηAη)A∗η(yδ −Aηx
∗). (16)

We see ‖gn(A∗ηAη)A∗η‖ = ‖gn(A∗ηAη)(A∗ηAη)1/2‖ ≤ γ∗n1/(2k), where

γ∗ = sup
n>0

(
n−1/(2k) sup

0≤λ≤M
λ1/2|gn(λ)|

)
≤ 2k1/2α1/(2k) [1, p. 141].

Since ‖yδ−Aηx
∗‖ ≤ ‖yδ−y‖+‖y−Aηx

∗‖ = ‖yδ−y‖+‖Ax∗−Aηx
∗‖ ≤ δ+η‖x∗‖,

it follows that ‖gn(A∗ηAη)A∗η(yδ−Aηx
∗)‖ ≤ 2k1/2α1/(2k)n1/(2k)(δ+‖x∗‖η). That

is why
‖xn(δ,η) − x∗‖ ≤ ‖Knηx

∗‖+ ‖gn(A∗ηAη)A∗η(yδ −Aηx
∗)‖ ≤ ‖Knηx

∗‖+

+2k1/2α1/(2k)n1/(2k)(δ + η‖x∗‖).
Let us show that ‖Knηx

∗‖ → 0 at n →∞, η → 0. Actually,

‖Knηx
∗‖ =

∥∥(E −A∗ηAηgn(A∗ηAη))x∗
∥∥ =

=

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

0

(1− λgn(λ))dEλx∗

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥∥
≤

≤
∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥
+

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥∥
.
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Then∥∥∥∥∥∥∥

‖A∗ηAη‖∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥∥
≤ qn(ε)

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

ε

dEλx∗

∥∥∥∥∥∥∥
→ 0, n →∞,

as for λ ∈ [
ε,

∥∥A∗ηAη

∥∥]
, (1− αλk)2

1 + α2λ2k
≤ q(ε) < 1.

∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

ε∫

0

dEλx∗

∥∥∥∥∥∥
= ‖Eεx

∗‖ → 0, ε → 0

owing to integrated spectrum properties [3�4].
From statement (15) n1/k(δ + η)2 → 0 at n → ∞, δ → 0, η → 0. Hence

2k1/2α1/(2k)n1/(2k) (δ + η ‖x∗‖) → 0, n →∞, δ → 0, η → 0. Thus,∥∥xn(δ,η) − x∗
∥∥ → 0, n →∞, δ → 0, η → 0.

Theorem 3 is proved. 2

The following is valid
Theorem 4. Let A, Aη ∈ £(H, F ), ‖A−Aη‖ ≤ η, ‖Aη‖2 ≤ M , (0 < η ≤ η0),
α > 0, y ∈ R(A), ‖yδ − y‖ ≤ δ. If the exact solution can be represented
as x∗ = |A|sz, s > 0, ‖z‖ ≤ ρ, |A| = (A∗A)1/2 and conditions (5), (6) are
satis�ed, then estimation error is real

∥∥xn(δ,η) − x∗
∥∥ ≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ+

+γs/2n
−s/(2k)ρ + 2k1/2α1/(2k)n1/(2k) (δ + ‖x∗‖ η) , 0 < s < ∞.

Proof. In case of sourcewise representable exact solution x∗ = |A|sz =
(A∗A)s/2 z owing to (6) we get sup

0≤λ≤M
λs/2|1 − λgn(λ)| ≤ γs/2n

−s/(2k), where

γs/2 =
( s

4kαe

)s/(2k)
. Then

‖Knη|Aη|sz‖ =
∥∥|Aη|s

[
E −A∗ηAηgn

(
A∗ηAη

)]
z
∥∥ =

=
∥∥∥
(
A∗ηAη

)s/2 [
E −A∗ηAηgn

(
A∗ηAη

)]
z
∥∥∥ ≤ γs/2n

−s/(2k)ρ.

Hence
‖Knηx

∗‖ = ‖Knη|A|sz‖ = ‖Knη (|Aη|s − |A|s) z‖+

+ ‖Knη|Aη|sz‖ ≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ + γs/2n
−s/(2k)ρ,

since according to [5, p. 92] we have ‖|Aη|s − |A|s‖ ≤ cs (1 + | ln η|) ηmin(1,s),
cs = const, (cs ≤ 2 for 0 < s ≤ 1). Following (16)

∥∥xn(δ,η) − x∗
∥∥ ≤ ‖Knηx

∗‖+ γ∗n1/(2k) (δ + ‖x∗‖ η) = ‖Knηx
∗‖+

+ 2k1/2α1/(2k)n1/(2k) (δ + ‖x∗‖ η) ≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ+

+ γs/2n
−s/(2k)ρ + 2k1/2α1/(2k)n1/(2k) (δ + ‖x∗‖ η) , 0 < s < ∞.

(17)
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Theorem 4 is proved. 2

By minimizing the right-hand member (17) at n, the meaning of a priori stop
moment is obtained:

nopt =
(

sγs/2

γ∗

)2k/(s+1)

ρ2k/(s+1) (δ + ‖x∗‖ η)−2k/(s+1) =

= (4k)−(s+k)/(s+1)s(2k+s)/(s+1)e−s/(s+1)α−1ρ2k/(s+1) (δ + ‖x∗‖ η)−2k/(s+1) .

The substitution of nopt into estimation (17) allows obtaining the optimal
error estimation for the method of iterations (11)

∥∥xn(δ,η) − x∗
∥∥

opt
≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ+

+ c′′sρ
1/(s+1) (δ + ‖x∗‖ η)s/(s+1) , 0 < s < ∞,

where
c′′s =

(
s1/(s+1) + s−s/(s+1)

)
γ

s/(s+1)
∗ γ

1/(s+1)
s/2 =

= ss(1−2k)/(2k(s+1))(s + 1)(4k)s(k−1)/(2k(s+1))e−s/(2k(s+1)).

To sum it up,∥∥xn(δ,η) − x∗
∥∥

opt
≤ cs (1 + | ln η|) ηmin(1,s)ρ + ss(1−2k)/(2k(s+1))(s + 1)×

×(4k)s(k−1)/(2k(s+1))e−s/(2k(s+1))ρ1/(s+1) (δ + ‖x∗‖ η)s/(s+1) , 0 < s < ∞.
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ON THE BOUNDARY INTEGRAL EQUATIONS METHOD
FOR EXTERIOR BOUNDARY VALUE PROBLEMS

FOR INFINITE SYSTEMS OF ELLIPTIC
EQUATIONS OF SPECIAL KIND

Yuriy Muzychuk

Ðåçþìå. Â òðèâèìiðíèõ îáìåæåíèõ îáëàñòÿõ ç ëiïøèöåâîþ ìåæåþ ðîç-
ãëÿíóòî çîâíiøíi ãðàíè÷íi çàäà÷i äëÿ íåñêií÷åííèõ ñèñòåì åëiïòè÷íèõ
ðiâíÿíü ñïåöiàëüíîãî òðèêóòíîãî âèãëÿäó çi çìiííèìè êîåôiöi¹íòàìè.
Ñôîðìóëüîâàíî âàðiàöiéíi ïîñòàíîâêè çàäà÷ Äiðiõëå, Íåéìàíà òà Ðîáiíà
òà âñòàíîâëåíî ¨õíþ êîðåêòíiñòü ó âiäïîâiäíèõ ïðîñòîðàõ Ñîáîë¹âà. Çà
äîïîìîãîþ ââåäåíîãî ïîíÿòòÿ q-çãîðòêè îòðèìàíî àíàëîãè ïåðøî¨ òà äðó-
ãî¨ ôîðìóë Ãðiíà òà ïîáóäîâàíî iíòåãðàëüíi çîáðàæåííÿ ðîçâ'ÿçêiâ ðîçãëÿ-
íóòèõ çàäà÷ ó âèïàäêó ñòàëèõ êîåôiöi¹íòiâ. Äîñëiäæåíî âëàñòèâîñòi iíòåã-
ðàëüíèõ îïåðàòîðiâ òà êîðåêòíiñòü îòðèìàíèõ ñèñòåì ãðàíè÷íèõ iíòåã-
ðàëüíèõ ðiâíÿíü.
Abstract. Boundary value problems for in�nite triangular systems of ellip-
tic equations with variable coe�cients are considered in exterior 3d Lipschitz
domains. Variational formulations of Dirichlet, Neumann and Robin prob-
lems are received and their well-posedness in corresponding Sobolev spaces
is established. Via the introduced q-convolution the analogues of the �rst
and the second Green's formulae are obtained and integral representations
of the generalized solutions for formulated problems in the case of constant
coe�cients are built. We investigate the properties of integral operators and
well-posedness of received systems of boundary integral equations.

1. Introduction
The method of boundary integral equations (BIEs) can be applied to a wide

class of boundary value problems (BVPs) for elliptic partial di�erential equa-
tions (PDEs). Theoretical aspects of this method have been well investigated in
the literature, see, e.g.,[1, 2], and the references therein. The main advantage
of the BIEs method is the reduction by one of the dimension of the prob-
lem by switching to unknown functions that are de�ned only on the domain's
boundary. It is particularly suited for exterior problems in unbounded domains.
Numerous engineering applications con�rm the e�ciency of this method.

In the case of initial-boundary value problems for evolution equations, the
BIEs method can be used both for the BVP investigations and for their ef-
fective numerical solution, see, e.g.,[3, 4, 5, 6]. But since the time and space
variables are intertwined in the kernel of boundary integral operators it makes
the application of this method more complicated. Therefore when solving the

Key words. Boundary value problems; boundary integral equations; elliptic equation; in�-
nite system; variational formulation.
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BIEs that depend on the time and space variables, besides the Galerkin or col-
location methods, specialized approaches for consideration of the time variable
are used. Such composite methods have been studied in the works cited above.
They have certain characteristics that de�ne the features of the algorithm im-
plementation. For instance, usage of the so-called Convolution Quadrature
method [5] or the Laguerre transform of the time variable [7, 8] leads to solving
sequences of BIEs.

In [9] the BIEs method was used for �nding solutions of interior BVPs for
in�nite triangular systems which one could obtain from evolution equations by
the Laguerre transform in the time domain. The idea of this method lies in the
generalization of the concept of the potential on in�nite sequences of functions
that depend only on the space variables. Herewith the convolutions of the
Cauchy data of the unknown solution with fundamental solution of the in�nite
system and its normal derivative are used. Application of such convolution of
the in�nite sequences to the particular problem leads to a sequence of BIEs
that has he same operator of the left-hand side and the expression in the right-
hand side contains solutions of the previous BIEs. In this paper we extend this
approach for exterior problems.

Traditionally the BIEs method is used for BVPs with constant coe�cients,
since in case of variable coe�cients PDE's fundamental solutions are generally
not explicitly available. Still on the stage of investigation of the well-posedness
of BVPs we will consider a system with variable coe�cients. Note that such
problems can be treated as some generalization of BVPs that arise as a result
of the application of the Laguerre transform to the non-stationary problems.

The paper is organized as follows. In Section 2 we formulate the Dirichlet,
Neumann and Robin BVPs for some kind of in�nite triangular system consist-
ing of elliptic PDEs with variable coe�cients. We consider these problems in
appropriate Sobolev spaces and show their well-posedness. Then we introduce
the notion of sequences and a new operation on them - the q-convolution of
sequences. In this section we also consider variational formulations of the cor-
responding BVPs and arrive at the analogues of the �rst and the second Green's
formulae. In Section 4 we obtain the integral representation of the solution of
the BVPs with constant coe�cients and establish a relationship between the
Cauchy data of some generalized solution and corresponding BIEs which we
study in the following Section 5.

2. Formulation of the BVPs and basic relations
Let Ω ⊂ R3 be a bounded and simply connected domain with Lipschitz

boundary Γ and Ω+ := R3 \ Ω be an exterior domain. We consider an in�nite
system in Ω+





Pu0 = f0 ,
c1,0u0 + Pu1 = f1 ,
c2,0u0 + c2,1u1 + Pu2 = f2 ,

. . . . . . . . . . .
ck,0u0 + ck,1u1 + ... + ck,k−1uk−1 + Puk = fk ,

. . . . . . . . . . . . .

(1)
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where u0, u1, ..., uk, ... are unknown functions, ci,j (i, j ∈ N0 := N ∪ {0}) are
some given measurable and bounded in Ω+ functions with ci,j = 0 when j ≥ i;
fi (i ∈ N0) are given in Ω+ functions (functionals). In a formal second order
di�erential operator

(Pu)(x) := −
3∑

i,j=1

∂

∂xj

[
ai,j(x)

∂u(x)
∂xi

]
+ a0(x)u(x), x ∈ Ω+, (2)

the functions ai,j (i, j = 1, 2, 3) and a0 are measurable and bounded and satisfy
the conditions:

ai,j(x) = aj,i(x) (i, j = 1, 2, 3) for almost all x ∈ Ω+,

3∑

i,j=1

ai,j(x)ξiξj ≥ α
3∑

i=1

ξ2
i for arbitrary ξ1, ξ2, ξ3 ∈ R and almost all x ∈ Ω+,

(3)
with some constant α > 0 and

a0(x) > 0 for almost all x ∈ Ω+. (4)
Let the unit normal vector ν̄(x) = (ν1(x), ν2(x), ν3(x)) to Γ be directed out-
wards of Ω+. We investigate BVPs for system (1) that consist in �nding its
solutions that satisfy one of the following conditions on the boundary Γ

(i) Dirichlet condition:
uk|Γ = h̃k, k ∈ N0, (5)

(ii) Neumann condition:
∂ν̄uk|Γ = g̃k, k ∈ N0, (6)

(iii) Robin condition:
(∂ν̄uk − (bk,0u0 + bk,1u1 + ... + bk,k−1uk−1 + bk,kuk)) |Γ = g̃k, k ∈ N0, (7)

where h̃i, g̃i (i ∈ N0) are given functions (functionals) on Γ, bi,j ∈ L∞(Γ) (i, j ∈
N0) are given functions on Γ with bi,j = 0 when j > i ≥ 0, bi,i ≥ b̃i > 0, b̃i �
constants. In other words, we will consider the Dirichlet problem (1), (5), the
Neumann problem (1), (6) and the Robin problem (1), (7).

Note that the triangular form of system (1) allows us to consequently �nd the
unknown functions uk, k ∈ N0. This way when solving the k-th equation (k ≥
1) we assume that all solutions ui, 0 ≤ i ≤ k− 1, have been found on previous
steps and move them to the right hand side of the equation. For instance, we will
use this approach for the investigation of the well-posedness of the previously
mentioned BVPs. But it isn't suitable for their numerical solution with usage
of potentials since it requires additional calculation of volume potentials for
combinations of functions ui, 0 ≤ i ≤ k − 1, found on previous steps. The
method introduced in [9] regarding the interior problems for system (1) allows
us to avoid this and build an e�cient algorithm for their numerical solution.

We will use the Lebesgue space L2(Ω+) and Sobolev spaces H1(Ω+) and
H1

0 (Ω+) of real-valued scalar functions and dual to them H̃−1(Ω+) :=
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(
H1(Ω+)

)′
and H−1(Ω+) :=

(
H1

0 (Ω+)
)′
, correspondingly. Under D(Ω+) and

D′(Ω+) we will understand the spaces of all test functions and distributions on
them.

The following bilinear form

aΩ+(u, v) :=
∫

Ω+




3∑

i,j=1

ai,j(x)
∂u(x)
∂xi

∂v(x)
∂xj

+ a0(x)u(x)v(x)


 dx (8)

is well de�ned for any functions u, v ∈ H1(Ω+). It is known, see, e.g.,[10] and
[3, 6] for the case of constant coe�cients, one can consider aΩ+(·, ·) as an inner
product and introduce in H1(Ω+) a new norm |||u||| := (aΩ+(u, u))1/2, which
is equivalent to the usual one under the conditions (3) and (4). It is obvious
that this form is H1(Ω+)-elliptic.

In H1(Ω+) we will consider the following subspace
H1(Ω+, P ) :=

{
u ∈ H1(Ω+)

∣∣ Pu ∈ L2(Ω+)
}

, (9)
equipped with the norm

||u||H1(Ω+,P ) :=
(
||u||2H1(Ω+) + ||Pu||2L2(Ω+)

)1/2
. (10)

Let γ+
0 : H1(Ω+) → H1/2(Γ) be the trace operator and γ+

1 : H1(Ω+, P ) →
H−1/2(Γ) be the conormal derivative operator, which coincides with the conor-
mal derivative

∂ν̄u(x) :=
3∑

i,j=1

ai,j(x)
∂u(x)
∂xi

νj(x), x ∈ Γ

in case of functions from H2(Ω+), a su�ciently smooth boundary Γ and con-
tinuous on Ω+ coe�cients ai,j (i, j = 1, 2, 3). It is known ([1], Theorem 4.4),
that for functions u ∈ H1(Ω+, P ) and v ∈ H1(Ω+) the �rst Green's formula
holds

(Pu, v)Ω+ = aΩ+(u, v) + 〈γ+
1 u, γ+

0 v〉Γ. (11)
where (·, ·)Ω+ and 〈·, ·〉Γ denote the L2(Ω+) the inner product and the duality
between H−1/2(Γ) and H1/2(Γ), correspondingly. If u ∈ H1(Ω+) then the form
aΩ+(·, ·) can also be used for the de�nition of Pu ∈ H−1

0 (Ω+)

〈Pu, v〉Ω+,1,0 := aΩ+(u, v), ∀v ∈ H1
0 (Ω+). (12)

Here 〈·, ·〉Ω+,1,0 denotes the duality between H−1(Ω+) and H1
0 (Ω+).

Let X be an arbitrary linear space over the �eld of real numbers, Z � the set
of integers. By X∞ we denote a linear space of mappings u : Z→ X satisfying
u(k) = 0 when k < 0. For any element u ∈ X∞ we have uk ≡ (u)k := u(k), k ∈
Z, and will write it as u := (u0, u1, ..., uk, ...)>. Henceforth we will call elements
of X∞ sequences.

We will use triangular matrix operators C : (L2(Ω+))∞ → (L2(Ω+))∞ and
B : (L2(Γ))∞ → (L2(Γ))∞ that act as (Cu)k =

∑k
l=0 ck,l · (u)l, k ∈ N0, and

(Bu)k =
∑k

l=0 bk,l · (u)l, k ∈ N0, where ck,l and bk,l are the coe�cients of the
system (1) and of the Robin boundary condition (7), correspondingly.
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The following denotations of sequences are used
aΩ+(u,v) := (aΩ+(u0, v0), aΩ+(u1, v1), ...)>, u,v ∈ (H1(Ω+))∞,

and
(u,v)X := ((u0, v0)X , (u1, v1)X , ...)> , u,v ∈ (X)∞,

where X is some Hilbert space. In the same manner we will denote sequences
for duality pairing. For example, if u ∈ H−1/2(Γ) and v ∈ H1/2(Γ) we will
use the notation 〈u,v〉Γ := (〈u0, v0〉Γ, 〈u1, v1〉Γ, ...)>. Analogously, linear func-
tionals on sequences will be treated as component-wise. For the sequence
u ∈ (H1(Ω+))∞ we introduce the de�nition of an exterior trace as a sequence
of traces of its components, i.e. γ+

0 u := (γ+
0 u0, γ

+
0 u1, ...)> will be called an

exterior trace of the sequence u on the surface Γ. If u ∈ (H1(Ω+, P ))∞ the
sequence γ+

1 u := (γ+
1 u0, γ

+
1 u1, ...)> will denote an exterior conormal derivative

of the sequence u on the domain's boundary.
Taking into account previous de�nitions, generalized solutions of the Dirich-

let, Neumann and Robin BVPs for system (1) can be de�ned in the following
way.
De�nition 1. Let f ∈ (H−1(Ω))∞ and h̃ ∈ (H1/2(Γ))∞. Sequence u ∈
(H1(Ω+))∞ is called a generalized solution of the Dirichlet problem (1), (5)
if it satis�es the variational equality

aΩ+(u,v) + (Cu,v)Ω+ = 〈f,v〉Ω+,1,0, ∀v ∈ (H1
0 (Ω+))∞, (13)

and the boundary condition
γ+

0 u = h̃ on Γ. (14)

De�nition 2. Let f ∈ (H̃−1(Ω))∞ and g̃ ∈ (H−1/2(Γ))∞. Sequence u ∈
(H1(Ω+))∞ is called a generalized solution of the Neumann problem (1), (6) if
it satis�es the variational equality

aΩ+(u,v) + (Cu,v)Ω+ = 〈f,v〉Ω+,1 − 〈g̃, γ+
0 v〉Γ, ∀v ∈ (H1(Ω+))∞. (15)

Here 〈·, ·〉Ω+,1 denotes the duality between H̃−1(Ω+) and H1(Ω+).

De�nition 3. Let f ∈ (H̃−1(Ω))∞ and g̃ ∈ (H−1/2(Γ))∞. Sequence u ∈
(H1(Ω+))∞ is called a generalized solution of the Robin problem (1), (7) if it
satis�es the variational equality

aΩ+(u,v) + (Cu,v)Ω+ + 〈Bγ+
0 u, γ+

0 v〉Γ =

= 〈f,v〉Ω+,1 − 〈g̃, γ+
0 v〉Γ, ∀v ∈ (H1(Ω+))∞.

(16)

Theorem 1. The Dirichlet boundary value problem (1), (5) has a unique gen-
eralized solution.

Proof. The triangular form of the system (13) gives us opportunity to con-
sider its equations one after another and apply the same standard procedure for
investigation of variational equations (see, e.g. [2]) on each step of the proof.
Let's start with the �rst equation:

aΩ+(u0, v) = 〈f0, v〉Ω+,1,0, ∀v ∈ H1
0 (Ω+).
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According to the trace theorem for each function h̃k ∈ H1/2(Γ) there exists a
(non-unique) element ũk ∈ H1(Ω+) that γ+

0 ũk = h̃k. Therefore, we can obtain
the following variational equation for the di�erence u0 − ũ0 =: w ∈ H1

0 (Ω+)

aΩ+(w, v) = 〈f̃0, v〉Ω+,1,0 := 〈f0, v〉Ω+,1,0 − aΩ+(ũ0, v), ∀v ∈ H1
0 (Ω+). (17)

Due to the H1(Ω+)-ellipticity of the bilinear form and the boundedness of the
functional f̃0 on H1

0 (Ω+) according to the Lax-Milgram theorem this equation
has a unique solution w ∈ H1

0 (Ω+). This proves existence of the unique function
u0 ∈ H1(Ω+) that is a generalized solution of the �rst problem.

When considering the second variational equation we move the function u0

into the right hand side of the corresponding equation and for the di�erence
u1 − ũ1 =: w ∈ H1

0 (Ω+) we arrive at the variational equation that di�ers from
(17) only by the right hand side. Therefore, by using the previous considerations
we prove the assertion of the theorem for the solution u1. Obviously, acting
this way on each succeeding step we will obtain the variational equation (17)
with the following right hand side

〈f̃k, v〉Ω+,1,0 := 〈fk, v〉Ω+,1,0 −
k−1∑

i=0

(ck,iũi, v)Ω+ − aΩ+(ũk, v),

∀v ∈ H1
0 (Ω+), k ∈ N.

Here ui (i = 0, k − 1) are generalized solutions of the problems considered on
the previous steps. As can be seen f̃k ∈ H−1(Ω+). Hence, there exists a
unique generalized solution of the current BVP. Therefore, for each BVP with
an arbitrary index k ∈ N the generalized solution uk ∈ H1(Ω+) exists and is
unique. 2

Theorem 2. The Robin boundary value problem (1), (7) has a unique gener-
alized solution.

Proof. Let's consider the �rst equation of system (16):
aΩ+(u0, v) + bΓ,0(u0, v) = 〈f0, v〉Ω+,1 − 〈g̃0, γ

+
0 v〉Γ, ∀v ∈ H1(Ω+). (18)

Here the bilinear form bΓ,k(·, ·) (k ∈ N0) is expressed through traces of elements
of space H1(Ω+) on the boundary Γ:

bΓ,k(u, v) =
∫

Γ
bk,k(x)γ+

0 u(x)γ+
0 v(x)dSx, u, v ∈ H1(Ω+).

As long as bk,k ∈ L∞(Γ) and γ0u, γ0v ∈ H1/2(Γ) ⊂ L2(Γ), such integral exists.
Expression

ãΩ+(u, v) := aΩ+(u, v) + bΓ,0(u, v), u, v ∈ H1(Ω+), (19)
can be treated as some bilinear form for u, v ∈ H1(Ω+). Obviously, it is
H1(Ω+)-elliptic.

On the other hand, taking into account the estimate
|〈g̃0, γ

+
0 v〉Γ| ≤ ||g̃0||H−1/2(Γ)||γ+

0 v||H1/2(Γ) ≤ C||g̃0||H−1/2(Γ)||v||H1(Ω+)
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the functional
〈f̃0, v〉Ω+,1 := 〈f0, v〉Ω+,1 − 〈g̃0, γ

+
0 v〉Γ

is an element of H̃−1(Ω+). Then, according to the Lax-Milgram theorem there
exists a unique solution u0 ∈ H1(Ω+) of the equation (18).

Next we follow the scheme, used in the proof of the previous theorem. Let's
consider the equation with an arbitrary index k ∈ N. After moving all items
that contain functions ui (i = 0, k − 1) into the right hand side, this equation
takes the form:

aΩ+(uk, v) + bΓ,k(uk, v) = 〈f̃k, v〉Ω+,1, ∀v ∈ H1(Ω+), k ∈ N, (20)
where

〈f̃k, v〉Ω+,1 := 〈fk, v〉Ω+,1 − 〈g̃k, γ
+
0 v〉Γ −

k−1∑

i=0

(ck,iui, v)Ω+ −
k−1∑

i=0

〈bk,iγ
+
0 ui, γ

+
0 v〉Γ.

Clearly, f̃k ∈ H̃−1(Ω+). Since the obtained variational equation di�ers from
(18) only in the right hand side, we arrive at the conclusion that there exists
its unique solution uk ∈ H1(Ω+). Thus we've shown the existence and the
uniqueness of each component of the solution of variational system (16). 2

As a conclusion of the previous theorem we obtain

Theorem 3. The Neumann boundary value problem (1), (6) has a unique
generalized solution.

Note that condition (4) is a characteristic feature of PDEs obtained from the
evolution equations by means of the Laguerre transform. Without such con-
straint the bilinear form will be just coercive. In this case the existence and the
uniqueness of the solutions of BVPs for system (1) can be investigated accord-
ing to the Fredholm theory, see, e.g., [1, 2], or by considering the variational
formulations in corresponding weighted Sobolev spaces [11].

We shall now use the well known procedure (see, e.g. [12], chapter 7) to
transform variational problems to the equivalent ones in the operator form.
We �rst consider the variational equation (13) and suppose that the sequence
u ∈ (H1(Ω+))∞ is its solution. Bearing in mind (12), we can rewrite it in the
following way:

〈Pu,v〉Ω+,1,0 + (Cu,v)Ω+ = 〈f,v〉Ω+,1,0, ∀v ∈ (H1
0 (Ω+))∞, (21)

where the matrix operator P acts on ∀u ∈ (H1(Ω+))∞ by the rule:
(Pu)k = Puk, k ∈ N0.

Taking into account the embedding of spaces H1
0 (Ω+) ⊂ L2(Ω+) ⊂ H−1(Ω+),

the equality (21) may be presented as
〈Pu,v〉Ω+,1,0 + 〈Cu,v〉Ω+,1,0 = 〈f,v〉Ω+,1,0, ∀v ∈ (H1

0 (Ω+))∞.

After introducing the notation
G := P + C, (22)
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the previous equality can be given in the form of the operator equation
Gu = f in (H−1(Ω+))∞. (23)

Thus, the generalized solution of the Dirichlet problem (1), (5) is the solution
of the operator equation (23) and satis�es the same boundary condition (5) or
its sequence analogue (14). And vice versa, it is easy to see, that the solution
of (23), (14) is a generalized solution of the Dirichlet problem (1), (5).

In order to get the operator equation for the Neumann and the Robin prob-
lems we will use the Green's formula in the form of (11) instead of (12).
We will consider the generalized solutions in space (H1(Ω+, P ))∞ and assume
f ∈ (L2(Ω+))∞. Thus, let the sequence u ∈ (H1(Ω+, P ))∞ be the generalized
solution of the Robin problem (1), (7) i.e. it satis�es the variational equation
(16). If we apply the formula (11) to this equation, we get

(Pu,v)Ω+ − 〈γ+
1 u, γ+

0 v〉Γ+ (Cu,v)Ω+ +

+〈Bγ+
0 u, γ+

0 v〉Γ = (f,v)Ω+ − 〈g̃, γ+
0 v〉Γ,

or
(Gu− f,v)Ω+ + 〈Bγ+

0 u− γ+
1 u+ g̃, γ+

0 v〉Γ = 0, ∀v ∈ (H1(Ω+))∞. (24)
After substitution of an arbitrary element v ∈ (D(Ω+))∞ into (24) we come to
the following equality

〈Gu− f,v〉Ω+ = 0,

where 〈·, ·〉Ω+ is based on the duality between D′(Ω+) and D(Ω+). Thus,
Gu = f in (D′(Ω+))∞.

Since f ∈ (L2(Ω+))∞, the previous equation can be understood as
Gu = f in (L2(Ω+))∞. (25)

Therefore, after substitution of any sequence v ∈ (H1(Ω+))∞ into (24) we
arrive at the relation

〈Bγ+
0 u− γ+

1 u+ g̃, γ+
0 v〉Γ = 0 ∀v ∈ (H1(Ω+))∞,

that, by taking into account that values of the trace operator γ+
0 : H1(Ω+) →

H1/2(Γ) �ll in the whole space H1/2(Γ), is an equivalent form of the Robin
boundary condition

γ+
1 u−Bγ+

0 u = g̃ in (H−1/2(Γ))∞. (26)
Thus, we have shown that the generalized solution of the Robin problem can
be characterized by the operator equation (25) and the boundary condition
(26). Analogously it can be shown that the generalized solution of the Neu-
mann problem can be characterized by the same operator equation (25) and
the Neumann boundary condition

γ+
1 u = g̃ in (H−1/2(Γ))∞. (27)

Conversely, it is obvious that every solution of the problem (25), (26) (resp.
(27)) satis�es the variational problem (16) (resp. (15)).
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Note that boundary conditions (26) and (27), as in the theory of elliptic
equations, will be referred to as the natural boundary conditions.

3. BVPs in convolution terms
As we have outlined in the introduction, all theoretical and practical aspects

of the BIEs method are well known in case of its application to the BVPs for
the �rst equation of the system (1) considered separately as well as for this
system as a whole but with a �nite number of equations. Henceforth our goal
will be to obtain a formula for the solutions of BVPs and appropriate BIEs for
the in�nite system. Similarly to the previous section, we will use the fact that
system (1) is triangular and will develop a recurrent process of the calculation
of the components of the solution. To avoid additional volume potentials in the
solution representation we will move the components that were found on the
previous steps to the right-hand side of the current equation. For this purpose
we introduce the following convolution operation on sequences.

Let X, Y and Z be arbitrary linear spaces and q : X × Y → Z � some
mapping.
De�nition 4. By the q-convolution of sequences u ∈ X∞ and v ∈ Y ∞ we
understand a sequence w ∈ Z∞ that is de�ned according to the following rule

w = u ◦
q
v, (28)

where wn ≡ (u ◦
q
v)n :=

∑n
i=0 q (un−i, vi), when n ≥ 0, and wn = 0 when n < 0.

We will simplify the notation of the q-convolution for some mappings. For
instance, in case of q(u, v) := 〈u, v〉Ω+,1,0 we will write u ◦

Ω+,1,0
v := u ◦

q
v.

Consider a sequence u ∈ (
H1(Ω+)

)∞ that satis�es the equation (23). Let's
substitute it into this equation and, treating the result as equality of elements
from (H−1(Ω+))∞ and taking

q(w, v) = 〈w, v〉Ω+,1,0, v ∈ H1
0 (Ω+), w ∈ H−1(Ω+),

we apply the q-convolution with an arbitrary sequence v ∈ (
H1

0 (Ω+)
)∞ to both

sides of this equality. After that we arrive at the following variational equation
(Gu) ◦

Ω+,1,0
v = f ◦

Ω+,1,0
v, ∀v ∈ (

H1
0 (Ω+)

)∞
. (29)

Thus, the generalized solution of the Dirichlet problem (1), (5) can be charac-
terized by the variational equality (29) and the boundary condition (14).

Now we assume that sequence u ∈ (
H1(Ω+, P )

)∞ satis�es the operator
equation (25). We apply the q-convolution with some arbitrary sequence v ∈(
H1(Ω+)

)∞ to both of its sides as elements of (L2(Ω+))∞, taking q(w, v) =
(w, v)Ω+ , v ∈ H1(Ω+), w ∈ L2(Ω+). As a result we get

(Gu) ◦
Ω+

v = f ◦
Ω+

v, ∀v ∈ (
H1(Ω+)

)∞
. (30)

Thus, the generalized solution of the Robin boundary value problem can be
characterized by the variational equality (30) and the boundary condition (26).
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Obviously, this property also holds for the generalized solution of the Neumann
boundary value problem.

Let's obtain for operator G the analogue of the �rst Green's formula using
the q-convolution of sequences. At �rst note that the component of the q-
convolution in the left hand side of (30) with an arbitrary index k ∈ N0 after
application of the �rst Green's formula (11) can be written as

(
(Gu) ◦

Ω+
v

)

k

=
k∑

i=0

aΩ+ (ui, vk−i) +
k∑

i=0

〈
γ+

1 ui, γ
+
0 vk−i

〉
Γ

+

+
k∑

i=1




i−1∑

j=0

ci,juj , vk−i




Ω+

.

(31)

Henceforth we assume that the sum expressions are equal to zero if their last
index is less than the �rst one i.e. in case of k = 0 the last item in the previous
formula is absent.

Consider a sequence
(
Φ+

0 (u,v), Φ+
1 (u,v), ..., Φ+

k (u,v), ...
)>, components

of which are such expressions:
Φ+

0 (u,v) := aΩ+ (u0, v0) ,

Φ+
k (u,v) :=

k∑

i=0

aΩ+ (ui, vk−i) +
k∑

i=1




i−1∑

j=0

ci,juj , vk−i




Ω+

, k ∈ N0.
(32)

De�nition 5. Sequence

Φ+(u,v) =
(
Φ+

0 (u,v), Φ+
1 (u,v), ..., Φ+

k (u,v), ...
)>

, u,v ∈ (
H1(Ω+)

)∞
,

de�ned by the formula (32) is called a bilinear form associated with operator G.

Such notation of the bilinear form gives us ability to present the relation (31)
in the following way

(Gu) ◦
Ω+

v = Φ+(u,v) + γ+
1 u ◦

Γ
γ+

0 v,

∀ u ∈ (
H1(Ω+, P )

)∞
, v ∈ (

H1(Ω+)
)∞

,
(33)

and treat it as the �rst Green's formula for the operator G. Note that for
the left part of the variational equality (29) we can analogously obtain the
expression

(Gu) ◦
Ω+,1,0

v = Φ+(u,v), ∀ u ∈ (
H1(Ω+)

)∞
, v ∈ (

H1
0 (Ω+)

)∞
, (34)

when using the equality (12).
In general, due to the triangular structure of operator C, de�nition of the

second Green's formula may be complicated. In order to apply the classical
approach, see, e.g. [2], we need an additional condition on the operator C

(Cu) ◦
Ω+

v = (Cv) ◦
Ω+

u, ∀ u,v ∈ (L2(Ω+))∞, (35)
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which provides the symmetry of the operator G with regard to the operation
of q-convolution. Then applying (33) twice to the couple of sequences u,v ∈(
H1(Ω+, P )

)∞ we arrive at the following variational equality.

Theorem 4. For sequences u, v ∈ (
H1(Ω+, P )

)∞ the following equality holds:
(Gu) ◦

Ω+
v− (Gv) ◦

Ω+
u = γ+

1 u ◦
Γ
γ+

0 v− γ+
1 v ◦

Γ
γ+

0 u. (36)

We treat it as the second Green's formula for the operator G. Further in
this paper we suppose the operator C satis�es (35).

4. Integral representation of the solution
Green's formulae and fundamental solutions of the operator G are the key

ingredients of the integral representation of the solutions of the BVPs. As
usual we call the sequence Ẽ(x, y) =

(
Ẽ0(x, y), Ẽ1(x, y), ...

)>
, x, y ∈ R3, a

fundamental solution of the operator G, if it satis�es the equation
GẼ = δy in

(D′(R3)
)∞

,

where δy(x) = ( δy(x), δy(x), ... )> and δy(·) := δ(· − y) is Dirac's delta-
function. Henceforth we also assume this operator has constant coe�cients
and particularly

P := −∆ + κ2. (37)
The condition (35) can be rewritten in the form

n∑

k=1

k−1∑

i=0

ck,iξiηn−k =
n∑

k=1

k−1∑

i=0

ck,iηiξn−k, ∀n ∈ N, ∀ξ, η ∈ R∞. (38)

The last feature is natural for system (1) which is obtained as a result of the
Laguerre transformation with parameter σ > 0 of the heat (κ =

√
σ) or the

wave (κ = σ) equation [8]. Note that γ+
1 now denotes a normal derivative

operator. We also recall the well-known fundamental solution of the operator
P :

Ẽ0(x, y) :=
e−κ|x−y|

4π|x− y| , x, y ∈ R3. (39)

In [13] and references therein the construction of such solutions for the operator
G with constant coe�cients has been considered. For instance, if system (1)
corresponds to the wave equation, then the fundamental solution's components
for the operator G have the following presentation

Ẽi(x, y) :=
e−κ|x−y|

4π|x− y|Li(κ|x− y|), ∀i ∈ N0, x, y ∈ R3, (40)

where Li denotes the Laguerre polynomial [16].
By using the q-convolution we build sequences that in analogy to the theory

of elliptic equations can be also called potentials. For that we use a sequence
E(x, y) = (E0(x, y), E1(x, y), ...)>, where
Ei(x, y) := Ẽi(x, y)− Ẽi−1(x, y), i ∈ N, E0(x, y) = Ẽ0(x, y), x, y ∈ R3, (41)
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It was shown in [9] that E is the solution of the equation
GE = δy in

(D′(R3)
)∞

, (42)

where δy(x) = ( δy(x), 0, 0, ... )>.

De�nition 6. Let λ ∈ (
H1/2(Γ)

)∞ and µ ∈ (
H−1/2(Γ)

)∞. Sequences
Vµ(x) := (Vµ)(x) ≡ µ(·) ◦

Γ
E(x− ·), x ∈ Ω+, (43)

and
Wλ(x) := (Wλ)(x) ≡ ∂ν̄(·)E(x− ·) ◦

Γ
λ(·), x ∈ Ω+, (44)

are called the single and the double layer potentials of the operator G on the
surface Γ, correspondingly.

Lemma 1. For arbitrary sequences λ ∈ (
H1/2(Γ)

)∞ and µ ∈ (
H−1/2(Γ)

)∞
the layer potentials u = Vµ and u = Wλ are the solutions of the homogeneous
equation

Gu = 0 (in R3 \ Γ). (45)
Proof. Proof of the lemma regarding the domain Ω can be found in lemma

5.3 [7] and in case of the domain Ω+ can be done analogously. 2

Similarly to the layer potentials V and W, by means of the q-convolution
we can de�ne the volume potential for the domain Ω+ and use it to obtain a
partial solution of the system (1). Since in this case the di�erence from the
interior problems discussed in [9] is minor we will consider only problems for
the homogeneous system (45).

Let γ−0 : H1(Ω) → H1/2(Γ) be a trace operator, γ−1 : H1(Ω, P ) → H−1/2(Γ)
be a normal derivative operator and [γ0u] := γ+

0 u − γ−0 u, [γ1u] := γ+
1 u − γ−1 u

are their jumps across the boundary Γ.
Theorem 5. For the sequence u ∈ (

H1(R3 \ Γ, P )
)∞ which satis�es the equa-

tion (45) in R3 \ Γ the following representation takes place
u(x) = Wλ(x)−Vµ(x), x ∈ R3 \ Γ, (46)

where λ := [γ0u] and µ := [γ1u].
Proof. As we can see, the layer potentials consist of the components

(Vjµ) (x) := 〈µ(·), Ej(x− ·) 〉Γ, µ ∈ H−1/2(Γ);

(Wjλ) (x) := 〈∂ν̄(·)Ej(x− ·), λ(·) 〉Γ, λ ∈ H1/2.(Γ), j ∈ N0.
(47)

Let some function u0 ∈ H1(R3 \Γ, P ) satisfy the equation Pu = 0 in R3 \Γ.
Then the third Green's formula holds

u0(x) = (W0λ0) (x)− (V0µ0) (x), x ∈ R3 \ Γ, (48)
where λ0 := [γ0u0] and µ0 := [γ1u0]. Note that this formula can be derived
from the �rst equality in (36) if we take v0(·) = E0(x, ·). For the explanation
of the corresponding procedure and some aspects of usage of this formula see,
e.g. [1, 14] and [3, 4] for the case of operator (37).
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We can use this approach for the following components of the sequence u
as well. Let us assume we also have a function u1 ∈ H1(R3 \ Γ, P ) provided
the pair u0 and u1 satis�es the second equation in (45). Then from the second
equality in (36) we obtain:

− (c1,0v0 + Pv1, u0)Ω+ − (Pv0, u1)Ω+ =

= 〈γ+
1 u1, γ+

0 v0 〉Γ + 〈γ+
1 u0, γ+

0 v1 〉Γ − 〈γ+
1 v1, γ+

0 u0 〉Γ−
− 〈γ+

1 v0, γ+
0 u1 〉Γ.

(49)

If we take v0(·) = E0(x, ·) and v1(·) = E1(x, ·) and keep in mind the �rst two
equalities of (42) we obtain for ∀x ∈ Ω+:

−u1(x) = 〈γ+
1 u1, γ+

0 E0 〉Γ + 〈γ+
1 u0, γ+

0 E1 〉Γ−
− 〈γ+

1 E1, γ+
0 u0 〉Γ − 〈γ+

1 E0, γ+
0 u1 〉Γ.

If we use the second Green's formula for the interior domain Ω [9] we will have

0 = −〈γ−1 u1, γ+
0 E0 〉Γ− 〈γ−1 u0, γ+

0 E1 〉Γ + 〈γ+
1 E1, γ−0 u0 〉Γ + 〈γ+

1 E0, γ−0 u1 〉Γ.

Therefore, by adding the last two formulae we obtain the representation formula
for the component u1 for ∀x ∈ Ω+:

u1(x) = (W0λ1) (x) + (W1λ0) (x)− (V0µ1) (x)− (V1µ0) (x). (50)

It is straightforward to see that there is the same representation formula for
∀x ∈ Ω.

Now we consider the equality in (36) with index k > 1. After the substitution
v0(·) = E0(x, ·), v1(·) = E1(x, ·), ..., and vk(·) = Ek(x, ·) all components in it's
left hand side will disappear except (Pv0, uk)Ω+ . As in previous cases from
(Pv0, uk)Ω+ we get uk(x) for ∀x ∈ Ω+ and 0 for ∀x ∈ Ω. The rest of the proof
repeats the same operations as for k = 1. 2

Main properties of the potentials V and W have been studied in the afore-
mentioned work [9]. Here we recall some of them. Let us consider the boundary
operators

V : (H−1/2(Γ))∞ → (H1/2(Γ))∞, K′ : (H−1/2(Γ))∞ → (H−1/2(Γ))∞,

K : (H1/2(Γ))∞ → (H1/2(Γ))∞, D : (H1/2(Γ))∞ → (H−1/2(Γ))∞,

de�ned by means of q-convolution in the following way:

(Vµ)i :=
i∑

j=0

Vjµi−j , (Kλ)i :=
i∑

j=0

Kjλi−j ,

(
K′µ

)
i
:=

i∑

j=0

K ′
jµi−j , (Dλ)i :=

i∑

j=0

Djλi−j , i ∈ N0,
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for arbitrary sequences λ ∈ (
H1/2(Γ)

)∞ and µ ∈ (
H−1/2(Γ)

)∞. Components
of these operators are de�ned as follows:

Vjµ := γ+
0 Vjµ, Djλ := −γ+

1 Wjλ, j ∈ N0,

K ′
0µ := γ+

1 V0µ− 1
2
µ, K ′

jµ := γ+
1 Vjµ, j ∈ N,

K0λ := γ+
0 W0λ +

1
2
λ, Kjλ := γ+

0 Wjλ, j ∈ N.

Hence, according to the theorem 5 the generalized solution of the homoge-
neous system (45) can be given by its trace and the normal derivative on the
boundary � the Cauchy data. As it can be seen from the boundary conditions
(5) and (7), in each of the boundary problems these data are incomplete. To
get the complete Cauchy data we need to consider corresponding BIEs that can
be obtained by means of the presentation (46). Note that this is the so-called
direct approach [2] to replacement of BVPs by BIEs and in our case it could
be implemented taking into account the results obtained in [14, 8]. As a result,
the following theorem de�nes the relation between the Cauchy data of some
generalized solution of the homogeneous system and BIEs.

Theorem 6. (i) If a pair of sequences (λ, µ) ∈ (
H1/2(Γ)

)∞ × (
H−1/2(Γ)

)∞
are the Cauchy data of some generalized solution of the equation (45), then they
satisfy both equations

(
1
2
I−K

)
λ +Vµ = 0 in (H1/2(Γ))∞ (51)

and
Dλ +

(
1
2
I+K′

)
µ = 0 in (H−1/2(Γ))∞. (52)

(ii) If a pair of sequences (λ,µ) ∈ (
H1/2(Γ)

)∞ × (
H−1/2(Γ)

)∞ satisfy one of
the equations (51) or (52), then they satisfy the second one and are the Cauchy
data of some generalized solution of the equation (45).

Note that for the integral representation of the solution of the PDEs with
variable coe�cients it is possible to use a parametrix (Levi function) associ-
ated with a fundamental solution of corresponding operator with frozen coe�-
cients [11].

5. Boundary integral equations
Theorem 6 gives us reason for the replacement of boundary value problems

with corresponding boundary integral equations in regards to the Cauchy da-
tum that is not given explicitly in the formulation of the problem. Due to the
similarity of the boundary integral equations that are obtained for interior and
exterior problems we will demonstrate this procedure for the Dirichlet problem
(1), (5) only. In this case the boundary condition contains the given sequence
λ = h̃ ∈ (H1/2(Γ))∞. Then, taking into account the equation (51), after sub-
stitution of the given trace into it we will obtain the following boundary integral
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equation of the �rst kind in regards to the sequence µ:

Vµ =
(
−1

2
I+K

)
h̃ in (H1/2(Γ))∞. (53)

If we substitute the known trace into the equation (52), we will come to the
following boundary integral equation of the second kind(

1
2
I+K′

)
µ = −Dh̃ in (H−1/2(Γ))∞. (54)

Theorem 7. The normal derivative of the generalized solution u ∈
(H1(Ω, P ))∞ of the Dirichlet problem (1), (5) satis�es both boundary integral
equations (53) and (54). Conversely, if a sequence µ ∈ (H−1/2(Γ))∞ is a
solution of one of the boundary integral equations (53) or (54) then it will
satisfy the other one and the function built by formula (46) with λ = h̃ will be
the generalized solution of the Dirichlet problem (1), (5).

Proof. Since boundary integral equations (53) and (54) are only modi�cations
of the relations (51) and (52), then the validity of the direct and the inverse
statements of this theorem is granted by the theorem 6. 2

Obtained sequences of BIEs have some important recurrent properties. Con-
sider the BIEs (53). It can be reduced to a sequence of equations

V0µk = −1
2
h̃k +

k∑

i=0

Kk−ih̃i −
k−1∑

i=0

Vk−iµi in H1/2(Γ), k ∈ N0.

Applying the same approach for equations (54) we get the following sequences
of BIEs of the second kind

1
2
µk + K ′

0µk = −
k∑

i=0

Dk−ih̃i −
k−1∑

i=0

K ′
k−iµi in H−1/2(Γ), k ∈ N0,

As we see, after the application of q-convolution to the BVPs in the opera-
tor form, all of the obtained sequences of BIEs will have the same important
property. It consists in the fact that their boundary operators in the left hand
sides remain the same for each k ∈ N0. Solvability of such integral equations
and numerical methods for their solution are well studied in the literature. At
the other point of view, the structure of the obtained BIEs allows us to build
e�cient algorithms for their numerical solution. The same applies for BIEs
that correspond to other BVPs. Such equations are discussed in details in [13].

Thus, variational problems for in�nite triangular systems, which consist of
elliptic equations with variable coe�cients, have been formulated and their
well-posedness has been shown. By using the q-convolution of sequences, in
the case of constant coe�cients the representation of generalized solutions in
the form of potentials has been obtained, with which variational problems have
been reduced to triangular systems of BIEs. Components of the solution of the
system of BIEs can consistently be found from the relevant equations which
di�er only in the right hand side. In this case the right hand side consists
of the components of the solutions, found on previous steps, besides of the
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given Cauchy data. A numerical method for the solution of such systems,
developed on the basis of the boundary elements method in [15], gives us ability
to e�ciently solve the considered boundary problems.
Acknowledgements. The author expresses his sincere gratitude to Prof.

W. Wendland for the attention to this research and valuable comments, and to
Prof. R. Chapko for ongoing support.
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MATRIX CONTINUED FRACTIONS FOR SOLVING
THE POLYNOMIAL MATRIX EQUATIONS

Anastasiya Nedashkovska

Ðåçþìå. Ðîçãëÿíóòî àëãîðèòì ðîçâ'ÿçóâàííÿ ïîëiíîìiàëüíèõ ìàòðè÷íèõ
ðiâíÿíü. Çàïðîïîíîâàíà ðåêóðåíòíà ôîðìóëà ðîçâèíåííÿ ðîçâ'ÿçêó â
ëàíöþãîâèé ìàòðè÷íèé äðiá. Äîâåäåíî çáiæíiñòü ìåòîäó. Íàâåäåíî ðåçó-
ëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ, ùî ïiäòâåðäæóþòü ñïðàâåäëèâiñòü òåî-
ðåòè÷íèõ âèêëàäîê..
Abstract. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formula for decomposition solution by the ma-
trix continued fractions is proposed. The convergence of the method is proved
and results of the numerical experiments that con�rm the validity of the cal-
culations are provided.

1. Introduction
The most simple matrix equations were being solved in the second half of the

nineteenth century [1]. In default of a common approach polynomial matrix
equations were resolved for a speci�c partial case.

A new approach for solving equations of the form
AnXn + An−1X

n−1 + . . . + A1X + A0 = 0, (1)
is proposed in this paper. Here the coe�cients Ai ∈ Rp×p

(
i = 1,m

)
and un-

knowns X ∈ Rp×p are set on the ring of no commutative matrices.
For example we can consider quadratic equation

XAX + X + B = 0, (2)
where A and B are nonzero square matrices of order n with constant coe�cients
and X is unknown square matrix of order n.

The equation can be written in the form
(XA + E) X = −B.

Or, assuming the existence of the inverse matrix, in form (XA + E)−1 ,

X = − (XA + E)−1 B.

For convenience here this notation will be used:

− (XA + E)−1 B = − B

E + XA
.

Key words. Polynomial matrix equations; The matrix continued fractions; The convergence
of the method.
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Then, using the insertion method to solve equation (2), the following expansion
of X into a continued fraction is written:

X = − B

E − BA

E − BA

E − BA

. . .

(3)

Using the similar transformations to solve the matrix equation
AX + XB + XFX + C = 0 (4)

we obtain formal expansion of X into the following continued fraction

X=−F−1B+
AF−1B − C

A−F−1BF +
AF−1BF − CF

−F−1BF +
AF−1B − C

. . .

A−F−1BF +
AF−1BF−CF

. . .

(5)

Or using the Prinhcheym's notation for continued fractions

X = −F−1B +
AF−1B − C

∣∣
|A− F−1BF

+
AF−1BF − CF

∣∣
|−F−1BF

+ . . . +
AF−1B − C

∣∣
|A− F−1BF

+ . . .

It is known [1] that the problem of optimal control for discrete stationary
control system is reduced to a discrete Riccati equation

AT XA−X −AT XB
(
R + BT XB

)−1
BT XA + Q = 0. (6)

Here matrices A with dimension n× n and B with dimension n×m describes
the state of the system

x (k + 1) = Ax (k) + Bu (k) .

And symmetric matrices Q and R de�nes quality criteria

J =
∞∑

k=0

[
xT (k) Qx (k) + uT (k)Ru (k)

]
.

Herewith R is positive de�ned and Q is positive semi de�ned.
It turns out that the matrix continued fractions can be used for solving the

discrete Riccati equation (6). After regrouping its members obtain

AT X
(
A− E −B

(
R + BT XB

)−1
BT XA

)
+ Q = 0,

or
AT X

(
A−E −B

(
R + BT XB

)−1
BT XBB−1A

)
+ Q = 0.

From this we obtain
AT X

[
A−E −B

(
R + BT XB

)−1 (
R + BT XB −R

)
B−1A

]
+ Q = 0
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and
AT X

[
A−E −BB−1A + B

(
R + BT XB

)−1
RB−1A

]
+ Q = 0.

So,

X = − (
A−1

)T
Q

[
A− E −BB−1A + B

(
R + BT XB

)−1
RB−1A

]−1
.

Thus, the following recurrent formula can be written for the Riccati equation:

X = −
(
A−1

)T
Q

∣∣∣
∣∣∣∣E + BB−1A−A−B

RB−1A

R + BT XB

. (7)

Using composition (7) for equation (6) with numerical or symbolic elements,
the following expansion of X into a continued fraction can be written:

X = −
(
A−1

)T
Q

∣∣∣
|E + BB−1A−A

−B
RB−1A

∣∣
|R −BT

(
A−1

)T
QB

∣∣∣
|E + BB−1A−A

−

− . . .−B
RB−1A

∣∣
|R −BT

(
A−1

)T
QB

∣∣∣
|E + BB−1A−A

− . . .

(8)

It is easy to see, comparing the expansions in continued fractions for equa-
tions (2), (4) and (6), that all of them are derived from a certain kind of schemes
that does not �t into the framework of a single method. Moreover, algorithms
for expansions of solutions in continued fractions are not known for algebraic
numeric equations with two higher orders too.

2. The computational scheme of the method
The algorithm of expansions into the periodic branched continued fraction

x = p0 +
n−1∑

i=1

pi|
|−qi

+
n−1∑

i=1

pi|
|−qi

+ . . . +
n−1∑

i=1

pi|
|−qi

+ . . . (9)

for polynomial numerical equations
xn + a1x

n−1 + a2x
n−2 + . . . + an−1x + an = 0 (10)

was proposed in [2]. Unknown coe�cients pi and qi of the fraction (10) are
de�ned as solutions of systems of linear algebraic equations. However, this
scheme cannot be trivially moved in case of solving matrix polynomial equations
because non commutative multiplication of matrices. But a similar algorithm
can be constructed.
Theorem 1. A solution to equation (1) of the n th order can be represented in
the form of an in�nite periodic continued fraction with (n− 1) branches.

Proof. Suppose that matrices (X −Qk)
−1 (

k = 1, n− 1
)
are invertibles and

consider the equality

X = P0 +
n−1∑

k=1

(X −Qk)
−1 Pk, (11)
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were Pk ∈ Rp×p (k = 0, 1, . . . , n− 1) and Qk ∈ Rp×p (k = 1, 2, . . . , n− 1) are
square matrices with unknown elements. To de�ne them, the method of un-
determined coe�cients can be used. We will look for such items pk,i,j

(
i =

1, 2, . . . , p; j = 1, 2, . . . , p
)
and qk,i,j

(
i = 1, 2, . . . , p; j = 1, 2, . . . , p

)
of matrices

Pk and Qk accordingly, that equations (1) and (11) will be equivalent.
Put additional,

Qk = qk · E, (12)
where E identity matrices and their dimensions are equal p. Easy to see that
in this case

(X−Qk) (X−Q1)× . . .×(X−Qk−1) (X−Qk+1)× . . .×(X−Qn−1) =
n−1∏

k=1

(X −Qk) .

We reduce fractions in (11) to a common denominator and get

X =
[

n−1∏
k=1

(X −Qk)
]−1

·
[

n−1∏
k=1

(X −Qk) P0 +
n−1∏
k=2

(X −Qk) P1+

+(X −Q1)
n−1∏
k=3

(X −Qk)P2 + . . . +
l−1∏
k=1

(X −Qk)
n−1∏

k=l+1

(X −Qk) Pl + . . .+

+
n−2∏
k=1

(X −Qk) Pn−1

]
.

(13)
Whence we obtain the following equation:

[
n−1∏
k=1

(X −Qk)
]

X −
[

n−1∏
k=1

(X −Qk) P0 +
n−1∏
k=2

(X −Qk) P1+

+(X −Q1)
n−1∏
k=3

(X −Qk)P2 + . . . +
l−1∏
k=1

(X −Qk)
n−1∏

k=l+1

(X −Qk) Pl + . . .+

+
n−2∏
k=1

(X −Qk) Pn−1

]
.

For each of the products we can write:

−
n−1∏

k=1

(X −Qk) = −
[
Xn + Xn−1 (−1)n−1 Q1Q2 . . . Qn−1+

+ Xn−2(−1)n−2(Q1Q2 . . . Qn−2+Q1Q2 . . . Qn−3Qn−1+. . .+Q2Q3 . . . Qn−1)+

+ . . . + X2 (Q1Q2 + Q1Q3 + . . . + Qn−2Qn−1)−X (Q1 + Q2 + . . . + Qn−1)
]
;

n−1∏

k=1

(X −Qk) P0 = Xn−1P0 + Xn−2 (−1)n−1 Q1Q2 . . . Qn−1P0+

+ Xn−3(−1)n−3(Q1Q2 . . . Qn−2+Q1Q2 . . . Qn−3Qn−1+. . .+Q2Q3 . . . Qn−1)P0

+. . .+X(Q1Q2+Q1Q3+. . .+Qn−2Qn−1)P0−(Q1+Q2+. . .+Qn−1)P0;
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n−1∏

k=2

(X −Qk)P1 =Xn−2P1+Xn−3 (−1)n−2 Q2Q3 . . . Qn−2P1 + Xn−4(−1)n−3·

· (Q2Q3 . . . Qn−2 + Q2Q3 . . . Qn−3Qn−1 + . . . + Q3Q4 . . . Qn−1) P1 + . . .+

+ (Q2Q3 + Q2Q4 + . . . Qn−2Qn−1) P1 − (Q2 + Q3 + . . . + Qn−1) P1;
l−1∏

k=2

(X −Qk)
n−1∏

k=l+1

(X −Qk)Pl = Xn−2Pl + Xn−3 (−1)n−2 ·

·Q1Q2 . . . Ql−1Ql+1 . . . Qn−1Pl+Xn−4 (−1)n−3(Q1Q2 . . . Ql−1Ql+1 . . . Qn−2+

+ Q1Q2 . . . Ql−1Ql+1 . . . Qn−3Qn−1+. . .+Q2Q3 . . . Ql−1Ql+1 . . . Qn−2Qn−1) Pl

+ . . . +X (Q2Q3+Q2Q4+. . .+Ql−1Ql+1+Ql−1Ql+2+. . .+Qn−2Qn−1)Pl−
− (Q1 + Q2 + . . . + Ql−1 + Ql+1 + . . . + Qn−1) Pl;
n−2∏

k=1

(X −Qk) Pn−1 = Xn−2Pn−1 + Xn−3 (−1)n−2 Q1Q2 . . . Qn−2Qn−1Pn−1+

+Xn−4(−1)n−3(Q1Q2. . .Qn−3+Q1Q2. . .Qn−4Qn−2+. . .+Q2Q3. . .Qn−2)Pn−1

+ . . . +X(Q1Q2+Q2Q3+. . .+Qn−3Qn−2)Pn−1−(Q1+Q2+. . .+Qn−2)Pn−1.

We now sum up the right sides of the equalities above, with simultaneously
grouping the coe�cients of identical powers of X. Equating coe�cients of
identical powers of X, we obtain the following system of equations for the
determination of Pk (k = 0, 1, 2, . . . , n− 1) and Qk (k = 1, 2, . . . , n− 1) :

(−1)n−1 Q1Q2 . . . Qn−1 + P0 = A1;

(−1)n−2
n−1∏
k=1

k−1∏
l=1

Ql

n−1∏
l=k+1

Ql −
n−1∑
k=1

Pk+

+ (−1)n−1 Q1Q2 . . . Qn−1P0 = A2;

(−1)n−3
n−2∑
k=1

n−2∑
l=k+1

(1−δkl)
k−1∏
r=1

Qr

l−1∏
r=k+1

Qr

n−2∏
r=l+1

Qr+

+
n−1∑
k=1

k−1∏
r=1

Qr

n−1∏
r=k+1

QrPk + (−1)n−1
n−1∑
k=1

k−1∏
r=1

QrP0 = A3;

. . .
n−1∑
k=1

Qk +
n−1∑
k=2

n−1∑
l=k+1

QkQlP1 + . . . +
n−1∑
k=1

n−1∑
l=k+1

(1− δkr) QkQlPr+

+ . . . +
n−2∑
k=1

n−2∑
l=k+1

QkQlPn−1 = An−1;

. . .
n−1∑
k=1

QkP1 + . . . +
n−1∑
k=1

(1− δkr)QrPr + . . . +
n−2∑
k=1

QkPn−1+

+
n−1∑
k=1

QkP0 = An,

(14)

where δkl =
{

1 if k = l,
0 if k 6= l.
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If all the chosen Qk are pairwise di�erent, then the latter system
of n equations in n unknowns (14) will become linear relatively unknown
Pk (k = 0, 1, 2, . . . , n− 1) and will have a unique solution. Using composition
law (11) for X, we obtain the following expansion in terms of matrix branched
continued fractions. If the left matrix multiplication (X −Qk)

−1 Pr is denoted
as Pr

X −Qk
, the recurrent formula for X will look as such:

X = P0 +
n−1∑

k=1

Pr

X −Qk
. (15)

Applying now the composition (14), we obtain the expanse of matrix bran-
ched continued fraction

X=P0+
n−1∑

k1=1

Pk1

P0−Qk1 +
n−1∑
k2=1

Pk2

P0−Qk2 +
n−1∑
k3=1 . . .+

n−1∑
km=1

Pkm

P0−Qkm + . . .

(16)

which is what had to be proved. 2

To calculate the solution on the computer systems the recurrent formula (15)
is su�cient. But for analytical writing solution and research of its existence
and convergence approaching fractions shall use the theory of branched con-
tinued fraction for expanse (16). But solving equations (1) and (2), (4) and
(6) requires a detailed study of convergence and computational stability of the
matrix branched continued fraction.

Some su�cient signs of convergence for matrix branched continued fractions
have been proposed in [3].

But the convergence of the branched fraction does not necessarily mean the
convergence to the solution of the corresponding equation (1), (3) or (5). So
we will focus on this aspect in more detail and consider the branched continued
fraction

N∑

kl=1

akl
|

|bkl

+
N∑

k2=l

ak1k2 |
|bk1k2

+
N∑

k3=1

ak1k2k3 |
|bk1k2k3

+ . . . +
N∑

ki=1

ak1k2k3...ki |
|bk1k2k3...ki

+ . . . (17)

Here ak1k2k3...ki and bk1k2k3...ki are square matrices of dimension p × p. In [2]
and [3] the following su�cient signs have been obtained.
Theorem 2. If the solution of polynomial matrix equation exists and belongs
to the interval [−N, N ], then the expansion by some iterative procedure into the
matrix branched continued fraction (17) with elements that satisfy the conditions

∥∥∥b−1
k(s)

∥∥∥ ≤ 1∥∥ak(s)+N

∥∥ (k (s) ∈ [1, N ] ; s = 1, 2, 3, . . .)

converges to this solution.
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Theorem 3. If the solution of polynomial matrix equation exists and belongs to

the interval
[
−

N∑
k(s)=1

∥∥ak(s)

∥∥ ,
N∑

k(s)=1

∥∥ak(s)

∥∥
]
, then the expansion by some iter-

ative procedure into the matrix branched continued fraction (17) with elements
that satisfy the conditions

∥∥∥b−1
k(s)

∥∥∥ ≤ 1

1 +
N∑

k(s+1)=1

∥∥ak(s+1)

∥∥
(s = 1, 2, 3, . . .)

converges to this solution.
These signs can be used to analyze the convergence of matrix continued

fractions (3), (5), (8) and (16). Also, they are simple and easy to use. The
theorems 2 and 3 can be used in practice, particularly in computer algebra
systems, and serve as a basis for other su�cient signs for matrix branched
continued fraction.

Note also, that if signs of convergence are valid, the iterative process (16)
can �nish if the inequality

‖Xk+1 −Xk‖ ≤ ε

is valid. Here ε � given calculation accuracy. This follows from the fact that
in conditions of the theorem 2 and the theorem 3 the absolutely convergent
numerical majorizing branched fractions build for matrix branched continued
fractions (16). And its approach fractions form a monotone sequence.

Estimate the complexity of the algorithm. To obtain Pk

(
k = 0, n− 1

)
and

Qk

(
k = 1, n

)
for the system of equations (14) we need to specify the pair-

wise di�erent values for all matrix elements of Qk. Then, doing generally up
to the principal term n5p3 operations of multiplication and n5p3 operations of
addition, we obtain the block system of linear algebraic equations with order
n to determine Pk. For its solution need to complete an additional n3p3 oper-
ations of multiplication and n3p3 operations of addition. One iteration using
the recurrent formula (11) requires the implementation of 2np3 operations of
multiplication and np3 operations of addition.

3. Numerical experiments
To verify the practical e�ectiveness of this approach, a series of numerical

experiments were done in Mat Lab environment. In particular matrix equation
X3 + A2X

2 + A1X + A0 = 0,

was being solved. Here matrix coe�cients were equal

A2 =




2.0000 −3.0000 −5.0000
0.2200 0.2510 0.2500
0.2200 −0.2340 −0.1300


; A1 =




1.0000 6.0000 −5.0000
0.2500 0.2200 0.2510
0.2340 −0.1300 0.2200


;

A0 =




136.0000 139.0000 134.0000
−272.0240 −269.0270 −282.0490
−350.2980 −358.7900 −336.5740


.
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The recurrent formula X = P0 + (Q1 + X)−1 P1 + (Q2 + X)−1 P2 was being
used to calculate X.

The matrix coe�cients were set as

Q1 =




0.96 0 0
0 0.96 0
0 0 0.96


; Q1 =




1.92 0 0
0 1.92 0
0 0 1.92


.

Then from equations (15) the following values were calculated

P2 =




139.9739 121.2717 130.3833
−285.0969 −287.0854 −293.3430
−364.5170 −374.3781 −358.9099


;

P1 =



−141.6651 −135.9117 −139.7833

285.4805 281.1371 293.8120
364.9166 373.8342 351.8643


;P0 =




0.8800 3.0000 5.0000
−0.2200 2.6290 −0.2500
−0.2200 0.2340 3.0100


;

For the initial approximation X0 was chosen zero matrix and the following
approximate value of the unknown matrix was received

X =




12.3600 147.9411 −107.2121
−28.9221 −290.3746 224.4685
−36.9221 −363.6585 282.0369




with the following results
Number
of iteration 30 40 50 60 70

Norm of
di�erence 0.3015 6.1725E−04 9.0636E−06 4.9470E−08 6.9768E−09

Thus, this approach can be applied to solve scienti�c and technical problems
in generalized models of V. Leontyev and so on. However, the task of build-
ing a more subtle signs of convergence for periodic matrix branched continued
fractions with broader areas of convergence is still open.
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A GRADIENT METHOD OF SOLVING
INVERSE EIGENVALUE PROBLEM

Bohdan Podlevskyi, Oksana Yaroshko

Ðåçþìå. Ðîçãëÿäà¹òüñÿ îáåðíåíà çàäà÷à íà âëàñíi çíà÷åííÿ, ÿêà âêëþ÷à¹
êëàñè÷íi àäèòèâíi òà ìóëüòèïëiêàòèâíi ñïåêòðàëüíi çàäà÷i. Ïîêàçàíî
ñïîñiá çâåäåííÿ îáåðíåíî¨ çàäà÷i äî áàãàòîïàðàìåòðè÷íî¨ çàäà÷i íà âëàñíi
çíà÷åííÿ. Çàïðîïîíîâàíî ÷èñåëüíèé ìåòîä âiäøóêàííÿ íàáëèæåíîãî ðîç-
â'ÿçêó ñïåêòðàëüíî¨ çàäà÷i øëÿõîì ðîçâ'ÿçàííÿ åêâiâàëåíòíî¨ ¨é âàðiàöié-
íî¨ çàäà÷i. Ïðîâåäåíî ÷èñëîâi åêñïåðèìåíòè äëÿ iëþñòðàöi¨ ðîáîòè ìåòîäó.
Abstract. It is investigated the inverse eigenvalue problem that includes
classic additive and multiplicative spectral problems. It is presented the
method of transformation of the inverse eigenvalue problem to the direct
multi-parameter one. It is proposed the numerical method of calculating the
approximate solution of the spectral problem by solving the equivalent varia-
tion problem. There are several numerical experiments presented in order to
illustrate the behavior of the method.

1. Introduction
The problem of reconstruction of the matrix of some given structure based

on the given spectral data is well known as the inverse eigenvalue problem, or
in other words, the inverse spectral problem.

Such problems arise in a wide area of analysis investigations and mathemati-
cal physics, namely in the systems of control and identi�cations, the structural
analysis, the modeling of mechanical systems and so on.

The major common point of all these applications is the fact that the physi-
cal parameters of some system should be restored based on the given dynamical
parameters of the same system. If we describe the physical parameters mathe-
matically and present them in a form of a matrix, we get an inverse eigenvalue
problem.

As it was mentioned above, the needed matrix should have some given struc-
ture. Such structural constraints are not unsubstantial � they add sense to the
spectral problem. Beside that, they de�ne the di�erent types of inverse spectral
problem: additive, multiplicative, multi-parameter, structural etc.

There are two main questions regarding the eigenvalue problem: theoretical
one, concerning the existence of the solution, and practical one, about the nu-
merical method of �nding this solution. There is provided a lot of literature
concerning the conditions of solubility and uniqueness of the solution for dif-
ferent types of inverse spectral problem. A variety of methods of calculating
the approximate solution of the mentioned problem is also listed in di�erent

Key words. Eigenvalue problem, inverse problem, variation problem, functional, iterative
procedure.
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sources. See, for example, [1] - [11] and the cited literature). In this article
we will discuss another numerical algorithm of solving the inverse eigenvalue
problem, assuming that the solution exists.

2. Inverse Eigenvalue Problem
Let's consider the following inverse spectral problem.
Problem GIEP (General Inverse Eignevalue Problem).
Provided it is given the complex matrices of dimensions n× n: A0, A1, . . .,

Am ∈ Cn×n and the collection of numbers λ = {λ1, ..., λm} ∈ Cm.
Find such parameters p = {p1, ..., pm} ∈ Cm that the eigenvalues of the

matrix
A(p) = A0 + p1A1 + ... + pmAm (1)

coincide with the given set of numbers λ = {λ1, ..., λm} ∈ Cm.
This problem involves classic partial cases of additive and multiplicative in-

verse spectral problems:
Problem AIEP (Additive Inverse Eigenvalue Problem).
Let A be a given matrix and λ = {λ1, ..., λm} ∈ Cm be a given set of numbers.
Find the diagonal matrix D = diag (p1, . . . , pm), p1, p2, . . . , pm ∈ Cm, such

that the matrix A + D has the eigenvalues λ1, λ2, . . . , λm.
Problem MIEP (Multiplicative Inverse Eigenvalue Problem).
Let A be a given matrix and λ = {λ1, ..., λm} ∈ Cm be a given set of numbers.
Find the diagonal matrix D = diag (p1, . . . , pm), p1, p2, . . . , pm ∈ Cm, such

that the matrix AD has the eigenvalues λ1, λ2, . . . , λm.
The question of solvability of such kind of problems, namely AIEP, is widely

explored in the literature (see, for example, [2], [4], [11]). Beside the theoretical
results there is a lot of numerical methods constructed for solving the additive
inverse eigenvalue problem (see, for example, [1], [3], [5], [7] - [9]).

In this survey we propose another method of �nding the approximate solution
of the problem (2.1) in the real Euclidian space. This method is based on a
gradient procedure.

3. Preliminary
Consider the multi-parameter spectral problem in the Euclidian space En:

T (λ) x ≡ Ax− λ1B1x− ...− λmBmx = 0 (2)
where λ = {λ1, ..., λm} ∈ Em are spectral parameters, x = (x1, ..., xn) ∈ En,

A,B1, ..., Bm are some linear operators that act in the real Euclidian space En.
The multi-parameter eigenvalue problem, linear towards the spectral parame-

ters, consists in �nding a vector of spectral parameters λ = {λ1, ... , λm} ∈ Em

such that there exists a non-trivial solution x ∈ En\{0} of the equation (3.1).
Let's put the variation problem of minimization of the following functional

in correspondence to the spectral problem (3.1):

F (u) =
1
2
‖T (λ) x‖2

H , ∀u = {x, λ} ∈ H = (En\{0})⊕ Em (3)
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The problem of minimization of the functional (3.2) consists in �nding such
set of parameters λ = {λ1, ..., λm} ∈ Em and corresponding vector x ∈ En\{0}
that the functional F (u) reaches its minimum value:

F (u) → min
u

, u ∈ U ⊂ H, (4)

where U is the set with points u = {x, λ} that satisfy the equation (3.1),
H is an Euclidian space with the scalar product and the norm de�ned in a
standard way:

(u, v)H = (u1, u2)En + (v1, v2)Em , ‖u‖H =
√
‖u1‖2

En + ‖v1‖2
Em ,

u = {u1, v1}, v = {u2, v2}, u1, u2 ∈ En, v1, v2 ∈ Em.

In the article [8] it is shown that the spectral problem (3.1) and the variation
problem (3.3) are equivalent. This means that each eigen pair {x, λ} of the
problem (3.1) is the point of minimum u = {x, λ} of the functional (3.2), and
vice-versa.

This result lets us construct the gradient procedure of numerical solving of
the problem (3.3) and thus, of the problem (3.1), in the following form:

uk+1 = uk − γ(uk)∇F (uk) , k = 0, 1, 2, ... (5)
The relation (3.4) describes the whole class of methods that di�er only by

the choice of the step value γ(uk).
In this article we will calculate the value γk = γ(uk) at each step of the

process by using the formula:

γk =
F (uk)

||∇F (uk)||2H
(6)

From this point here, in order to make the formulas more easy to read, we
will omit the index H in the denotation of the scalar product and the norm.

So, the iteration process can be written as following:

uk+1 = uk − F (uk)
||∇F (uk)||2∇F (uk) , (7)

where the gradient of the functional has the structure

∇F (u) =
{

(T ∗Tx, e1) , ..., (T ∗Tx, en) ,

(
Tx,

∂T

∂λ1
x

)
, ...,

(
Tx,

∂T

∂λm
x

)}
(8)

Here T ≡ T (λ), and ei ∈ En is the vector, the i-th co-ordinate of which is
equal to 1 and all the others co-ordinates are 0.

If the starting approximation is chosen in some sense close enough to the
eigenvector and the vector of eigenvalues, then the iteration process (3.6) con-
verges to the stationary point of the functional (3.2) u∗ = {x∗, λ∗}. In this
point the minimum of the functional is reached. Note, this means that the
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process converges to the eigenvector x∗ and the vector of eigenvalues λ∗ of the
problem (3.1).

Thus, for the iteration process, described above, the following theorem is
true:

Theorem 1. [8] Let the gradient of the functional (3.6) satis�es the Lipchitz
condition

‖∇F (u)−∇F (z)‖ ≤ L ‖u− z‖ , ∀u, z ∈ U, L > 0 (9)
where U is a closed convex set that contains the solution u∗. If for some starting
approximation u0 = (x0, λ

(0)) ∈ U the following condition is true
0 < γ0 ≡ γ(u0) ≤ 1/2L, (10)

then the iteration process (3.6) converges to the point of minimum of the func-
tional (3.2) u∗ = {x∗, λ∗} and, thus, to the eigenvector x∗ and the vector of
eigenvalues λ∗ of the problem (3.1). Which means that the relations below are
true:

lim
k→∞

ρ(uk, U∗) = lim
k→∞

ρ(uk, u
∗) = 0 (11)

lim
k→∞

F (uk) = F (u∗) = 0 (12)

4. Algorithm of solving an inverse spectral problem
Consider an inverse eigenvalue problem of type (2.1) with the real matrices

A0, A1, ..., Am ∈ En×n, and where the pairs
{
λk, x

k
}m

k=1
are the eigen pairs

of the matrix A(p). Here λ = {λ1, ..., λm} ∈ Em, xk ∈ H = En\{0}, k =
1, 2, ..., m, E is the real Euclidian space.

By using the de�nition of an eigen value and a corresponding eigen vector,
we can write as following:

A (c) xk = λkx
k, xk ∈ H, k = 1, ..., m

Thus, we get the system of m equations to �nd the parameters p1, ..., pm:




((A0 − λ1I) + p1A1 + ... + pmAm) x1 = 0,
...

((A0 − λmI) + p1A1 + ... + pmAm) xm = 0,
(13)

Let's transform this system so that it has the structure (3.1). For this reason
consider the matrix operators A, Bi : H → H, H =

m⊕
k=1

En×n, i = 1, ..., m:

A =




(A0 − λ1I) 0
. . .

0 (A0 − λmI)


 (14)

Bi =



−Ai 0

. . .
0 −A i


 (15)
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In case x = (x1, x2, ... , xm)T ∈ H, we get

Ax = ((A0 − λ1I)x1, (A0 − λ2I)x2, ... , (A0 − λmI)xm),

Bix = (−A ix
1, −A ix

2, ... , −A ix
m).

Now we can proceed from the problem (4.1) to the problem of type (3.1) in
the space H.

T (p) ≡ Ax− p1B1x− ...− pmBmx = 0 (16)
So, we con�gured the problem of �nding such set of parameters p1, ..., pm,

that the equation (4.4) has a non-trivial solution x ∈ H\{0}.
Now let's put a variation problem in correspondence to the problem (4.4):

F (u) → min
u

, u ∈ U ⊂ H,

where

F (u) =
1
2
‖T (p)x‖2

H̃
, ∀u = {x, p} ∈ H̃ = H⊕ Em (17)

The task is to �nd the set of parameters p = {p1, ..., pm} ∈ Em and the
corresponding vector x ∈ H\{0}, for which the functional F (u) reaches its
minimum value. For this variation problem we will apply the iteration process
(3.6).

So, the algorithm consists of the following steps:
Step 1. Select the starting approximation.
Step 2. Build the matrices A,Bi, i = 1, ..., m by using the formulas (4.2),

(4.3).
Step 3. for k = 0, 1, 2, ... until the exactness is reached do:
Step 4. Calculate T (pk) by using the formula (4.4).
Step 5. Calculate F (uk) by using the formula (4.5).
Step 6. Calculate ∇F (uk) by using the formula (3.7).
Step 7. Calculate the next approximation uk+1 of the solution by using the

formula (3.6).
end for k
Step 8. Extract the pk+1 components of the vector uk+1 = {xk+1, pk+1}

which is the needed approximate solution.
Step 9. End.

5. Numerical experiments
Let's demonstrate how the algorithm works on two examples below.
Example 1. [7]. Consider the following inverse eigenvalue problem:

A0 =




1.5 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1


 , A1 =




0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , A2 =




0 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 ,
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A3 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 , A4 =




0 0 0 0
0 0 0 1
0 0 0 1
0 1 1 1


 ,

A (p) = A0 + p1A1 + p2A2 + p3A3 + p4A4.

Where n = m = 4, the eigen values are given: λ = {0, 2, 2, 4}. The exact
solution of the problem is also known p∗ = {1, 1, 1, 1}.

Let's choose the starting approximation of the parametrs pi, i = 1, 2, 3, 4.
à) p(0) = {1.1, 0.9, 1.1, 0.9} , as it is proposed in [7], which is quite close to

the exact solution;
b) p(0) = {0.1, 0.2, 0.3, 0.4}, which strongly di�ers from the exact solution.
Note, that in [7] the starting approximation is given only for the parameters.

However, to apply the method proposed in this article we also need to select
the approximation of the eigen vectors x(0). In order to choose the correct
values x(0), we did the following calculations: for the given parameters p(0) ={

p
(0)
1 , ..., p

(0)
m

}
we built the matrix A

(
p(0)

)
= A0 + p

(0)
1 A1 + ... + p

(0)
m Am and

found the eigen values and the corresponding eigen vectors of this matrix by
using the software application Matlab. Then we accepted these eigen vectors
as the starting approximation x(0) for the method (3.6).

There were used two di�erent stop conditions for the iteration process:
1. The value of the functional becomes zero, which means that F

(
u(k+1)

)
<

ε, ε = 10−9, where u(k+1) =
{
x(k+1), p(k+1)

}
is the k -th approximation of the

solution of the problem, k = 0, 1, ....
2. The norm of deviation between the values of the parameters on two

iterations p(k) and p(k+1) becomes su�ciently small:
∥∥p(k) − p(k+1)

∥∥ < ε, ε =
10−9, k = 0, 1, ....

The results received in the cases a) and b) of starting approximations are
presented in the Table 1 and the Table 2 respectively. Note, that each table
contains two approximate solutions that correspond to two stop conditions of
the iteration process.

Tabl. 1. Approximate solutions of Example 1, case a

p∗ p(0) p(m+1), Stop cond 1 p(m+1), Stop cond 2
1 1.1 1.0000403787 1.0000000123
1 0.9 1.0000199351 1.0000000061
1 1.1 1.0000266736 1.0000000081
1 0.9 0.9999747545 0.9999999923

F 9.37e-31 0.02 8.4065983153e-11 9.2005057095e-18
‖p− p∗‖ 0 0.2 5.8109138139e-5 1.7748612738e-8

In the tables it is also given the value of the functional in the point of starting
approximation, F 0 = F

(
u(0)

)
, the point of approximate solution, F = F (u),
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Tabl. 2. Approximate solutions of Example 1, case b

p∗ p(0) p(m+1), Stop cond 1 p(m+1), Stop cond 2
1 0.1 0.9999582549 0.9999999786
1 0.2 0.9999782404 0.9999999888
1 0.3 0.9999714938 0.9999999854
1 0.4 1.0000265629 1.0000000135

F 9.37e-31 1.89 7.1596842832e-11 1.9824859739e-17
‖p− p∗‖ 0 1.52 6.1109094783e-5 3.1269595091e-8

and the point of exact solution, F ∗ = F (u∗). In this way it can be seen that
the value of the functional decreases, as it was expected.
Example 2. Consider the given inverse spectral problem, where the matrices

Ai are the Toeplitz matrices. Note, that similarly to the previous example here
n = m.

A (p) = A0 + p1A1 + ... + pnAn

A0 = O, A1 = I,

A2 =




0 1 0 · · · 0

1 0 1
. . . ...

0 1
. . . . . . 0

... . . . . . . 0 1
0 · · · 0 1 0




, ..., An =




0 0 · · · 0 1

0
. . . . . . · · · 0

... . . . . . . . . . ...
0 · · · . . . . . . 0
1 0 · · · 0 0




Let's solve this problem for n = 5. In this case the exact values of the
parameters are p∗ = {−1.8, 1.9, 2.5, 0.08, 1.2}.

The chosen starting approximations of the parameters pi, i = 1, ..., 5 are the
following: à) p(0) = {−1, 1, 1, −1, 1} ; b) p(0) = {0, 1, 1, 0, 1} .

In order to select the starting approximations of the eigen vectors x(0) we
did the same calculations as it was explained in the Example 1. The received
results are presented in the Table 3 and the Table 4 for two cases of starting
approximations.

Similarly to the Example 1, there were used two conditions to stop the iter-
ation process. By analyzing the received values of the functional in the points
of starting approximation, approximate solution and exact solution it can be
seen that they go down to the minimum (zero) value, as expected.

Let us also note, that the analyzed examples had been solved by using two
variants of the Newton method presented in the articles [1] and [3]. This ex-
periment showed that the iteration processes of the Newton methods [1] and
[3] do not converge to the exact solution if the selected starting approximation
strongly di�ers from the exact values. The method presented in this survey, on
the contrary, does converge to the exact solution in case of the same starting
approximations.
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Tabl. 3. Approximate solutions of Example 2, case a

p∗ p(0) p(m+1), Stop cond 1 p(m+1), Stop cond 2
-1.8 -1 -1.8000000001 -1.8000000001
1.9 1 1.9000000048 1.9000000184
2.5 1 2.4999999976 2.4999999865
0.08 -1 0.0800000037 0.0799999959
1.2 1 1.1999999837 1.1999999674

F 1.94e-29 12.62 3.7755871274e-10 1.1228316897e-9
‖p− p∗‖ 0 2.22 1.7159808703e-8 3.9948275161e-8

Tabl. 4. Approximate solutions of Example 2, case b

p∗ p(0) p(m+1), Stop cond 1 p(m+1), Stop cond 2
-1.8 0 -1.8000048843 -1.8000048843
1.9 1 1.9000646818 1.9000646818
2.5 1 2.4999533405 2.4999533404
0.08 0 0.0799945432 0.0799945431
1.2 1 1.1998789745 1.1998789744

F 1.94e-29 17.56 3.5156195443e-6 3.5156195443e-6
‖p− p∗‖ 0 2.52 1.4512640324e-4 1.4512640324e-4

Bibliography
1. Biegler-KonigF.W. A Newton iteration process for inverse eigenvalue problems

/F.W.Biegler-Konig //Numer. Math. � 1981. � Vol. 37, No 3. � P. 349�354.
2. Biegler-KonigF.W. Su�cient conditions for the solubility of inverse eigenvalue problems

/F.W.Biegler-Konig //Linear Algebra Appl. � 1981. � Vol. 40. � P. 89�100.
3. Podlevskyi B.M. Newton's method for the solution of inverse spectral problems

/B.M.Podlevskyi, O. S.Yaroshko // J. Mathematical Sciences. � 2013. � Vol. 174, No 3. �
P. 156-165.

4. Friedland S. Inverse eigenvalue problems / S. Friedland //Linear Algebra Appl. � 1977. �
Vol. 17, No 1. � P. 15�51.

5. Friedland S. The formulation and analysis of numerical methods for inverse eigenvalue
problems / S. Friedland, J.Nocedal, M. L.Overton // SIAM J. Numer. Anal. � 1987. �
Vol. 24, No 3. � P. 634�667.

6. GrahamM.L. Inverse Problems in Vibration /M.L.Graham, M.T.Gladwell. � New
York: Kluwer Academic Publishers. � 2005.

7. DaiH. A Numerical Method for Solving Inverse Eigenvalue Problems /H.Dai //Ma-
thematical Modelling and Numerical Analysis M2AN. � 1999. � Vol. 33, No 5. � P. 1003-
1017.

8. KhlobystovV.V. A gradient descent method for solving of one class of nonlinear
multiparameter eigenvalue problem /V.V.Khlobystov, B.M.Podlevskyi, O. S.Yaroshko
//Trudy Instituta Matematiki Akad. Nayk Belarusi. � 2014 (in Russian).

9. KublanovskayaV.N. On one approach to solving an inverse eigenvalue problem
/V.N.Kublanovskaya //Zapiski Nauch. Semin. Leningr. Otdel. Mat. Inst. Akad. Nauk
SSSR. � 1970. � Vol. 18. � P. 138�149 (in Russian).

128



A GRADIENT METHOD OF SOLVING ...

10. Li L. Su�cient conditions for the solvability of algebraic inverse eigenvalue problems
/L. Li // Linear Algebra Appl. � 1995. � Vol. 221. � P. 117�129.

11. ChuM.T. Inverse Eigenvalue Problems /MoodyT.Chu // SIAM Rev. � 1998. � Vol. 40. �
P. 1-39.

Bohdan Podlevskyi,
Pidstrygach Institute for Applide Problems
of Mechanics and Mathematics,
3b Naukova Str., Lviv, 79060, Ukraine;

Bohdan Podlevskyi, Oksana Yaroshko,
Ivan Franko National University of Lviv,
1, Universytets'ka Str., Lviv, 79000, Ukraine

Received 18.05.2014

129



Æóðíàë îá÷èñëþâàëüíî¨ 2014
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (116)

Journal of Computational
& Applied Mathematics

UDC 519.6

TWO-STEP COMBINED METHOD FOR
SOLVING NONLINEAR OPERATOR EQUATIONS

Stepan Shakhno, Halyna Yarmola

Ðåçþìå. Ó ñòàòòi âèâ÷åíî íàïiâëîêàëüíó çáiæíiñòü äâîêðîêîâîãî êîìái-
íîâàíîãî ìåòîäó äëÿ ðîçâ'ÿçóâàííÿ íåëiíiéíèõ îïåðàòîðíèõ ðiâíÿíü, ïîáó-
äîâàíîãî íà áàçi äâîõ ìåòîäiâ ç ïîðÿäêàìè çáiæíîñòi 1 +

√
2. Àíàëiç

çáiæíîñòi ïðîâåäåíî çà óçàãàëüíåíèõ óìîâ Ëiïøèöÿ äëÿ ïåðøèõ i äðóãèõ
ïîõiäíèõ òà ïîäiëåíèõ ðiçíèöü ïåðøîãî ïîðÿäêó.
Abstract. In this paper we study a semilocal convergence of the two-step
combined method for solving nonlinear operator equations. It method is based
on two methods of convergence orders 1 +

√
2. Convergence analysis is pro-

vided for generalized Lipschits condition for Frechet derivates of the �rst and
second orders and for divided di�erences of the �rst order.

1. Introduction
Consider the equation

H(x) ≡ F (x) + G(x) = 0, (1)
where F and G are nonlinear operators, de�ned on a convex subset D of a
Banach space X with values in a Banach space Y . F is a Fr�echet-di�erentiable
operator, G is a continuous operator, di�erentiability of which is not required.

The well-known Newton's method cannot be applied, as di�erentiability of
operator H is required. For solving nonlinear equation (1) very often use the
two-point iterative process [1]

xn+1 = xn −A−1
n (F (xn) + G(xn)), n = 0, 1, . . . , (2)

where An = A(xn−1, xn) ∈ L(X, Y ). The convergence analysis of the
method (2) in general and for An = F ′(xn), An = F ′(xn) + G(xn−1; xn),
An = H(xn−1; xn) and its modi�cations was provided by authors [1, 2, 3, 4, 5,
6, 18]. Here G(x; y) (H(x; y)) is a �rst order divided di�erence of the operator
G(H) at the points x and y [13, 14, 15]. In papers [7, 11] we researched a
semilocal convergence of the method (2) for An = F ′(xn) + G(xn−1; xn) and
An = F ′(xn) + G(2xn − xn−1;xn−1).

In works [10, 12] we proposed a two-step method that is based on the methods
with the convergence orders 1 +

√
2 [9, 17]. Its iterative formula is:

xn+1 = xn −
[
F ′

(xn + yn

2

)
+ G(xn; yn)

]−1
H(xn),

yn+1 = xn+1 −
[
F ′

(xn + yn

2

)
+ G(xn; yn)

]−1
H(xn+1), n = 0, 1, . . . .

(3)

Key words. Generalized Lipschitz condition, nondi�erentiable operator, semilocal con-
vergence.
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We provided a local and a semilocal convergence analysis for method (3) under
classical Lipschitz conditions for the �rst and second order derivatives and
divided di�erences of the �rst order and established the convergence order.
Also we showed results of the numerical solving of the nonlinear equations and
systems of nonlinear equations by this iterative process. In paper [8] we proved
the local convergence theorem of the (3) under generalized Lipschitz conditions.

In this paper, we study the semilocal convergence of the method (3) under
generalized Lipschitz conditions for the �rst and second order derivatives and
divided di�erences of the �rst order. These conditions are more general and
include classical Lipschitz conditions. Therefore our results have the theoretical
interest.

2. Preliminaries
We will need the following de�nition and lemmas [8, 16].

De�nition 7. Let G be a nonlinear operator de�ned on a subset D of a linear
space X with values in a linear space Y and let x, y be two points of D. A
linear operator from X into Y , denoted as G(x; y), which satis�es the condition

G(x; y)(x− y) = G(x)−G(y)

is called a divided di�erence of the �rst order of G at the points x and y.
In the study of iterative methods very often use the Lipschitz conditions with

constant L. Parameter L under Lipschitz conditions does not necessarily has
to be a constant, but may also be a positive integrable function. In work [16]
Wang suggested generalized Lipschitz conditions for the derivative operator in
which instead of constant there was used a certain positive integrable function.
In the work [9] we introduce analogous generalized Lipschitz conditions for the
divided di�erence of the �rst order operator.

Let us denote as U0 = {x : ‖x − x0‖ ≤ r0} a closed ball of radius r0 with
center at the point x0. If L in Lipschitz conditions is a positive integrable
function, we consider the conditions

‖F ′(x)− F ′(y)‖ ≤
∫ ‖x−y‖

0
L(u)du, x, y ∈ U0 (4)

and
‖G(x; y)−G(u; v)‖ ≤

∫ ‖x−u‖+‖y−v‖

0
M(z)dz, x, y, u, v ∈ U0, (5)

where L and M are positive integrable functions. Lipschitz conditions (4) and
(5) we will call generalized Lipschitz conditions or Lipschitz conditions with
the L (or M) average. Note that in the case of constants L and M we obtain
from (4) and (5) the classical Lipschitz conditions.

Lemma 1. [16]. Let h(t) =
1
t

∫ t

0
L(u)du, 0 ≤ t ≤ r, where L(u) is a positive

integrable function that is nondecreasing monotonically in [0, r]. Then h(t) is
nondecreasing monotonically with respect to t.
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Lemma 2. [8]. Let g(t) =
1
t3

∫ t

0
N(u)(t− u)2du, 0 ≤ t ≤ r, where N(u) is a

positive integrable function that is nondecreasing monotonically in [0, r]. Then
g(t) is a nondecreasing monotonically with respect to t.

3. Semilocal convergence analysis of the two-step
iterative process (3)

We can show the following semilocal convergence theorem for the method
(3). Imposed terms guarantee the convergence of the iterative process (3) to
the solution x∗ and its uniqueness.
Theorem 1. Let F and G be nonlinear operators, de�ned on an open convex
subset D of a Banach space X with values in a Banach space Y . F is a Fr�echet-
di�erentiable operator, G is a continuous operator, di�erentiability of which is
not required. Assume that the linear operator A0 = F ′

(x0 + y0

2

)
+ G(x0; y0),

where x0, y0 ∈ D, is invertible and in U0 = {x : ‖x − x0‖ ≤ r0} ⊂ D the
Lipschitz conditions are ful�lled

‖A−1
0 (F ′(x)− F ′(y))‖ ≤

∫ ‖x−y‖

0
L(z)dz, (6)

‖A−1
0 (F ′′(x)h− F ′′(y)h)‖ ≤ ‖h‖

∫ ‖x−y‖

0
N(z)dz, h ∈ X, (7)

‖A−1
0 (G(x; y)−G(u; v))‖ ≤

∫ ‖x−u‖+‖y−v‖

0
M(z)dz, (8)

where L, M , and N are positive integrable and nondecreasing monotonically
functions.

Let a, c (c > a), r0 be nonnegative numbers such that
‖x0 − y0‖ ≤ a, ‖A−1

0 (F (x0) + G(x0))‖ ≤ c, (9)

r0 ≥ c

1− γ
,

∫ (2r0−a)/2

0
L(z)dz +

∫ 2r0−a

0
M(z)dz < 1, (10)

γ =

1
8
c

∫ c

0
N(z)

(
1− z

c

)2
dz +

∫ (c−a)/2

0
L(z)dz +

∫ c−a

0
M(z)dz

1− ∫ (2r0−a)/2
0 L(z)dz − ∫ 2r0−a

0 M(z)dz
, 0 ≤ γ < 1.

Then the iterative process (3) is well-de�ned and sequences {xn}n≥0, {yn}n≥0

generated by it remain in U0 and converge to the solution x∗ of equation (1)
and, for all n ≥ 0, the following inequalities are satis�ed

‖xn − xn+1‖ ≤ tn − tn+1, ‖yn − xn+1‖ ≤ sn − tn+1, (11)
‖xn − x∗‖ ≤ tn − t∗, ‖yn − x∗‖ ≤ sn − t∗, (12)

where sequences {tn}n≥0 and {sn}n≥0 de�ned by the formulas
t0 = r0, s0 = r0 − a, t1 = r0 − c,
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tn+1 − tn+2 =

=
1

8c3

∫ c
0 N(z)(c− z)2dz(tn − tn+1)3

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(tn − tn+1)(sn − tn+1)

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
,

n ≥ 0,

(13)

tn+1 − sn+1 =

=
1

8c3

∫ c
0 N(z)(c− z)2dz(tn − tn+1)3

1− ∫ (t0−tn+s0−sn)/2
0 L(z)dz − ∫ t0−tn+s0−sn

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(tn − tn+1)(sn − tn+1)

1− ∫ (t0−tn+s0−sn)/2
0 L(z)dz − ∫ t0−tn+s0−sn

0 M(z)dz
,

n ≥ 0

(14)

are nonincreasing nonnegative and converge to certain t∗ such that

r0 − c

1− γ
≤ t∗ < t0.

Proof. Let us show by the mathematical induction method that, for all k ≥ 0

tk+1 ≥ sk+1 ≥ tk+2 ≥ r0 − c

1− γ
≥ 0, (15)

tk+1 − tk+2 ≤ γ(tk − tk+1), tk+1 − sk+1 ≤ γ(tk − tk+1) (16)
are satis�ed. For k = 0, from (13) and (14), we get

t1 − t2 =
1
c3

∫ c
0 N(z)(c− z)2dz(t0 − t1)3

1− ∫ (t0−t1+s0−s1)/2
0 L(z)dz − ∫ t0−t1+s0−s1

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(t0 − t1)(s0 − t1)

1− ∫ (t0−t1+s0−s1)/2
0 L(z)dz − ∫ t0−t1+s0−s1

0 M(z)dz

and

t2 = r0 − c−
[ 1

8c
∫ c
0 N(z)(1− z

c )
2dz +

∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

1− ∫ (2r0−a)/2
0 L(z)dz − ∫ 2r0−a

0 M(z)dz

]
c ≥

≥ r0 − (1 + γ)c = r0 − (1− γ2)c
1− γ

≥ r0 − c

1− γ
≥ 0.

Similarly, we have

t1 − s1 =
1

8c3

∫ c

0
N(z)(c− z)2dz(t0 − t1)3+

+
1

c− a

[ ∫ (c−a)/2

0
L(z)dz +

∫ c−a

0
M(z)dz

]
(t0 − t1)(s0 − t1)
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and

s1 = r0 − c−
[1
8
c

∫ c

0
N(z)

(
1− z

c

)2
dz +

∫ (c−a)/2

0
L(z)dz +

∫ c−a

0
M(z)dz

]
c.

From the last equalities it follows that

t1 ≥ t2, s1 ≥ t2, t1 ≥ s1 ≥ t2 ≥ r0 − c

1− γ
≥ 0.

Assume that that inequalities (15) and (16) are satis�ed for k = 0, n− 1.
Then, for k = n, we obtain

tn+1 − tn+2 =

1
8c3

∫ c
0 N(z)(c− z)2dz(tn − tn+1)3

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(tn − tn+1)(sn − tn+1)

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
≤

≤
1
8c

∫ c
0 N(z)(1− z

c )
2dz +

∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

1− ∫ (2r0−a)/2
0 L(z)dz − ∫ 2r0−a

0 M(z)dz
(tn − tn+1) =

= γ(tn − tn+1),

tn+1 − sn+1 =
1

8c3

∫ c
0 N(z)(c− z)2dz(tn − tn+1)3

1− ∫ (t0−tn+s0−sn)/2
0 L(z)dz − ∫ t0−tn+s0−sn

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(tn − tn+1)(sn − tn+1)

1− ∫ (t0−tn+s0−sn)/2
0 L(z)dz − ∫ t0−tn+s0−sn

0 M(z)dz
≤

≤
1
8c

∫ c
0 N(z)(1− z

c )
2dz +

∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

1− ∫ (2r0−a)/2
0 L(z)dz − ∫ 2r0−a

0 M(z)dz
(tn − tn+1) =

= γ(tn − tn+1)

and
tn+1 ≥ sn+1 ≥ tn+2 ≥ tn+1 − γ(tn − tn+1) ≥

≥ r0 − 1− γn+2

1− γ
c ≥ r0 − c

1− γ
≥ 0.

So, we prove, that {tn}n≥0 and {sn}n≥0 are nonincreasing, nonnegative se-
quences and converge to t∗ ≥ 0.

Let us prove, by mathematical induction, that the iterative process (3) is
well-de�ned and inequalities (11) are satis�ed for all n ≥ 0.

Taking into account (9) and that t0 − t1 = c, we establish that x1 ∈ U0 and
(11) are satis�ed for n = 0.
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Denote An = F ′
(xn + yn

2

)
+ G(xn; yn). Using the Lipschitz conditions (6)

and (8), we have

‖I −A−1
0 An+1‖ = ‖A−1

0 [A0 −An+1]‖ ≤
≤

∥∥∥A−1
0 [F ′

(x0 + y0

2

)
− F ′

(xn+1 + yn+1

2

)
+ G(x0; y0)−G(xn+1; yn+1)]

∥∥∥ ≤

≤
∫ (‖x0−xn+1‖+‖y0−yn+1‖)/2

0
L(z)dz +

∫ ‖x0−xn+1‖+‖y0−yn+1‖

0
M(z)dz ≤

≤
∫ (t0−tn+1+s0−sn+1)/2

0
L(z)dz +

∫ t0−tn+1+s0−sn+1

0
M(z)dz ≤

≤
∫ (t0+s0)/2

0
L(z)dz +

∫ t0+s0

0
M(z)dz < 1.

According to the Banach lemma on the invertible operator, An+1 is invertible
and

‖A−1
n+1A0‖ ≤

≤
(
1− ∫ (‖x0−xn+1‖+‖y0−yn+1‖)/2

0 L(z)dz − ∫ ‖x0−xn+1‖+‖y0−yn+1‖
0 M(z)dz

)−1
.

Let us prove that iterative process (3) is well-de�ned for k = n + 1. Taking
into account the de�nition of the �rst order divided di�erence, conditions (6),
(8) and identity [17]

F (x)− F (y)− F ′
(x + y

2

)
(x− y) =

1
4

∫ 1

0
(1− t)

[
F ′′

(x + y

2
+

t

2
(x− y)

)
−

−F ′′
(x + y

2
+

t

2
(y − x)

)]
dt(x− y)(x− y),

we obtain

‖A−1
0 H(xn+1)‖ =

= ‖A−1
0

[
F (xn+1)− F (xn)− F ′

(xn + xn+1

2

)
(xn+1 − xn)+

+ F ′
(xn + xn+1

2

)
(xn+1 − xn)− F ′

(xn + yn

2

)
(xn+1 − xn)+

+ G(xn+1)−G(xn)−G(xn; yn)(xn+1 − xn)] ‖ ≤

≤ 1
8

∫ ‖xn−xn+1‖

0
N(z)(‖xn − xn+1‖ − z)2dz+

+
∫ ‖yn−xn+1‖/2

0
L(z)dz‖xn − xn+1‖+

+
∫ ‖yn−xn+1‖

0
M(z)dz‖xn − xn+1‖.
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Denote

An =
1
8

∫ ‖xn−xn+1‖

0
N(z)(‖xn − xn+1‖ − z)2dz,

Bn =
∫ ‖yn−xn+1‖/2
0 L(z)dz, Cn =

∫ ‖yn−xn+1‖
0 M(z)dz,

Qn+1 = 1− ∫ (‖x0−xn+1‖+‖y0−yn+1‖)/2
0 L(z)dz − ∫ ‖x0−xn+1‖+‖y0−yn+1‖

0 M(z)dz.

Hence, taking into account lemmas 1, 2 and inequalities (11), we have

‖xn+1 − xn+2‖ = ‖A−1
n+1H(xn+1)‖ ≤ ‖A−1

n+1A0‖‖A−1
0 H(xn+1)‖ ≤

≤ An + [Bn + Cn]‖xn − xn+1‖
Qn+1

=

=
An‖xn − xn+1‖3

Qn+1‖xn − xn+1‖3
+

[Bn + Cn]‖xn − xn+1‖‖yn − xn+1‖
Qn+1‖yn − xn+1‖ ≤

≤ A0‖xn − xn+1‖3

Qn+1‖x0 − x1‖3
+

[B0 + C0]‖xn − xn+1‖‖yn − xn+1‖
Qn+1‖y0 − x1‖ ≤

≤ 1
8(t0 − t1)3

∫ t0−t1
0 N(z)(t0 − t1 − z)2dz(tn − tn+1)3

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
+

+
1

s0 − t1

[ ∫ (s0−t1)/2
0 L(z)dz +

∫ s0−t1
0 L(z)dz

]
(tn − tn+1)(sn − tn+1)

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
=

=
1

8c3

∫ c
0 N(z)(c− z)2dz(tn − tn+1)3

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(tn − tn+1)(sn − tn+1)

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
=

= tn+1 − tn+2

and

‖xn+2 − yn+2‖ = ‖A−1
n+1H(xn+2)‖ ≤ ‖A−1

n+1A0‖‖A−1
0 H(xn+2)‖ ≤

≤ An+1 + [Bn+1 + Cn+1]‖xn − xn+1‖
Qn+1

=

=
An+1‖xn+1 − xn+2‖3

Qn+1‖xn − xn+1‖3
+

[Bn+1 + Cn+1]‖xn+1 − xn+2‖‖yn+1 − xn+2‖
Qn+1‖yn+1 − xn+2‖ ≤

≤ A0‖xn+1 − xn+2‖3

Qn+1‖x0 − x1‖3
+

[B0 + C0]‖xn+1 − xn+2‖‖yn+1 − xn+2‖
Qn+1‖y0 − x1‖ ≤

≤ 1
8(t0 − t1)3

∫ t0−t1
0 N(z)((t0 − t1)− z)2dz(tn+1 − tn+2)3

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
+
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+
1

s0 − t1

[ ∫ (s0−t1)/2
0 L(z)dz +

∫ s0−t1
0 M(z)dz

]
(tn+1 − tn+2)(tn+2 − sn+1)

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
=

=
1

8c3

∫ c
0 N(z)(c− z)2dz(tn+1 − tn+2)3

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
+

+
1

c− a

[ ∫ (c−a)/2
0 L(z)dz +

∫ c−a
0 M(z)dz

]
(tn+1 − tn+2)(sn+1 − tn+2)

1− ∫ (t0−tn+1+s0−sn+1)/2
0 L(z)dz − ∫ t0−tn+1+s0−sn+1

0 M(z)dz
=

= tn+2 − sn+2.

Thus, the iterative process (3) is well-de�ned for all n ≥ 0. Hence it follows
that

‖xn−xk‖ ≤ tn−tk, ‖yn−xk‖ ≤ sn−tk, ‖yn−yk‖ ≤ sn−sk, 0 ≤ n ≤ k, (17)

i.e., the sequence {xn}n≥0 and {yn}n≥0 are fundamental in a Banach space X
and convergence to x∗. From (17) for k → ∞ it follows inequalities (12). Let
us show that x∗ is the solution of the equation (1). Indeed,

‖A−1
0 H(xn+1)‖ ≤ 1

8

∫ ‖xn−xn+1‖

0
N(z)(‖xn − xn+1‖ − z)2dz+

+
∫ ‖yn−xn+1‖/2
0 L(z)dz‖xn − xn+1‖+

∫ ‖yn−xn+1‖
0 M(z)dz‖xn − xn+1‖ ≤

≤ 1
24

N(‖xn − xn+1‖)‖xn − xn+1‖3 +
∫ ‖yn−xn+1‖/2

0
L(z)dz‖xn − xn+1‖+

+
∫ ‖yn−xn+1‖

0
M(z)dz‖xn − xn+1‖ → 0, when n →∞.

Thus, H(x∗) = 0. The theorem is proven. 2

Theorem 2. Let F and G be nonlinear operators, de�ned on an open convex
subset D of a Banach space X with values in a Banach space Y . F is a Fr�echet-
di�erentiable operator, G is a continuous operator, di�erentiability of which is
not required. Assume that:
1) conditions of Theorem 1 are satis�ed;
2) r0 from Theorem 1 additionally satis�es condition

γ1 =

1
8
r0

∫ r0

0
N(z)

(
1− z

r0

)2
dz +

∫ (r0−a)/2

0
L(z)dz +

∫ r0−a

0
M(z)dz

1− ∫ (2r0−a)/2
0 L(z)dz − ∫ 2r0−a

0 M(z)dz
< 1.

(18)
Then the iterative process (3) is well-de�ned and generated by it {xn}n≥0

belongs to U0 and converges to the unique solution x∗ of the equation F (x) = 0
in U0.

Proof. To show the uniqueness, we assume that there exists a second solution
x∗∗.
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Using the approximation
xn+1 − x∗∗ = xn − x∗∗ −A−1

n [H(xn)−H(x∗∗)] =

= A−1
n

[
F ′

(xn + yn

2

)
(xn − x∗∗)− F (xn) + F (x∗∗)

]
+

+A−1
n

[
G(xn; yn)−G(xn; x∗∗)

]
(xn − x∗∗),

we obtain

‖xn+1 − x∗∗‖ ≤
∥∥∥A−1

n

[
F ′

(xn + yn

2

)
(xn − x∗∗)− F (xn) + F (x∗∗)

]∥∥∥+

+‖A−1
n

[
G(xn; yn)−G(xn; x∗∗)

]
(xn − x∗∗)‖ ≤

≤
∥∥∥A−1

n

[
F ′

(xn + x∗∗

2

)
(xn − x∗∗)− F (xn) + F (x∗∗)

]∥∥∥+

+
∥∥∥A−1

n

[
F ′

(xn + yn

2

)
− F ′

(xn + x∗∗

2

)]
(xn − x∗∗)

∥∥∥+

+‖A−1
n

[
G(xn; yn)−G(xn; x∗∗)

]
(xn − x∗∗)‖ ≤

≤ ‖A−1
n A0‖

∥∥∥A−1
0

[
F (xn)− F (x∗∗)− F ′

(xn + x∗∗

2

)
(xn − x∗∗)

]∥∥∥+

+‖A−1
n A0‖

∥∥∥A−1
0

[
F ′

(xn + yn

2

)
− F ′

(xn + x∗∗

2

)]∥∥∥‖xn − x∗∗‖+
+‖A−1

n A0‖‖A−1
0

[
G(xn; yn)−G(xn;x∗∗)

]‖‖xn − x∗∗‖ ≤

≤ 1
4

∫ 1
0 (1− t)

∫ t‖xn−x∗∗‖
0 N(z)dzdt

Qn
‖xn − x∗∗‖2+

+

∫ ‖yn−x∗∗‖/2
0 L(z)dz

Qn
‖xn − x∗∗‖+

∫ ‖yn−x∗∗‖
0 M(z)dz

Qn
‖xn − x∗∗‖ =

=
1
4

∫ ‖xn−x∗∗‖
0 N(z)

∫ 1
z/‖xn−x∗∗‖(1− t)dzdt‖xn − x∗∗‖2

Qn
+

+

∫ ‖yn−x∗∗‖/2
0 L(z)dz +

∫ ‖yn−x∗∗‖
0 M(z)dz

Qn
‖xn − x∗∗‖ ≤

=
1
8

∫ ‖xn−x∗∗‖
0 N(z)

(
1− z

‖xn−x∗∗‖)
2dz‖xn − x∗∗‖2

Qn
+

+

∫ ‖yn−x∗∗‖/2
0 L(z)dz +

∫ ‖yn−x∗∗‖
0 M(z)dz

Qn
‖xn − x∗∗‖ ≤

≤ γ1‖xn − x∗∗‖ ≤ ... ≤ γn+1
1 ‖x0 − x∗∗‖,

which implies x∗∗ = lim
n→∞xn = x∗. The theorem is proven. 2

Let L(z) = L = const, N(z) = N = const and M(z) = M = const. Then
we get the following result.
Theorem 3. Let F and G be nonlinear operators, de�ned on an open convex
subset D of a Banach space X with values in a Banach space Y . F is a Fr�echet-
di�erentiable operator, G is a continuous operator, di�erentiability of which is
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not required. Assume that the linear operator A0 = F ′
(x0 + y0

2

)
+ G(x0; y0),

where x0, y0 ∈ D, is invertible and in U0 = {x : ‖x − x0‖ ≤ r0} ⊂ D the
Lipschitz conditions are ful�lled

‖A−1
0 (F ′(x)− F ′(y))‖ ≤ L‖x− y‖,

‖A−1
0 (F ′′(x)h− F ′′(y)h)‖ ≤ N‖x− y‖‖h‖, h ∈ X,

‖A−1
0 (G(x; y)−G(u; v))‖ ≤ M(‖x− u‖+ ‖y − v‖),

where L, M and N are positive numbers.
Let a, c (c > a), r0 be nonnegative numbers such that

‖x0 − y0‖ ≤ a, ‖A−1
0 (F (x0) + G(x0))‖ ≤ c,

r0 ≥ c

1− γ
, (L/2 + M)(2r0 − a) < 1,

γ =
c2N/24 + (L/2 + M)(c− a)

1− (L/2 + M)(2r0 − a)
, 0 ≤ γ < 1.

Then the iterative process (3) is well-de�ned and sequences {xn}n≥0, {yn}n≥0

generated by it remain in U0 and converge to the solution x∗ of equation (1)
and, for all n ≥ 0, the following inequalities are satis�ed

‖xn − xn+1‖ ≤ tn − tn+1, ‖yn − xn+1‖ ≤ sn − tn+1,
‖xn − x∗‖ ≤ tn − t∗, ‖yn − x∗‖ ≤ sn − t∗,

where sequences {tn}n≥0 and {sn}n≥0 de�ned by the formulas
t0 = r0, s0 = r0 − a, t1 = r0 − c,

tn+1 − tn+2 =

N(tn − tn+1)3/24 + (L/2 + M)(tn − tn+1)(sn − tn+1)
1− (L/2 + M)(t0 − tn+1 + s0 − sn+1)

, n ≥ 0,

tn+1 − sn+1 =

N(tn − tn+1)3/24 + (L/2 + M)(tn − tn+1)(sn − tn+1)
1− (L/2 + M)(t0 − tn + s0 − sn)

, n ≥ 0

(19)

are nonincreasing nonnegative and converge to certain t∗ such that r0− c

1− γ
≤

≤ t∗ < t0.
Remark 1. If F (x) = 0, L = 0 and N = 0 then the sequences {tn}n≥0 and
{sn}n≥0, de�ned by the formulas (19), reduce to similar ones in [9] for the case
α = 1.
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NUMERICAL ANALYSIS OF THE GIRKMANN
PROBLEM WITH FEM/BEM COUPLING

USING DOMAIN DECOMPOSITION

Andriy Styahar

Ðåçþìå. Ìè ðîçãëÿäà¹ìî ïî¹äíàíó ìîäåëü äëÿ çàäà÷i Ãiðêìàíà. Öÿ
çàäà÷à ïîëÿãà¹ â îá÷èñëåííi ïëîñêîãî äåôîðìîâàíîãî ñòàíó äëÿ òiëà, ùî
ñêëàäà¹òüñÿ ç îñíîâíî¨ ÷àñòèíè òà òîíêî¨ ÷àñòèíè, ùî ïðèêðiïëåíà äî
îñíîâíî¨ ÷àñòèíè. Äëÿ ïîáóäîâè íàáëèæåíîãî ðîçâ'ÿçêó öi¹¨ çàäà÷i ìè
âèêîðèñòîâó¹ìî ìåòîä ãðàíè÷íèõ åëåìåíòiâ (ÌÃÅ) òà ìåòîä ñêií÷åííèõ
åëåìåíòiâ (ÌÑÅ), ïî¹äíàíi çà äîïîìîãîþ àëãîðèòìó äåêîìïîçèöi¨ îáëàñ-
òåé. Íàâåäåíî ðåçóëüòàòè ÷èñëîâèõ åêñïåðèìåíòiâ. Ïîðiâíÿíî íàïðóæå-
íî-äåôîðìîâàíèé ñòàí êîíñòðóêöié äëÿ ðiçíèõ ôîðì îáîëîíîê.
Abstract. We consider a coupled model for the Girkmann problem. The
problem involves computation of the plane strain state for the body which
consists of a massive part and a thin part, which is attached to the massive
part. For the numerical solution of this problem we use boundary element
method (BEM) and �nite element method (FEM) for di�erent parts of the
body, which are coupled using domain decomposition. We provide the re-
sults of some numerical simulations. The stress-strain state for the structures
having shells of di�erent shapes are compared.

1. Introduction
A lot of structures, that occur in engineering, are inhomogeneous and contain

thin parts and massive parts. Therefore, it is important to develop both ana-
lytical methods and numerical algorithms for the analysis of the stress-strain
state of such structures. Di�erent aspects of such problems were discussed in
[3, 6, 8, 2] (in [8] the case of the bodies with thin inclusions is considered; in
[2] the bodies with thin covers are considered). Papers [3] and [6] are devoted
to the numerical solution of the Girkmann problem.

In this article, we solve numerically the Girkmann problem which involves
computation of a plane strain state for the body consisting of a massive part
and a thin part, which is attached to the massive part. The thin part is modeled
using Timoshenko shell theory equations and its stress-strain state is numer-
ically computed using FEM with bubble shape functions. The massive part
is modeled using the theory of linear elasticity and the numerical solution is
obtained using boundary element method (BEM). The approximate solutions
in both parts are connected using domain decomposition algorithm.

The application of domain decomposition method allows us to decouple prob-
lems in both parts and solve the problems independently in each part. As a

Key words. Girkmann problem, elasticity theory, Timoshenko shell theory, �nite element
method, boundary element method, domain decomposition.

141



ANDRIY STYAHAR

result, it is possible to compute the stress-strain state accurately even for small
shell thicknesses without having problems with stability issues of the coupled
problem.

We compare the stress-strain state for di�erent shapes of the middle line of
the shells: circular, parabolic and of the form of chain curve. Although the
curves lie close to each other, the stress-strain states in these cases are very
di�erent from each other.

2. Problem statement
Let us consider a problem of plane strain of an elastic body which consists

of a massive part Ω1 with the thin part in Ω2 attached to Ω1 by its end face
(Fig. 1). Let us denote by Γi the outer boundary of the bodies in Ωi, i = 1, 2
and by ΓI the common boundary between bodies in Ω1 and Ω2.

Fig. 1. Elastic Body

The plane strain stress of the body in Ω1 can be described by

∂σ11

∂x1
+

∂σ12

∂x2
= f1

∂σ21

∂x1
+

∂σ22

∂x2
= f2

(1)

that holds for x ∈ Ω1, x = (x1, x2).
Here f = (f1, f2) denotes the volume forces that act on the body in Ω1.
From the Hook's law it follows that the components of the stress tensor can

be written as

σij =
1
2
E1

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2,
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where u(x) = (u1(x), u2(x)) is the displacement vector with ui being the dis-
placements in the directions xi for i = 1, 2; E1 is the Young's modulus of the
body in Ω1. In the following we assume that no volume forces act on the body
in Ω1.

Let us denote by n the outer normal vector to Ω1, and by τ � the tangent
vector.

Equations (1) are considered together with the boundary conditions

un = 0, uτ = 0, x ∈ ΓD

and

σnn = 0, σnτ = 0, x ∈ ΓN ,

where Γ1 = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅; un and uτ are the components of the
displacement vector in the coordinate system n, τ . Similarly, σnn and σnτ are
the components of the stress tensor in the n, τ coordinate system.

For the description of the thin part in Ω2 we use the equations of Timoshenko
shell theory of the form [4]

− 1
A1

dT11

dξ1
− k1T13 = p1,

− 1
A1

dT13

dξ1
+ k1T11 = p3,

− 1
A1

dM11

dξ1
+ T13 = m1, 0 ≤ ξ1 ≤ 1,

(2)

where v1, w, γ1 are the displacements and angle of revolution in the shell; T11,
T13, M11 are the forces and momentum in the shell; A1 = A1 (ξ1), k1 = k1 (ξ1)
correspond to Lame parameter and middle line curvature parameter; p1, p3,
m1 are given functions; it holds

T11 =
E2h

1− v2
2

ε11, T13 = k′G′hε13, M11 =
E2h

3

12
(
1− v2

2

)χ11,

ε11 =
1

A1

dv1

dξ1
+ k1w, ε13 =

1
A1

dw

dξ1
+ γ1 − k1v1, χ11 =

1
A1

dγ1

dξ1
,

p1 =
(
1 + k1

h
2

)
σ+

13 −
(
1− k1

h
2

)
σ−13,

p3 =
(
1 + k1

h
2

)
σ+

33 −
(
1− k1

h
2

)
σ−33,

m1 = h
2

((
1 + k1

h
2

)
σ+

13 −
(
1− k1

h
2

)
σ−13

)
.

Here E2 is the Young's modulus for the shell, v2 is the Poisson's ratio; σ+
ij , σ

−
ij ,

i, j = 1, 3 are the components of the stress tensor on the outer (ξ3 = h
2 ) and

inner (ξ3 = −h
2 ) boundaries of the shell. It is known, that in the case of

isotropic bodies we have k′ = 5
6 , G′ = E2

2(1+v2) .
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At the free end of the thin part we impose boundary conditions either on the
displacements v1, w and γ1 or on the forces T11, T13 and momentum M11 in
the shell (if the end is subjected to load or free). At the top and bottom outer
boundaries of the shell we prescribe to σ+

13 and σ+
33 some given stresses.

Remark. The choice of 2D curvilinear coordinate system for the shell as
ξ1, ξ3 (instead of ξ1, ξ2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the body being in�nite in the direction of ξ2.

On the boundary ΓI , common to both Ω1 and Ω2 we prescribe the following
coupling conditions:

un = v1 + ξ3γ1, uτ = w,

∫ h
2

−h
2

σnndξ3 = T11,

∫ h
2

−h
2

σnτdξ3 = T13,

∫ h
2

−h
2

σnnξ3dξ3 = M11.
(3)

3. Numerical Approximation of the Model
For the numerical solution of the model domain decomposition algorithm

is used. Inside the main part we construct the approximate solution using
boundary element method (BEM) applied to the integral equations based on
the Green's representation formula for the solution of the following form [1]

1
2
uj(x0)

∫

Γ
(ti(x)Gij(x, x0)− Fij(x, x0)ui(x))dΓ(x), (4)

where Γ = Γ1 ∪ ΓI , x0 ∈ Γ;
Gij(x, ζ) = C1(C2δij log r − yiyj

r2 ) is the matrix Green's function;
Fij(x, ζ) = C3

r2 (C4(δikyj + δjkyi − δijyk) + 2yiyjyk

r2 ) is a co-normal derivative
of the matrix Green's function;

r2 = yiyi;
yi = xi − ζi;
µ1 = E1

2(1+ν1) is a shear modulus of the body in Ω1;
C1 = − 1

8πµ(1−ν1) ,
C2 = 3− 4ν1,
C3 = − 1

4π(1−ν1) ,
C4 = 1− 2ν1,
In order to apply BEM we divide the boundary Γ1 ∪ ΓI of Ω1 into the

elements and then choose the appropriate shape functions φj(ξ), j = 1, 2, ..., m,
to construct the approximation.

The approximate solution can be written in the form

ui(ξ) =
∑m

j=1 uijφj(ξ), i = 1, 2,

ti(ξ) =
∑m

j=1 tijφj(ξ), i = 1, 2, ξ ∈ Γ1 ∪ ΓI ,

where uij and tij are the unknown coe�cients that are found by applying
Galerkin method to the integral equation (4) (see [1]).
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The approximate solution of the boundary value problem inside Ω2 is found
using �nite element method with bubble shape functions. On each element the
shape functions are given by

Φ0(ξ) =
1− ξ

2
, Φ1(ξ) =

1 + ξ

2
,

Φj(ξ) =

√
2j − 1

2

∫ ξ

−1
Pj−1(t)dt, j = 2, 3, ...,

where ξ ∈ [−1, 1] is the local coordinate, obtained by mapping each element
onto the inverval [-1,1]; Pj(t) are the Legendre polynomials.

In order to �nd the approximate solution of the boundary-value problem (2),
we apply to the system (2) Galerkin approach.

The approximate solutions in both domains are connected using domain
decomposition algorithm (Dirichlet-Neumann scheme) [5]. The domain decom-
position algorithm has the following form:

1) set an initial guess λ0 for the unknown displacements on the interface ΓI ,
set ε > 0;

2) for k=0,1,... solve the boundary value problem in Ω2 with the displace-
ments equal to λk to obtain the apporimation for the loads in Ω1 using (3);

3) solve the corresponding integral equations in Ω1 to �nd the displacements
u1

n and u1
τ on ΓI ;

4) update the displacements λk on ΓI :

λk+1
1 = λk

1 + θu1
n,

λk+1
2 = λk

2 + θu1
τ ,

where θ > 0 is a relaxation parameter;
5) if ‖λk+1 − λk‖ ≥ ε then go to step 2, otherwise the algorithm ends.
It is known, that the Steklov-Poincare equation that corresponds to our

problem, possesses a unique solution [7]. Moreover, domain decomposition al-
gorithm converges for appropriately chosen (empirically) relaxation parameter
θ (0 ≤ θ ≤ θmax) [7].

4. Numerical experiments
Let Ω1 be a polygon with xb

1 = −1, xb
2 = −1, xe

1 = 1, xe
2 = 1. To the main

part in Ω1 a thin body in Ω2 is attached on its edge. The thickness of the body
in Ω2 is h = 0.01 (Fig. 1).

On the boundaries AC and AB the structure is �xed (the displacements are
equal to zero); we prescribe a load of p = 1Pa/m on the outer boundary of the
body in Ω2 (Fig. 1); on the edge with the point E the symmetry conditions are
set; all the other parts of the outer boundary are traction-free.

We consider the following physical parameters of the bodies: Young's mod-
ulus of the main part in Ω1 is equal to E1 = 25000 MPa, which corresponds to
concrete; the Young's modulus of the thin part in Ω2 is equal to E2 = 20580
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MPa, which corresponds to cork. Poisson's ratio of the body in Ω1 is equal to
ν1 = 0.33, in Ω2 � ν2 = 0.

For the numerical solution we use FEM in the shell with bubble shape func-
tions. For the main part we use boundary element method with quadratic shape
functions. Problems in both parts are connected using domain decomposition
algorithm (Dirichlet-Neumann scheme) [5].

In all the cases under consideration the convergence is obtained in around 5
iterations. The results correspond to a case of 202 boundary elements, 32 �nite
elements of the fourth order. We �nd, that the mesh re�nement or the change
of the order of the shape functions don't change the solution signi�cantly.

Let us consider di�erent cases of the curve shapes, that describe middle line of
the body in Ω2: circle arc, parabola and chain curve. The unknown coe�cients
of the parametric representation of the curves are chosen in such a way, that
all the curves have the same endpoints D and E. Moreover, all the curves are
symmetric with respect to the axis, which passes through the point E and is
colinear to AB.

In the case of the circle arc the parametric representation has the form

x1(α) = R sinα,

x2(α) = R cosα, π
4 ≤ α ≤ π

2 .

Let us choose R = 5.005.
In the case of parabola parametric representation has the form

x1(α) = −2−√2
R x2

2 + R,

x2(α) = R cosα, π
4 ≤ α ≤ π

2 .

In the case of chain curve parametric representation has the form

x1(α) = −4.497
2 (e

x2
4.497 + e−

x2
4.497 ) + 9.502,

x2(α) = R cosα, π
4 ≤ α ≤ π

2 .

The graphs of three curves are shown on Fig. 2
We can conclude from Fig. 2, that the graphs of the curves lie close to each

other.
Formulae for the calculation of Lame parameter A1 and curvatures k1 of the

middle line of the shells have the form

A1 =
√

x
′2
1 + x

′2
2 ,

k1 = x
′′
1 x
′
2−x

′
1x
′′
2

A3
1

.

Let us calculate the stress-strain state for the body depicted on the Fig. 1.
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Fig. 2. Middle Line of Di�erent Curves

Fig. 3, 4 show the displacements in the case of di�erent shapes of middle
lines, Fig. 5-7 show the momenta that arise on the middle line of Ω2 in the
case of di�erent shapes of middle lines.

Curve 1 on Fig. 3 corresponds to the case of the middle line having the shape
of part of the parabola, curve 2 � middle line being the chain curve.

Fig. 3. Displacements w on the middle line of the shell in the
case of the circle-shaped shell

On the interface 0 ≤ x2 ≤ h, x1 = xe
1 we have to set the Neumann condition

for the problem in main part, and Dirichlet condition for the problem in the
shell. The displacements on the interface for the shell are found using the
conditions

un = v1 + ξ3γ1,

uτ = w.
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Fig. 4. Displacements w on the middle line of the shell in the
case of parabola and chain curve

Fig. 5. Momentum m11 on the middle line of the shell in the
case of the circle-shaped shell

Applying the �rst condition at the points ξ3 = 0 and ξ3 = h/2, we �nd that
v1|ξ1=0 = −un|ξ3=0,

γ1|ξ1=0 =
2
h

(un|ξ3=h
2
− un|ξ3=0).

Applying the second condition at the point ξ3 = 0, we �nd that

w|ξ1=0 = uτ |ξ3=0.

Let us consider the conditions on the loads, that need to be imposed on the
interface for the problem in the main part. In order to express σnτ we use
conditions

148



NUMERICAL ANALYSIS OF THE GIRKMANN PROBLEM ...

Fig. 6. Momentum m11 on the middle line of the shell in the
case of parabola

Fig. 7. Momentum m11 on the middle line of the shell in the
case of chain curve

∫ h
2

−h
2

σnτdξ3 = T13, σnτ (ξ3) = σ−13|ξ1=0, σnτ (ξ3) = −σ+
13|ξ1=0.

In order to express σnn we use conditions
∫ h

2

−h
2

σnndξ3 = T11,

∫ h
2

−h
2

σnnξ3dξ3 = M11.

Let us assume that on the interface σnτ = aξ2
3 +bξ3 +c, σnn = eξ3 +f , where

a, b, c, e, f are the unknown coe�cients. These assumptions are based on the
fact, that we have three conditions for σnτ and two conditions on σnn.

The computations yield
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σnn(ξ3) = M11
12
h3

ξ3 +
T11

h
,

σnτ = (
3
h2

(σ−13|ξ1=0 − σ+
13|ξ1=0)− 6

h3
T13)ξ2

3−

−1
h

(σ−13|ξ1=0 + σ+
13|ξ1=0)ξ3 +

1
h

(T13 − 1
4
(h(σ−13|ξ1=0 − σ+

13|ξ1=0)− 2T13).

From Fig. 3-4 we can conclude, that the smallest displacement in the normal
direction is achieved when the middle line of the thin part of the body is a chain
curve. The largest displacement in the normal direction arises when the middle
line of the thin part is a circle segment.

Fig. 5-7 show, that the smallest momentum is achieved when the middle line
of the thin part of the body is a chain curve. The largest momentum arises
when the middle line of the thin part is a circle segment.

Therefore, the stress-strain state of the bodies inside the thin part in the
case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature).

5. Conclusions
We conclude, that the stress-strain state of the bodies inside the shell in the

case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature). The elastic body where the
shell has the shape of the chain curve, is the best since almost no momentum
arises in this case.

The convergence of our algorithm is obtained in around 5 iterations. There-
fore, the proposed algorithm can be e�ciently applied for the numerical solution
of the Girkmann problem.
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NUMERICAL MODELLING OF SHALLOW-WATER
FLOW IN HYDRODYNAMIC APPROXIMATIONS

Petro Venherskyi, Valerii Trushevskyi

Ðåçþìå. Ñôîðìóëüîâàíî äâîâèìiðíó ïî÷àòêîâî-êðàéîâó çàäà÷ó ðóõó
âîäè íà òåðèòîði¨ âîäîçáîðó. Äëÿ âèâîäó ðiâíÿíü ðóõó ïðîâîäèëèñÿ óñå-
ðåäíåííÿ äîäàíêiâ çà ãëèáèíîþ ïîòîêó òà âðàõîâóâàëèñÿ óìîâè ìiëêîñòi
ïîòîêiâ. Ïîáóäîâàíî âiäïîâiäíó âàðiàöiéíó çàäà÷ó, äëÿ ÿêî¨ ïðè äèñêðåòè-
çàöi¨ çà ïðîñòîðîâèìè çìiííèìè âèêîðèñòàíî ìåòîä ñêií÷åííèõ åëåìåíòiâ i
çà ÷àñîì � îäíîêðîêîâó ðåêóðåíòíó ñõåìó. Äëÿ âåëèêèõ ÷èñåë Ðåéíîëüäñà
ïîáóäîâàíî ñòàáiëiçàöiéíó ñõåìó, ùî áàçó¹òüñÿ íà ôóíêöiÿõ-áóëüáàøêàõ iç
âèêîðèñòàííÿì ìåòîäó íàéìåíøèõ êâàäðàòiâ.×èñëîâi ðåçóëüòàòè àïðîáî-
âàíî íà òåñòîâèõ ïðèêëàäàõ äëÿ ðiçíèõ ïî÷àòêîâèõ òà êðàéîâèõ óìîâ, ó
ðiçíi ìîìåíòè ÷àñó i ïðè âèáîði âåëèêèõ çíà÷åíü ÷èñåë Ðåéíîëüäñà.

Abstract. Formulated a two-dimensional initial-boundary value problem
of movement of water in the watershed. To derive the equations of motion
were carried averaging summands in the depth �ow and conditions of shallow
�ows were taken into account. The variational problem was built for it in
discretization for spatial variables used �nite element method and time - one-
step recurrent scheme. For large Reynolds numbers built stabilization scheme
based on functional bubbles by the method of least squares. Numerical re-
sults tested on test examples for di�erent initial and boundary conditions, at
di�erent times and in selecting high values of Reynolds numbers.

1. Introduction
One of the most important processes of a hydrological cycle concerns to a

shallow water �ows to which belong rain and channels �ows, water �ow from a
watershed surface, motion of water in ocean, etc. Processes which underlie of
this model have wave nature, with wave length is much greater then the ver-
tical dimensions. To describe these processes is possible outgoing from general
equations of Navier-Stokes or from equations of Reynolds. From supposition,
that the horizontal scales of �uid motion are much more vertical, the average
on vertical component of a �ow is realized. The detailed derivation of average
equations of shallow water from equations of the Reynolds can be found in
works [3],[6]. Equations looks like following:

†Key words. Variational problem, initial-boundary value problem, Galerkin approxima-
tions, shallow-water �ow, Navier-Stokes equations, hydrodynamic approximations.
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



∂qi
∂t +

2∑
j=1

∂
∂xj

( qiqj

h

)
=

2∑
j=1

∂Nij

∂xj
− ∂Np

∂xi
+ Bi,

Nij ≈ εij

(
∂qi

∂xj
+ ∂qj

∂xi

)
,

∂(ρh)
∂t +

2∑
j=1

∂qj

∂xj
= 0, i, j = 1, 2,

(1)

where εij - vortex viscosity coe�cient, qi = hui � unknowns of value �ows,
Bi = τi|ξ − τi|η + pa

∂h
∂xi

+ ρgh ∂η
∂xi

(i = 1,2), Np = ρg h2

2 + hpa, pa - atmospheric
pressure, ξ - free surface of �ow, - bottom contour, h - �ow depth, τi|ξ òà τi|η
- stresses on free surface and bottom contour accordingly.

Average equations of shallow water deduced from general Navier-Stokes equa-
tions in the works [1,2],[4],[7]. It looks like





∂ui
∂t +

2∑
j=1

uj
∂ui
∂xj

+ g ∂h
∂xi

+ (ui−u0
i )R−uiI

h = −g ∂η
∂x − Fi

h − ∂(RΛ)
∂xi

,

∂h
∂t + ∂(huj)

∂xj
= R− I, i = 1, 2,

(2)

where ui - unknowns of speed value, h - unknown �ow depth, ui0 - velocity
on a free surface, g - acceleration of gravity, I - speed of �uid in�ltration into
the ground, R - rain in�ow velocity, η - bottom contour, Λ - speed of falling of
rain drops, Fi - items which allow for tangential stresses on the bottom and on
the free surface of a �ow.

In motion equations from viscous terms there are only tangential stresses on
a free surface and at the bottom, others are rejected in conditions of shallow
water. In a result of averaging system of equations set by depth of a �ow
and allowing conditions of shallow water, the third equation of motion will be
converted to the hydrostatic law of pressure, which is characteristic for shallow
water equations

p (z) = p (ξ)− ρf3 (ξ − z) .

For completion of problem formulation equation of shallow-water supplement
by an initial and boundary conditions. The boundary conditions in the litera-
ture partition on two kinds: those which are set on hard boundary of �ow and
on opened boundary. On each of boundaries it is necessary to set two condi-
tions: normal and tangent components of stresses or speeds. For model (2) are
set only normal components [2]:

on hard boundary
qn = 0 or qn = qn;

on opened boundary
Nnn = Nnn.

It is explained to those that in model (1) the terms that take into account votex
viscosity are discarded, therefore tangent components of stresses or �ows are
not set.
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Let's consider one more version of assigning of a boundary conditions. Let
Ω - projection of a �uid �ow on a two-dimension plane. The boundary of area
Ω is partitioned on following parts: ΓB - �xed boundary of a watershed, ΓR-
boundary of a channel (the �uid in�ows), ΓS - opened sea border (the �uid can
both in�ow and out�ow, see Fig. 1).

Fig. 1. Projection of a �uid �ow on a two-dimension plane

More often boundary conditions for two-dimension problem of shallow water
write down [2,4,9-13]:

− on �xed boundary ΓB of a �ow set
U · ν = 0, ∇Uτ · ν = 0,

where ν and τ - units normal and tangent to bound of domain,Uτ -
tangential components of velocity;

− on boundary of �uid in�ow:

U · ν = Û · ν, µ
∂U

∂ν
· τ = 0,

where µ - coe�cient of viscosity;
− on opened sea border the boundary conditions it is possible to set as

∂U

∂ν
= 0.

In considered above shallow water models all items which contain component
of stresses are skipped. Component of stresses are saved only on a free surface
and on the bottom of �ow. Scienti�c approach, which is submitted in this work
saves all components of stresses in motion equations. For solving of shallow
water problem the �nite element method was selected.

2. Formulation of initial-boundary problem
Suppose that �ow of viscous incompressible �uid in each point of time t ∈

[0, T ], 0 < T < +∞, forms on an immovable surface x3 = η(x1, x2) of watershed
some �uid layer D = D(t) (Fig.2).

Let's designate through ξ(x, t) a free surface of this �ow, which contacts to
atmosphere, where x = (x1, x2, x3) ∈ R3, ν - unit outward normal of domain
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Fig. 2. Model of shallow water �ow

D = D(t). Lateral (vertical) surface of this �ow, if such exists we shall designate
through S. Let's mark, that the part of a surface S can be degenerated in
boundary Γ of watershed river. So ∂D(t) = η ∪ ξ(t) ∪ S.

Projection of a �uid layer D(t) on a horizontal plane we will denote as Ω.
Assume, that boundary γ of domain continuous by Lipschitz.

Let's guess, that a �uid state under the in�uence of mass forces F = {fi(x)3i=1
in each point of time t ∈ [0, T ], 0 < t < +∞ is described by of the Navier-Stokes
equations 




ρ

(
∂ui
∂t +

3∑
k=1

∂
∂xk

(uiuk)− fi

)
−

3∑
k=1

∂σik
∂xk

= 0,

σij = −pδij + τij ,
τij = 2µeij ,

eij = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
,

div ~u = 0, i, j = 1, 2, 3,

(3)

where div ~u =
3∑

k=1

∂uk
∂xk

, ~u = {ui (x, t)}3
i=1 and p = p(x, t) - velocity vector

and hydrostatic pressure accordingly, F = fi(x, t)3i=1 - vector of mass forces,
ρ = const > 0 and µ = const > 0- density and viscosity, {eij}3

i,j=1, {σij}3
i,j=1 -

velocity and stresses tensors, δij - Kroneker symbol.
Let in an initial time water �ow described by conditions

ui|t=0 = u0
i in D(0), i = 1, 2, 3. (4)

Except of initial conditions, the equations are necessary supplement by the
applicable boundary conditions, which determine interaction of �ow water with
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atmosphere, surface of ground, groundwater etc.The main factors which in�u-
ence on a �uid state:

− intensive rain precipitations, evaporation of water;
− replenishing of water from channel;
− in�ltration of water in soil(groundwater replenishment);
− atmospheric wind, etc.
Attempts to describe characteristic modes of shallow-water �ows result in

simpli�cation of equations (3) and respective to them boundary conditions and
will be reviewed later. At the given stage we will limit by a typical boundary
conditions for this equations [2,5,7,9-13]:

u = _
u on Bu × (0, T ],mes(Bu) > 0, Bu ⊂ ∂D(t), (5)

τijνj = _
τ i on Bτ × (0, T ], Bτ ⊂ ∂D(t)\Bu, i, j = 1, 2, 3, (6)

where u = {ui}3
j=1, ν = {νi}3

j=1 - unit outward normal of bound ∂D(t), νi =
cos(ν, xi).

Generally free surface of a �ow ξ(x, t) is unknown, therefore it is necessary
to set conditions for de�nition of its position in space in each point time. For
�nding of a free surface x3 = ξ(x1, x2, t) we shall use a kinematic condition [16]:

u3 + R =
∂ξ

∂t
+ u0

1

∂ξ

∂x1
+ u0

2

∂ξ

∂x2
, (7)

where R � rain velocity, u0
1, u

0
2 - horizontal components of velocity on a free

surface and initial condition
ξ|t=0 = ξ0 in Ω. (8)

On the bottom of �ow the �uid can �ow in a soil in a direction of an axis x3

u3 = −I on [0, T ], (9)
where I - velocity of seepage water in soil. If I = 0 does it mean that surface is
impermeable ; I > 0 - �uid particles seepage in a soil with a preset speed; I <
0 - the groundwaters rise on a back surface of ground.

On a base surface for velocity we shall allow for a condition of adhesion
u1 = u2 = 0. (10)

The initial-boundary problem (3)-(10) is di�cult to applying for a nature wa-
tersheds and requires simpli�cations. At the �rst stage (3) we will reduce equa-
tion to a undimensional kind. Such form will give a chance to receive numbers,
which characterize motion of water (Reynold's number), and also the parame-
ters of equations are such normalized that their values will change in de�nite
limits. At the second stage, allowing conditions of shallow water, neglect terms
order of smallness ε = δ/L (the maximum thickness of a �ow does not exceed
the size δ, and characteristic horizontal dimensions value L, and(δ/L << 1)).

All components of stresses in two �rst equations of motion remain saved after
simpli�cation. The following step of simpli�cations is reduction of a problem
dimension at the expense of a depth averaging of equations. After an average
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is received a two-dimension problem of a water �ow in hydrodynamic approxi-
mation concerning three unknowns - two components of �ow and depth:




∂qi
∂t +

2∑
j=1

∂
∂xj

(
qi

qj

h

)
+ Gh

(
∂h
∂xi

+ ∂η
∂xi

)
− 1

ρRe

2∑
j=1

∂(τijh)
∂xj

− g|q|qi

ReC2h2 = 0,

∂h
∂t +

2∑
j=1

∂qj

∂xj
= R− I,

τij = µ
(

∂(qi/h)
∂xj

+ ∂(qj/h)
∂xi

)
, i, j = 1, 2,

(11)
where h - unknown depth, q = (q1, q2) - unknown vector of �ow, η - bottom
contour,ρ - density of water, Re - Reynolds number, τij - stresses tensor, µ -
viscosity of water, C - Shezi factor,g - gravitational acceleration, G = gL

V 2∞
, L -

typical spatial size, V∞ - typical velocity, R - rain in�ow, I - water seepage in
a soil.

The �rst two equations of system are averaged equations of motion, which are
parabolic type. Their novelty consists in preservation of addend with internal
stresses of a �ow, which are essential on surfaces with considerably change
gradients. In the literature the hyperbolic equations of a shallow water �ow
are considered where the stresses only on the bottom and on a free surface of
a �ow are taking into consideration. In this case it is supposed that the wind
stresses are negligible. The third equation of a system is an averaged equation
of continuity, which describes a free surface of a �ow.

Let's consider a water �ow from a surface watershed in a projection on a
horizontal plane. Here Ω - two-dimension domain which restricted by curve ΓB

(watershed line) and ΓP (out�ow line), n, ζ - normal and tangent to boundary
of area accordingly.

Fig. 3. Water �ow projection on a horizontal plane

Equations of system (11) are added by boundary conditions
τζ |ΓB

= 0, q · n|ΓB
= 0, q · ζ|ΓP

= 0, q · n|ΓP
= q̂ (12)

and initial conditions
h|t=0 = h0, q|t=0 = q0â in Ω, (13)
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where q̂ � known water out�ow.
In outcome we received a system of three equations (11) for searching com-

ponents of vector of a �ow and depth with boundary (12) and initial (13)
conditions. We will decide a problem (11)-(13) by a �nite element method
(FEM)[8,12-13].

3. Applying of a FEM to the problem solution
According to a procedure of a FEM it is necessary to make a variational

formulation. For formulation of variational initial-boundary target setting (11)
� (13) we will enter set of allowed functions for �ows

Q (q̂) :=
{

q = {qi}2
i=1 ∈ H1 (Ω)2

∣∣∣q · n|ΓP
= q̂, q · n|ΓB

= 0, q · ζ|ΓP
= 0

}

and space Q0 = Q(0). Space of allowed(permissible) functions for depth - Φ :=
L2(Ω). Let's search a �ow as q = q∗ + q̄ with unknown q∗ ∈ Q0, q̄.n = q̂ on Γp.
Further, for simplicity of identi�cations we will use instead of q∗ identi�cation
q.

Let's enter the following forms




a(q, p) =
∫
Ω

q · pdx, b(w; q, p) =
∫
Ω

2∑
i,j=1

pi
∂

∂xj
(qiwj) dx,

c (h;w, p) = 1
ρ

∫
Ω

h
2∑

i,j=1
τij (w) ∂pi

∂xj
dx, d (z;h, p) = 1

2

∫
Ω

Gzh (∇ · p)dx,

l (η;h, p) =
∫
Ω

Gη∇ · (hp) dx, R̄ (h, q, p) =
∫
Ω

g|q|(q·p)
C2h2 dx,

∀p, q, w ∈ Q0,
m (q, θ) =

∫
Ω

(∇ · q) θdx, 〈s, θ〉 =
∫
Ω

(R− I) θdx, ∀θ, z ∈ Φ.

(14)

Then, take into 3, the variational initial-boundary target setting to become




Given q0 ∈ Q0, h0 ∈ Φ;
Find q ∈ Q0, h ∈ Φ such that
a (q′ (t) , p) + b (q (t) /h(t); q (t) , p)−d (h (t) ;h (t) , p)−
−l (η;h (t) , p) + 1

Re

[
c (h (t) ; q/h (t) , p)− R̄ (h (t) ; q (t) , p)

]
+

+a (F (q̂), p) = 0,
a (h′ (t) , θ) + m (q (t) , θ) + a(V (q̂), θ) = 〈s (t) , θ〉∀t ∈ [0, T ] ,
a(q (0)− q0, p) = 0, a (h (0)− h0, θ) = 0 ∀p ∈ Q0, ∀θ ∈ Φ,

(15)

where F (q̂) and V (q̂) � items accordingly of �rst and second equations of a
system, which are formed by a �ow components q̂.

We will decide the variational problem with usage of a projective-net scheme
of FEM. Let's conduct a discretization of a problem in time. Interval of time
[0,T] we will divide into NT + 1 identical parts [tk, tk+1] by length ∆t and we
will select approximations for depth and �ows as

h(x, t) ≈ h∆t(x, t) = hk (x) + Hk+ 1
2 (x)∆tω (t) , (16)

q(x, t) ≈ q∆t(x, t) = qk (x) + Uk+ 1
2 (x)∆tω (t) , (17)
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where

Hk+ 1
2 =

hk+1 − hk

∆ t
, Hk+ 1

2 ∈ Φ, ∀x ∈ Ω, ∀t ∈ [tk, tk+1], k = 0, . . . , NT .

It is known, that if we approximate a function by an interpolation polynomial
of the �rst order, the precision greater than ∆t2 cannot be obtained. Therefore
at the given stage (phase) we can conduct a linearization of a problem by
throwing o� terms of the order. By substituting (16) � (17) in a variational
problem (15) and ignore terms of the order ∆t2, we receive a linearized problem
as the one-step recurrent scheme of integrating in time





Given q0 ∈ Q0, h0 ∈ such that λ ∈ (0, 1] ;
Find Uk+ 1

2 ∈ Q0, Hk+ 1
2 ∈ Phi , such that

a(Uk+ 1
2 , p)+

+λ∆t
[
b(qk/hk; Uk+ 1

2 , p) + b(Uk+ 1
2 ; qk/hk, p)− 2d(Hk+ 1

2 ; hk, p)−
−l(η;Hk+ 1

2 , p) + 1
Re

(
c(Hk+ 1

2 ; qk/hk, p) + c(hk; Uk+ 1
2 /hk, p)

)]
=

= d
(
hk; hk, p

)
+ l

(
η;hk, p

)− b
(
qk/hk; qk, p

)−
− 1

Re

[
c
(
hk; qk/hk, p

)− R̄
(
hk; qk, p

)]− a(Fk+1/2, p),
a(Hk+ 1

2 , θ) + λ∆tm(Uk+ 1
2 , θ) =

=< sk+1/2, θ > −m(qk, θ)− a(Vk+1/2, θ),
qk+1 = qk + ∆tUk+ 1

2 , hk+1 = hk + ∆tHk+ 1
2 , k = 0, ..., NT ,

(18)

where Fk+1/2 = F (tk + ∆t/2), Vk+1/2 = V (tk + ∆t/2), sk+1/2 = s(tk + ∆t/2).
At a discretization of a problem (18) according to space variables are utilised

piecewise linear approximatings on triangular elements for �ows and piecewise
constant approximatings of depthes. Such selection of approximatings allows
to eliminate depth of a �ow and to receive a system of simple equations only
concerning vector of a �ow.

For a discretization of a problem according space variables the domain Ω is
divided into triangular �nite elements. Let's enter the spaces for �ows Qh

0 ⊂
Q0, dim Qh

0 = Np < ∞ and for depthes Φh ⊂ Φ, dim Φh
0 = Ne < ∞. Let's

select piecewise linear approximatings for �ows

ϕi (x1, x2) =
{

Li (x1, x2) , Pi ∈ Ωe,
0, Pi /∈ Ωe

and piecewise constant for depthes

ψe (x1, x2) =
{

1, P ∈ Ωe,
0, P /∈ Ωe.

Further using a procedure of a Galorkin method, we will obtain a system of
simple equations concerning unknowns of vector of a �ow W in nodal values of
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a grid and vector of depths S in center of gravity of triangles:



Given q0 ∈ Q0, h0 ∈ Φ and λ ∈ (0, 1] ;

Find U
k+1

2

h =
Np∑
i=1

W
k+ 1

2
i ϕi ∈ Q0

h, H
k+1

2

h =
Ne∑
e=1

S
k+1

2

e ψe ∈ Φh

such, that a(U
k+1

2

h , p)+

+λ∆t

[
b(qk/hk;U

k+1
2

h , p) + b(U
k+1

2

h ; qk/hk, p)− 2d(H
k+1

2

h , hk, p)−

−l(η, H
k+1

2

h , p) + 1
Re

(
c(H

k+1
2

h ; qk/hk, p) + c(hk; U
k+1

2

h /hk, p)
)]

=

= d
(
hk, hk, p

)
+ l

(
η, hk, p

)− b
(
qk/hk; qk, p

)−
− 1

Re

[
c
(
hk; qk/hk, p

)− R̄
(
hk; qk, p

)]− a(Fk+ 1
2
, p) ∀p ∈ Q0,

a(H
k+1

2

h , θ) + λ∆tm(U
k+1

2

h , θ) =
=< sk+ 1

2
, θ > −m(qk, θ)− a(Vk+ 1

2
, θ) ∀θ ∈ Φ,

qk+1 = qk + ∆tU
k+1

2

h , hk+1 = hk + ∆tH
k+1

2

h , k = 0, ..., NT .

(19)

On a Fig. 4 completely sampled equations are sketched on one �nite element

Fig. 4. Diagrammatic representation of a system of simple equations

A22 � diagonal matrix. At the expense of condensation of internal parameters
we can eliminate depth on one �nite element by using a ratio

S
k+ 1

2
e = Ak−1

22 (F k
0 −Ak

21W
k+ 1

2
e ). (20)

In outcome we will obtain a system of simple equations concerning two un-
knowns � �ow components

(Ak
11 −Ak

12A
k−1

22 Ak
21)W

k+ 1
2

e = F k −Ak
12A

k−1

22 F k
0 .

4. Stabilization scheme FEM
At large values of Reynold's numbers (Re>100) �ows and their gradients

change sharply. As outcome the obtained solution of a shallow water problem
loses the stability and appears oscillations. On this case, stabilization scheme
is obtained, which is based on bubble functions with usage of a least-squares
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method. As the depth of a �uid is considered as a constant on one �nite
element, it does not in�uence behaviour of the solution. In a system (18) the
stabilization addend is added to equations of �ows in the next view

S(Uk+ 1
2 ,Hk+ 1

2 , p) = Me




∫

Ωe

Uk+ 1
2 · pdx+

+ ∆tλ




∫

Ωe

2∑

j=1

(
(

∂

∂xj
((qk

i U
k+ 1

2
j ) + (qk

j U
k+ 1

2
i ))/hk

)
pdx+

+
∫

Ωe


U

k+ 1
2

i +
2∑

j=1

∂

∂xj
(qk

i qk
j )/hk + Ghk ∂η

∂xi
− g

∣∣qk
∣∣qk

i

ReC2 (hk)2


×

×



2∑

j=1

∂

∂xj
((qk

i pj) + (qk
j pi))/hk


 dx+

∫

Ωe

GHk+ 1
2

∂η

∂xi
pdx


−

(21)

−
∫

Ωe

g
∣∣qk

∣∣qk
i pi

ReC2(hk)2
dx +

∫

Ωe

2∑

j=1

∂

∂xj
((qk

i qk
j )/hk)pdx +

∫

Ωe

Ghk ∂η

∂xi
pdx


 ,

where Me -� stabilization factor on each �nite element.
For stabilization factor Me using the upper-bound estimate µ0 obtained in

the work [6] for approximating scheme of Navier-Stokes equations

µ0 =
7
5

(
1

7kd2/∆2 − e

)
, (22)

where ∆ - square of �nite triangle element, d2 = l21+l22+l23, li - length of triangle
side (i=1, 2, 3), e = div w,w - know velocity from previous step, k - kinematic
viscosity of a �uid.

5. Test examples
Example 1. Let's consider a problem of shallow water �ow from a surface

some watershed. All parameters of a problem are set in a dimensionless view.
Let's select a test surface watershed η(x, y) as Fig. 5, where x, y change from 0
to 2. In an initial time we will enable that h0 =0.01, qi=0 (i=1,2). Concerning
boundary conditions, we enable, that the water does not out�ow and normal
component of �ow velocities on boundary of domain is equal zero qṅ=0. We
enable, that constant rain in�ux R=1, in�ltration of a �uid in a ground I=0,
coe�cient factor Shezi C=60, Reynold's number Re=0.1. Quantity of splitting
points of domain 60x60. For the solution of a problem we apply the numeric
scheme (19), in which parameters λ = 0.5, ∆t = 0.005. Let's consider result in
a point of time t = 0.195 (quantity of steps in time tt=40).

In a Fig. 5 the depth of a �ow H (quantity of water is �gured, which collects
at the bottom surface with constant rain in�ux). As the water does not out�ow,
cavities are �lled by the water. From results apparently, that the maximum
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value of depth is reached in the middle of a bottom surface, where there is a
greatest cavity. In the highest points of surface watershed values of depth are
approaches to zero, as the water �ows down.

The law of conservation of mass for the given example is tested. The con-
ducted calculations have shown, that the volume of the fall out precipitations
approximately coincides with water volume on a given surface in the given point
of time 0.78105.

In Fig.7 and Fig.8 are �gured values components of a �uid �ow accordingly
on axes x and y. In a Fig.9 the module of a �ow is �gured. From results it is
possible to see, that the �ow has zero values in those points of a bottom surface,
where the �uid collects and whence the water �ows o�, in these extreme points
water is not gone. The maximum values of a �ow are reached in currents, where
there is a maximum slope of a bottom surface to horizont.

Fig. 5. Bottom sur-
face η(x, y) Fig. 6. Flow depth Í

Fig. 7. Flow component Qx Fig. 8. Flow component Qy

Example 2. By important point at problem solving of shallow water is
selection of a Reynold's number values. When parameter receives large values
(Re>100), solution obtained with the help of the numeric scheme (19), loses
the stability, values of �ows and their gradients are very large, as a result of
it there are oscillations. In the Fig. 10 the values of depthes of a problem
with parameters by given in an example 1 and Reynold's number Re = 150
are �gured. On Fig. 11 the values of component �ows accordingly on axis x
are �gured. The results are displayed in a point of time t = 0.073 (quantity of
steps in time tt = 15, ∆t = 0.005).

For the solution of this problem the stabilization scheme of a �nite element
method with stabilization factor (21) was obtained. We apply the stabilization
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Fig. 9. Module of �ow

Fig. 10. Flow depth Í Fig. 11. Flow com-
ponent Qx

scheme to the solution of our problem with a Reynold's number Re=150 and
stabilization factor Me = −0.5. Let's consider computing results in a point of
time t = 0.586 (quantity of steps in time tt=60), quantity of splitting points of
domain 30x30. In a Fig. 12 the values of depth are �gured, the Fig. 13, Fig.
14, Fig. 15 - represent values components and module of a �ow accordingly.

From results it is possible to see, that the problem, which has arisen, at
applying the numeric scheme (19) to the solution of a problem, is decided
positively

The results are smoothed at the expense of the introducing of a stabilization
factor. The computing results have shown, that the problems of a shallow
water �ow can be decided with any values of Reynold's numbers, applying the
stabilization scheme of a �nite element method.

The law of conservation of mass for the obtained outcomes is executed. The
volume of the fall out precipitations coincides with a volume of a �uid on a
surface watershed 2.34314.
Example 3. Let's consider a water �ow from a surface watershed Fig. 16

(part of Perespil countryside in the Lvov area). Boundary and initial conditions
we will select similarly to the previous example, quantity of splitting points of
domain 60x60, stabilization a factor Me = -0.5. Let's consider the results in
a point of time t = 0.146 (quantity of steps in time tt=30) with a Reynold's
number Re=150. In a Fig. 17 the depth H of a water �ow is displayed. For
the greater visualization we compare isolines of a watershed surface (Fig. 18)
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Fig. 12. Flow depth Í Fig. 13. Flow com-
ponent Qx

Fig. 14. Flow com-
ponent Qy Fig. 15. Module of �ow

and depth (Fig. 19). As the water does not out�ow, cavities are �lled by
water. From results we can see, that the �lling of a watershed surface by water
implements according to isolines.In Fig. 20 is displayed module of �ow.

7. Conclusions
For a selected example with stabilization factor is the laws of conservation

of mass and �ow of �uids are fair. The obtained model enables to conduct
calculations of values of depth and speeds of �uid �ows on columbines with
rain and lateral in�uxes for di�erent initial and boundary conditions in di�erent
point of time with large values of a Reynold's number.

The above examples indicate that signi�cant in�uence on the solution of
the problem of shallow water on the surface of a watershed has a choice of
Reynolds number. For small values of this number of problem can be solved
by using numerical scheme (19). Choosing Re> 100, the solution loses its
stability (Fig. 10 � Fig. 13). This is because for large values of the Reynolds
number solutions of problems may have internal and boundary layers - a very
narrow area where most solutions and their gradients change sharply. As a
result, numerical solutions, built on the Galerkin scheme, where the parameter
discretization is too large to consider all these layers can ostcillate throughout
the domain.

Considering it was built stabilization scheme FEM. Applying this scheme to
solving problems of shallow water on the surface of a watershed above men-
tioned problem disappears (Fig.14 - Fig.20).
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Fig. 16. Bottom sur-
face (x, y)

Fig. 17. Flow depth Í

Fig. 18. Isolines of
bottom surface η(x,y)

Fig. 19. Isolines of
depth surface Í(x,y)

Fig. 20. Module of �ow

Thus, based stabilization scheme FEM can be e�ective in solving the problem
of shallow water from any surface water catchment for large Reynolds numbers.
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EXTENSION OF A CLASS OF NONLINEAR
HAMMERSTAIN INTEGRAL EQUATIONS

WITH SOLUTIONS REPRESENTED
BY COMPLEX POLYNOMIALS

Olena Bulatsyk

Ðåçþìå. Â ðîáîòi ðîçãëÿäà¹òüñÿ íåëiíiéíå iíòåãðàëüíå ðiâíÿííÿ òèïó
Ãàììåðøòåéíà ç äîâiëüíîþ çàëåæíiñòþ âiä ìîäóëÿ íåâiäîìî¨ ôóíêöi¨.
Ðîçâ'ÿçêè ðiâíÿíü òàêîãî òèïó ïîäàþòüñÿ ÷åðåç ïîëiíîìè ñêií÷åíèõ ñòåïå-
íiâ, ïàðàìåòðè ÿêèõ âèçíà÷àþòüñÿ iç ñèñòåìè, ùî ñêëàäà¹òüñÿ iç îäíîãî
iíòåãðàëüíîãî i ñêií÷åííîãî ÷èñëà òðàíñöåíäåíòíèõ ðiâíÿíü. Âñòàíîâëåíî
iñíóâàííÿ åêâiâàëåíòíèõ ãðóï ðîçâ'ÿçêiâ íåëiíiéíèõ iíòåãðàëüíèõ ðiâíÿíü,
ùî ðîçãëÿäàþòüñÿ. Îäåðæàíî íåîáõiäíi óìîâè äëÿ òî÷îê ãàëóæåííÿ i
ñèñòåìè ðiâíÿíü äëÿ ¨õ îá÷èñëåííÿ. Íàâåäåíî ÷èñëîâi ðåçóëüòàòè äëÿ
êîíêðåòíî¨ çàäà÷i.
Abstract. An approach, developed before for nonlinear integral Hammer-
stein equations with the linear dependence on the modulus of unknown func-
tion, is generalized to the case of arbitrary di�erentiable dependency. The
approach is based on presentation of the solutions via a complex polynomials
of �nite degrees. The problem is reduced to a system of integro-transcendental
equations. The systems of linear homogeneous equations for the branching
points and integro-transcendental equations for the parameters of the solu-
tion branches are obtained. Numerical results for a concrete problem are
presented.

1. Introduction
Let us consider the nonlinear integral equation of the Hammerstein type

αf(ξ) = B[W (|f |)ei arg f ] ≡
b∫

a

K(ξ, ξ′)W (|f(ξ′)|) exp(i arg f(ξ′))dξ′ (1)

with the kernel

K(ξ, ξ′, c) =
s(ξ)q(ξ′)− s(ξ′)q(ξ)

τ(ξ)− τ(ξ′)
(2)

generated by the linear positive de�ned integral operator B : L2(a, b) →
L2(a, b),

(Bg, g) > 0 (3)
for any g ∈ L2(a, b);

Key words. Nonlinear integral equation of Hammerstein type, �nite-parametric solutions,
branching of solutions, phase optimization problem.
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s(ξ), q(ξ), τ(ξ) are real continuous functions such that the function sets
{τn(ξ)s(ξ)}, {τn(ξ)q(ξ)} (n = 0, 1, . . .) are linearly independent;

W (|f(ξ) | ∈ L2(a, b) is a given real piecewise di�erentiated function.
The general theory of nonlinear integral equations and numerical methods

for their solving was intensively developed in recent years (see e.g. [1], [7], [9],
[10] and the literature cited there). In previous papers we have considered the
nonlinear integral Hammerstein equations without any dependency of the in-
tegrand on the modulus of unknown function [11] or with a linear dependency
on the modulus [6]. Such types of equations arise in di�erent applications,
in particular, in the phase optimization problems of antennas or quasioptical
transmitting lines with di�erent restrictions on the solution phase. It was es-
tablished that the solutions to such equations depend on the �nite number of
complex parameters which are inverse zeros of polynomials of appropriate de-
grees (generating polynomials). These parameters are calculated from a system
of transcendental equations.

In this paper the approach is generalized to equations with a nonlinear de-
pendence of the integrand on the modulus of unknown function. The results
presented here were particularly annonced in [5] and [4].

2. Finite-parametric representation of the solutions
We con�ne ourselves to the case when the solutions to (1) have no zeros at

ξ ∈ (a, b), and assume that they can be represented in the form

f(ξ) = β
|f(ξ)|PN (τ)
|PN (τ)| , (4)

where β is any complex constant with |β| = 1 (without loss of generality, we
further put β = 1);

τ = τ(ξ), τ ′ = τ(ξ′);

PN (τ) =
N∏

k=1

(1−ηNkτ) (5)

is a polynomial of a �nite degree N with complex pairwise non-conjugated zeros
η−1

Nk:

ηNk − η̄Nm 6= 0, k, m = 1, 2, ..., N. (6)
We call PN (τ) as the generating polynomial.

It follows from (4) that

exp(i arg f(ξ)) = β
PN (τ)
|PN (τ)| . (7)

Introduce the symmetrical polynomial of two real variables

RN−1(τ, τ ′) =
2i[PN (τ ′)P̄N (τ)]

(τ − τ ′)
=

N∑

n,m=1

dnmτn−1(τ ′)m−1 (8)
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and denote the matrix of its coe�cients by D = {dnm}. The determinant of D
equals

detD = (−1)[N/2]
N∏

k,m=1

(η̄Nm − ηNk), (9)

where the square brackets mean the integer part of the value. This fact follows
from the condition 40 of the Bezudiant from [8]. Its immediate proof is given
in [11]. Due to condition (6), det D 6= 0.

The conditions for the function f(ξ) of the form (4) to be a solution to
equation (1) are stated by the following theorem.
Theorem 1. Let a function f(ξ) of the form (4) have no zeros at ξ ∈ [a, b]. In
order that it is a solution to equation (1), it is necessary and su�cient that the
parameters ηNk satisfy the following system of the transcendental equations:

|f(ξ)| =
b∫

a

K(ξ, ξ′)W (|f(ξ′)|)Re[PN (τ ′)P̄N (τ)]
|PN (τ ′)||PN (τ)| dξ′, (10a)

ΦNn(|f(ξ)|,ηN1,ηN2,...ηNN ) = 0, n = 1, 2, ..., N, (10b)
ΨNn(|f(ξ)|,ηN1,ηN2,...ηNN ) = 0, n = 1, 2, ..., N, (10c)

where

ΦNn =

b∫

a

τn−1s(ξ)
W (|f(ξ)|)
|PN (τ)| dξ, (11a)

ΨNn =

b∫

a

τn−1q(ξ)
W (|f(ξ)|)
|PN (τ)| dξ. (11b)

Proof. Necessity. Let function (4) be a solution to equation (1). Substituting
(4) into (1) and multiplying the both sides of this equality by P̄N (τ), we have

α
|f(ξ)| |PN (τ)|2

|PN (τ)| = P̄N (τ)

b∫

a

K(ξ, ξ′)W (|f(ξ)|) PN (τ ′)
|PN (τ ′)|dξ′. (12)

After dividing both its sides by |PN (τ)| this equation becomes of the form (10a).
On the other hand, after taking the imaginary part from the same result, we
have

b∫

a

[s(ξ)q(ξ′)− s(ξ′)q(ξ)]RN−1(τ, τ ′)
|PN (τ ′)| W (|f(ξ)|) ≡ 0. (13)

Then, substituting (8) into (13) with interchanging the variables ξ and ξ′, we
have
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N∑

n,m=1

dnm

[
q(ξ′)

b∫

a

τn−1s(ξ)W (|f(ξ)|)
|PN (τ)| dξ−

− s(ξ′)

b∫

a

τn−1q(ξ)W (|f(ξ)|)
|PN (τ)| dξ

]
(τ ′)m−1 ≡ 0.

(14)

Since the functions {τns}, {τnq}, n = 0, . . . , N − 1, are linearly independent,
(14) gives

N∑

n=1

dnm

b∫

a

τn−1s (ξ) W (|f(ξ)|)
|PN (τ)| dξ = 0, n = 1, 2, ..., N, (15a)

N∑

n=1

dnm

b∫

a

τn−1q (ξ) W (|f(ξ)|)
|PN (τ)| dξ = 0, n = 1, 2, ..., N. (15b)

Equalities (15) can be considered as two independent systems of linear algebraic
equations with respect to the unknown integrals. The determinant of their
common matrix D does not equal zero owing to conditions (6), so that the
systems have only zero solutions, that is, the transcendental equations (10) are
satis�ed.

Su�ciency. Let (10) hold at a certain integer N and complex ηNk, k =
1, 2, ..., N , satisfying conditions (6). Then, of course, equalities (15) are satis-
�ed, too, and, hence, the identities (14) and (13) hold as well. With the aid of
(8), we obtain from (13)

Im


P̄N (τ)

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0 (16)

or, after adding the real function α|f(ξ)| |PN (τ)| under the imaginary sign,

Im


α|f(ξ)| |PN (τ)|+ P̄N (τ)

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0. (17)

Dividing the both sides of (17) by the real positive function |PN (τ)|, we obtain

Im


α|f(ξ)|+ P̄N (τ)

|PN (τ)|

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0. (18)

On the other hand, integral equation (10a) can be written in the form

Re


α |f(ξ)|+ P̄N (τ)

|PN (τ)|

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0. (19)
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Equalities (18) and (19) together imply that the expression in their square
brackets equals zero, that is, function (4) solves integral equation (1).

End of proof.
Theorem 2. If the function f(ξ) of the form (4) with β = 1 solves equation
(1), then the functions

fn(ξ) =
|f(ξ)|PN (τ)
|PN (τ)|

1− η̄Nnτ

1− ηNnτ
, n = 1, 2, ..., N,

solve this equation, too.
Proof. The proof of this theorem is analogous to the proof of the Theorem

2.2 in [6] with substitution W (|f(ξ)|) = F (ξ)− |f(ξ)|.
In the simplest case, the theorem is complitely adjusted with the obvious

property that if the function f(ξ) solves equation (1), then f̄(ξ) solves this
equation, too.
Corollary 1. The solutions to integral equation (10a) and the system of tran-
scendental equations (10b,10c) make up the equivalent groups inside which the
function |f(ξ)| remains the same and the polynomials PN (τ) di�er only by sub-
stitution of any number s < N of the parameters ηk by the complex conjugated
ones:

P
(s)
N (τ) =

s∏

m=1

(1− ηnmτ)
N∏

m=s+1

(1− η̄nmτ),

where nm1 6= nm2 if m1 6= m2. Such polynomials generate the solutions to (1)
with the same |f(ξ)|.
Corollary 2. If there is a solution to equation (1) with two parameters η1 =
−η2 in the polynomial PN , which give an even polynomial argument addend,
then a solution exists in the same equivalent group, which has an odd argument.
In particular, if all parameters of the polynomial PN can be devided into such
symmetrical pairs, what means that the polynomial argument is an even func-
tion, then another solution exists in the same equivalent group, which have an
odd argument.

This corollary is justy�ed by the following logical considerations. The argu-
ment of the factor p1(τ) = (1− η1τ)(1− η2τ) = 1− η2

1τ
2 is obviously the even

function of τ . Substituting η2 with η2 according to above theorem gives the
factor p2(τ) = (1− η1τ)(1 + η1τ) = 1− |η1|2 τ2 − (η1 − η1)τ. Its argument is :

arg p2 = arctan 2Imη1τ

1− |η1|2 τ2
.

If N is even integer and PN (τ) =
N/2∏
n=1

(1− η2
nτ2), then

P̃N (τ) =
N/2∏

n=1

(1− |ηn|2 τ2 − (ηn − ηn)τ)
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and its argument is

arg P̃N (τ) =
N/2∑

n=1

arctan 2Imηnτ

1− |ηn|2 τ2
,

which is the odd function of τ.

3. Branching of solutions
For N = 0 (real positive solutions) the transcendental equations (10b, 10c)

disappear and the only integral equation (10a) remains, which coincides with
(1), in which f(ξ) must be substituted by |f(ξ)|. This equation has the non-
trivial solution but not for all values c and N .

The number of solutions to (1) may change at some values c = cj . Such
values are called the branching points. The branching points of solutions to
equation (1) are found from the condition that the system of the homogeneous
integral equations

λnwn|f | = B

[
W (|f |) Im

(
P̄N (τ ′)PN (τ)

)

|PN (τ ′)| |PN (τ)| vn + (20a)

+ W ′(|f |)|f |Re
(
P̄N (τ ′)PN (τ)

)

|PN (τ ′)| |PN (τ)| wn

]
,

λnvn|f | = B

[
W (|f |)Re

(
P̄N (τ)PN (τ ′)

)

|PN (τ ′)| |PN (τ)| vn+ (20b)

+ W ′(|f |)|f | Im
(
P̄N (τ)PN (τ ′)

)

|PN (τ ′)| |PN (τ)| wn

]

has multiple eigenvalues λn = 1. Here {wn, vn} are vector-functions;
W ′ = dW/d(|f |). It is easy to check that λ1 = 1, {v1 ≡ 1, w1 ≡ 0} is always
the eigenpair of (20). These equations are obtained by application of usual
pertrubations technique to equation (1) (see e.g. [6]).

There is an obvious way to obtain the transcendental equation system for
calculation of the branching points and the polynomial parameters in them.
As a rule, the branching of solutions to equation (1) is caused by changing the
degree N of the polynomial PN by one. At the branching points the parame-
ters ηNk of the initial polynomial PN and parameters ηN+1,k of the branched
polynomial PN+1 are connected by the equalities

PN (τ)
|PN (τ)| =

PN+1(τ)
|PN+1(τ)| , ηNk = ηN+1,k, k = 1, 2, . . . , N,

ImηN+1,N+1 = 0.

(21)

At the branching points two new unknown c0 and ReηN+1,N+1 occur. Besides
(10), system
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|f(ξ)| =
b∫

a

K(ξ, ξ′)W (|f(ξ′)|)Re[PN+1(τ ′)P̄N+1(τ)]
|PN+1(τ ′)||PN+1(τ)| dξ′, (22a)

b∫

a

τn−1s(ξ)
W (|f(ξ)|)
|PN+1(τ)|dξ= 0, n = 1, 2, ..., N + 1, (22b)

b∫

a

τn−1s(ξ)
W (|f(ξ)|)
|PN+1(τ)|dξ= 0, n = 1, 2, ..., N + 1 (22c)

should hold. Since the new parameter ηN+1,N+1 is real, the integral equation
(22a) coincides with (10a) and the kth equation of system (22b) (22c) k =
1, 2, . . . , N , is a linear combination of the corresponding equation of system
(10b), (10c) and (k + 1)th equation of (22b) (22c). Hence, at the branching
point, besides system (10) only two additional equations

b∫

a

τNs(ξ)
F (ξ)− β|f(ξ)|

|PN (τ)|(1− ηN+1,N+1τ)
dξ = 0, (23a)

b∫

a

τNq(ξ)
F (ξ)− β|f(ξ)|

|PN (τ)|(1− ηN+1,N+1τ)
dξ = 0 (23b)

should hold. On the whole, we have one real integral equation and 2N +2 tran-
scendental ones for determining the real function |f(ξ)|, N complex parameters
ηNk, k = 1, 2, . . . , N and real ηN+1,N+1 and cj .

At the branching points where the polynomial degree changes by two, the
equalities

ηNk = ηN+2,k, k = 1, . . . , N (24)
are valid. Besides (10), the four additional equations

b∫

a

τk−1s(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ=0, n = N + 1, N + 2;

b∫

a

τk−1q(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ=0, n = N + 1, N + 2,

(25)

should be ful�lled with ηN+2,N+1, ηN+2,N+2 satisfying the conditions
ηN+2,N+1 = η̄N+2,N+2 (26)

or

ImηN+2,N+1 = ImηN+2,N+2 = 0. (27)
Hence, we have 2N + 5 equation for 2N + 4 real unknown: N complex ηNk,
n = 1, 2, . . . , N , one real cj , one complex ηN+2,N+1 or two real ηN+2,N+1,
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ηN+2,N+2, and |f(ξ)|. As it was mentioned in the preceding subsection, the
existence of solutions to such a system is low-probable in general case. However,
they may exist in the case when

W (|f(ξ)|) = W (|f(−ξ)|). (28)
Then the solutions are possible, which generate the polynomials with the even
modulus

|PN (τ)| = |PN (−τ)| , |PN+2(τ)| = |PN+2(−τ)|. (29)
This equality decreases the number of unknowns twice: the parameters ηN+2,k

become imaginary or appear by couples with opposite signs and ηN+2,n, n =
N + 1, N + 2 are always imaginary with opposite signs:

ReηN+2,N+1 = ReηN+2,N+2 = 0, (30a)
ηN+2,N+1 = η̄N+2,N+2. (30b)

On the other hand, conditions (29) decrease the number of equations twice,
as well: N equations of system (10b), (10c) and two additional equations (25)
become identities, because they have odd integrands in the left-hand side.

Finally, at ful�lling (28), (29) the solution branching is possible with de-
creasing the polynomial degree by two if the following transcendental equation
system holds:

b∫

a

τ2n−1s(ξ)
W (|f(ξ)|)
|PN (τ)| dξ= 0, n = 1, 2, . . . [N/2], (31a)

b∫

a

τ2n−2q(ξ)
W (|f(ξ)|)
|PN (τ)| dξ= 0, n = 1, 2, . . . [(N + 1)/2], (31b)

b∫

a

τ2[(N+2)/2]−1s(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ= 0, (31c)

b∫

a

τ2[(N+1)/2]q(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ= 0, (31d)

where ηNk, k = 1, . . . , N , are either imaginary or appear by couples with alter-
native signs, and ηN+2,k, k = N + 1, N + 2 are subject to conditions (30). As
a result, we have N + 3 real equations with respect to N + 3 real unknowns.

4. Numerical results
As an example, we show the numerical results obtained for W (|f(ξ) |) =

1/2 − |f(ξ)|2 and α = 0.5. This problem arises in the case when the linear
antenna should create the uniform power pattern F 2 ≡ 1/2. The calculations
were carried out by the Newton method.
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The real and imaginary parts of ηNk are shown in Fig. 1. The real parts of
solutions are drawn by the dashed lines, the imaginary ones � by the solid lines.
The curve numbering corresponds to the indexes Nk at these parameters.

4

-4

2

-2

0

431 2 5 76c0

c
c1 c2 c3

0

11
21

22

2 1
w

2 2
w

2 1
v

2 2
v

Imh
NK

,Re h
NK

c5
c4

1 1
v

Fig. 1. Real and imag parts of parametrs ηNk;
W (|f(ξ) |) = 1/2− |f(ξ)|2, α = 0.5

For c < c0 = 0.84 there are no nontrivial solutions to equation (1) at this
α. At c = c0 the solution f0(ξ) with N = 0 arises (curve 0). It starts from
f0(ξ) ≡ 0.

At the point c1 = 3.05 two complex conjugate solutions f1(ξ), f1′(ξ) with
N = 1 and imaginary η11, η1′1 respectively, branch o� from f0(ξ) (curves 11,
1′1). At the point c2 = 4.95, two solutions with N = 2 branch o� from each
solution with N = 1. All they make up an equivalent group; we analyze only
one of them denoted by f2(ξ). The solutions f1(ξ), f1′(ξ) continue to exist.
Two more characteristic points, related to them, are c4 and c5.

The solution f2(ξ), arising at c = c2 has two imaginary parameters η21, η22

(curves 21, 22). At c3 = 5.16 the solution f2(ξ) transforms into f2′(ξ), which
has two complex parameters η′21, η′22 with Reη′22 = −Reη′21, Imη′21 = Imη′22.
Curves 2′1, 2′′1, correspond to Reη′21, Imη′21 and curves 2′2, 2′′2, � to Reη′22,
Imη′22, respectively.

When c increases, the solutions with larger N appear, similarly as in the
problem of antenna synthesis according to the amplitude pattern [3].
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